

This page intentionally left blank

 MATLAB® for Engineers

This page intentionally left blank

MATLAB® for Engineers

 Third Edition

 HOLLY MOORE
 Salt Lake Community College
 Salt Lake City, Utah

 Boston • Columbus • Indianapolis • New York
San Francisco • Upper Saddle River • Amsterdam
Cape Town • Dubai • London • Madrid • Milan
Munich • Paris • Montreal • Toronto • Delhi
Mexico City • Sao Paulo • Sydney • Hong Kong
Seoul • Singapore • Taipei • Tokyo

 Vice President and Editorial Director, Engineering/Computer Science: Marcia J. Horton
 Executive Editor: Holly Stark
 Editorial Assistant: William Opaluch
 Marketing Manager: Tim Galligan
 Production Manager: Pat Brown
 Art Director: Jayne Conte
 Cover Designer: Bruce Kenselaar
 Media Editor: Daniel Sandin
 Full-Service Project Management: Pavithra Jayapaul, TexTech International
 Composition: TexTech International
 Printer/Binder: Edwards Brothers
 Cover Printer: Lehigh-Phoenix Color/Hagerstown

 Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on appropriate
page within text.

 MATLAB® and Simulink® are registered trademarks of The Mathworks, Inc., 3 Apple Hill Drive, Natick MA 01760-2098.

 Copyright © 2012 Pearson Education, Inc., publishing as Prentice Hall, One Lake Street, Upper Saddle River, New Jersey 07458.
All rights reserved. Manufactured in the United States of America. This publication is protected by Copyright, and permission should
be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by
any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this work, please
submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458.

 Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks. Where those designations
appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 Library of Congress Cataloging–in–Publication Data

Moore, Holly.
 MATLAB® for engineers / Holly Moore. — 3rd ed.
 p. cm.
 Includes index.
 ISBN-13: 978-0-13-210325-1
 ISBN-10: 0-13-210325-7
 1. Engineering mathematics—Data processing. 2. MATLAB®. I. Title.
 TA345.M585 2011
 620.001'51—dc23

2011022739

 10 9 8 7 6 5 4 3 2 1

 ISBN 10: 0-13-210325-7
 ISBN 13: 978-0-13-210325-1

 Contents

 ABOUT THIS BOOK XI
DEDICATION AND ACKNOWLEDGMENTS XV

1 • ABOUT MATLAB® 1

 1.1 What Is MATLAB®? 1
 1.2 Student Edition of MATLAB® 2
 1.3 How Is MATLAB® Used in Industry? 3
 1.4 Problem Solving in Engineering and Science 5

2 • MATLAB® ENVIRONMENT 9

 2.1 Getting Started 9
 2.2 MATLAB® Windows 11
 2.3 Solving Problems with MATLAB® 18
 2.4 Saving Your Work 42
 Summary 52
 MATLAB® Summary 54
 Key Terms 55
 Problems 55

 3 • BUILT-IN MATLAB® FUNCTIONS 63

 Introduction 63
 3.1 Using Built-In Functions 63
 3.2 Using the Help Feature 65
 3.3 Elementary Math Functions 68
 3.4 Trigonometric Functions 76
 3.5 Data Analysis Functions 80
 3.6 Random Numbers 100
 3.7 Complex Numbers 104
 3.8 Computational Limitations 108
 3.9 Special Values and Miscellaneous Functions 109

v

vi Contents

 3.10 Summary 111
 MATLAB® Summary 112
 Key Terms 113
 Problems 114

 4 • MANIPULATING MATLAB® MATRICES 121

 4.1 Manipulating Matrices 121
 4.2 Problems with Two Variables 128
 4.3 Special Matrices 135
 Summary 141
 MATLAB® Summary 142
 Key Terms 142
 Problems 142

5 • PLOTTING 149

 Introduction 149
 5.1 Two-Dimensional Plots 149
 5.2 Subplots 166
 5.3 Other Types of Two-Dimensional Plots 168
 5.4 Three-Dimensional Plotting 183
 5.5 Editing Plots from the Menu Bar 189
 5.6 Creating Plots from the Workspace Window 191
 5.7 Saving Your Plots 192
 Summary 193
 MATLAB® Summary 193
 Problems 195

 6 • USER-DEFINED FUNCTIONS 205

 Introduction 205
 6.1 Creating Function M-Files 205
 6.2 Creating Your Own Toolbox of Functions 224
 6.3 Anonymous Functions and Function Handles 226
 6.4 Function Functions 227
 6.5 Subfunctions 228
 Summary 231
 MATLAB® Summary 232
 Key Terms 233
 Problems 233

 7 • USER-CONTROLLED INPUT AND OUTPUT 240

 Introduction 240
 7.1 User-Defi ned Input 240
 7.2 Output Options 244
 7.3 Graphical Input 254

 Contents vii

 7.4 More Cell Mode Features 255
 7.5 Reading and Writing Data from Files 260
 7.6 Debugging Your Code 263
 Summary 266
 MATLAB® Summary 267
 Key Terms 268
 Problems 268

 8 • LOGICAL FUNCTIONS AND SELECTION STRUCTURES 273

 Introduction 273
 8.1 Relational and Logical Operators 274
 8.2 Flowcharts and Pseudocode 276
 8.3 Logical Functions 277
 8.4 Selection Structures 284
 8.5 Debugging 300
 Summary 301
 MATLAB® Summary 301
 Key Terms 302
 Problems 302

 9 • REPETITION STRUCTURES 311

 Introduction 311
 9.1 For Loops 312
 9.2 While Loops 320
 9.3 Break and Continue 328
 9.4 Midpoint Break Loops 329
 9.5 Nested Loops 333
 9.6 Improving the Effi ciency of Loops 334
 Summary 336
 Key Terms 337
 Problems 337

 10 • MATRIX ALGEBRA 343

 Introduction 343
 10.1 Matrix Operations and Functions 343
 10.2 Solutions of Systems of Linear Equations 363
 10.3 Special Matrices 379
 Summary 381
 MATLAB® Summary 383
 Key Terms 384
 Problems 384

 11 • OTHER KINDS OF ARRAYS 391

 Introduction 391
 11.1 Data Types 392
 11.2 Multidimensional Arrays 401

viii Contents

 11.3 Character Arrays 403
 11.4 Cell Arrays 408
 11.5 Structure Arrays 409
 Summary 417
 MATLAB® Summary 417
 Key Terms 418
 Problems 418

 12 • SYMBOLIC MATHEMATICS 424

 Introduction 424
 12.1 Symbolic Algebra 425
 12.2 Solving Expressions and Equations 435
 12.3 Symbolic Plotting 446
 12.4 Calculus 454
 12.5 Differential Equations 468
 12.6 Converting Symbolic Expressions to MATLAB® Functions 470
 Summary 471
 MATLAB® Summary 473
 Problems 474

 13 • NUMERICAL TECHNIQUES 484

 13.1 Interpolation 484
 13.2 Curve Fitting 494
 13.3 Using the Interactive Fitting Tools 505
 13.4 Differences and Numerical Differentiation 512
 13.5 Numerical Integration 520
 13.6 Solving Differential Equations Numerically 526
 Summary 533
 MATLAB® Summary 535
 Key Terms 536
 Problems 536

 14 • ADVANCED GRAPHICS 545

 Introduction 545
 14.1 Images 545
 14.2 Handle Graphics 561
 14.3 Animation 565
 14.4 Other Visualization Techniques 571
 14.5 Introduction to Volume Visualization 573
 Summary 576
 MATLAB® Summary 577
 Key Terms 578
 Problems 579

 Contents ix

 15 • CREATING GRAPHICAL USER INTERFACES 581

 Introduction 581
 15.1 A Simple GUI with One User Interaction 582
 15.2 A Graphical User Interface with Multiple User

Interactions—Ready_Aim_Fire 590
 15.3 An Improved Ready_Aim_Fire Program 593
 15.4 A Much Better Ready_Aim_Fire Program 594
 15.5 Built-In GUI Templates 598
 Summary 602
 Key Terms 602
 Problems 602

 16 • SIMULINK®—A BRIEF INTRODUCTION 604

 Introduction 604
 16.1 Applications 604
 16.2 Getting Started 605
 16.3 Solving Differential Equations with Simulink® 613
 Summary 618
 Key Terms 619
 Problems 619

 APPENDIX A • SPECIAL CHARACTERS, COMMANDS, AND
FUNCTIONS 623

 APPENDIX B • SCALING TECHNIQUES 638

 APPENDIX C • THE READY_AIM_FIRE GUI 641

 INDEX 646

This page intentionally left blank

xi

 About This Book

 This book grew out of my experience teaching MATLAB® and other computing
languages to freshmen engineering students at Salt Lake Community College.
I was frustrated by the lack of a text that “started at the beginning.” Although there
were many comprehensive reference books, they assumed a level of both mathem-
atical and computer sophistication that my students did not possess. Also, because
MATLAB® was originally adopted by practitioners in the fi elds of signal processing
and electrical engineering, most of these texts provided examples primarily from
those areas, an approach that didn’t fi t with a general engineering curriculum.
This text starts with basic algebra and shows how MATLAB® can be used to solve
engineering problems from a wide range of disciplines. The examples are drawn
from concepts introduced in early chemistry and physics classes and freshman and
sophomore engineering classes. A standard problem-solving methodology is used
consistently.

 The text assumes that the student has a basic understanding of college algebra
and has been introduced to trigonometric concepts; students who are mathematically
more advanced generally progress through the material more rapidly. Although the
text is not intended to teach subjects such as statistics or matrix algebra, when the
MATLAB® techniques related to these subjects are introduced, a brief background is
included. In addition, sections describing MATLAB® techniques for solving problems
by means of calculus and differential equations are introduced near the end of appro-
priate chapters. These sections can be assigned for additional study to students with a
more advanced mathematics background, or they may be useful as reference material
as students progress through an engineering curriculum.

 The book is intended to be a “hands-on” manual. My students have been most
successful when they read the book while sitting beside a computer and typing in the
examples as they go. Numerous examples are embedded in the text, with more com-
plicated numbered examples included in each chapter to reinforce the concepts
introduced. Practice exercises are included in each chapter to give students an
immediate opportunity to use their new skills, and complete solutions are available
online at: www.pearsonhighered.com/moore .

 The material is grouped into three sections. The fi rst, An Introduction to Basic
MATLAB® Skills , gets the student started and contains the following chapters:

• Chapter 1 shows how MATLAB® is used in engineering and introduces a stand-
ard problem-solving methodology.

• Chapter 2 introduces the MATLAB® environment and the skills required to
perform basic computations. This chapter also introduces M-fi les, and the con-
cept of organizing code into cells. Doing so early in the text makes it easier for
students to save their work and develop a consistent programming strategy.

• Chapter 3 details the wide variety of problems that can be solved with built-in
MATLAB® functions. Background material on many of the functions is provided
to help the student understand how they might be used. For example, the differ-
ence between Gaussian random numbers and uniform random numbers is
described, and examples of each are presented.

www.pearsonhighered.com/moore

xii About This Book

• Chapter 4 demonstrates the power of formulating problems by using matrices
in MATLAB® and expanding on the techniques employed to defi ne those
matrices. The meshgrid function is introduced in this chapter and is used to
solve problems with two variables. The diffi cult concept of meshing variables is
revisited in Chapter 5 when surface plots are introduced.

• Chapter 5 describes the wide variety of both two-dimensional and three-
dimensional plotting techniques available in MATLAB®. Creating plots via
MATLAB® commands, either from the command window or from within an
M-fi le, is emphasized. However, the extremely valuable techniques of interac-
tively editing plots and creating plots directly from the workspace window are
also introduced.

 MATLAB® is a powerful programming language that includes the basic
constructs common to most programming languages. Because it is a scripting
language, creating programs and debugging them in MATLAB® is often easier
than in traditional programming languages such as C++. This makes MATLAB®
a valuable tool for introductory programming classes. The second section of
the text, Programming in MATLAB® , introduces students to programming and
consists of the following chapters:

• Chapter 6 describes how to create and use user-defi ned functions. This chapter
also teaches students how to create a “toolbox” of functions to use in their own
programming projects.

• Chapter 7 introduces functions that interact with the program user, including
user-defi ned input, formatted output, and graphical input techniques. The use
of MATLAB®’s debugging tools is also introduced.

• Chapter 8 describes logical functions such as find and demonstrates how they
vary from the if and if/else structures. The switch case structure is also intro-
duced. The use of logical functions over control structures is emphasized,
partly because students (and teachers) who have previous programming
experience often overlook the advantages of using MATLAB®’s built-in mat-
rix functionality.

• Chapter 9 introduces repetition structures, including for loops, while loops, and
midpoint break loops which utilize the break command. Numerous examples
are included because students fi nd these concepts particularly challenging.

 Chapters 1 through 9 should be taught sequentially, but the chapters in
Section 3, Advanced MATLAB® Concepts , do not depend upon each other. Any or
all of these chapters could be used in an introductory course or could serve as ref-
erence material for self-study. Most of the material is appropriate for freshmen. A
two-credit course might include Chapters 1 through 9 plus Chapter 10 , while a
three-credit course might include Chapters 1 through 14 , but eliminate Sections 12.4,
12.5, 13.4, 13.5, and 13.6, which describe differentiation techniques, integration
techniques, and solution techniques for differential equations. Chapters 15 and
16 will be interesting to more advanced students, and might be included in a
course delivered to sophomore or junior students instead of to freshmen. The
skills developed in these will be especially useful as students become more
involved in solving engineering problems:

• Chapter 10 discusses problem solving with matrix algebra, including dot prod-
ucts, cross products, and the solution of linear systems of equations. Although
matrix algebra is widely used in all engineering fi elds, it fi nds early application
in the statics and dynamics classes taken by most engineering majors.

About This Book xiii

• Chapter 11 is an introduction to the wide variety of data types available in
MATLAB®. This chapter is especially useful for electrical engineering and com-
puter engineering students.

• Chapter 12 introduces MATLAB®’s symbolic mathematics package, built on
the MuPad engine. Students will fi nd this material especially valuable in math-
ematics classes. My students tell me that the package is one of the most valu-
able sets of techniques introduced in the course. It is something they start
using immediately.

• Chapter 13 presents numerical techniques used in a wide variety of applica-
tions, especially curve fi tting and statistics. Students value these techniques
when they take laboratory classes such as chemistry or physics or when they take
the labs associated with engineering classes such as heat transfer, fl uid dynam-
ics, or strengths of materials.

• Chapter 14 examines graphical techniques used to visualize data. These tech-
niques are especially useful for analyzing the results of numerical analysis calcu-
lations, including results from structural analysis, fl uid dynamics, and heat
transfer codes.

• Chapter 15 introduces MATLAB®’s graphical user interface capability, using the
GUIDE application. Creating their own GUI’s gives students insight into how the
graphical user interfaces they use daily on other computer platforms are created.

• Chapter 16 introduces Simulink®, which is a simulation package built on top of
the MATLAB® platform. Simulink® uses a graphical user interface that allows
programmers to build models of dynamic systems. Simulink® has found signifi -
cant acceptance in the fi eld of Electrical Engineering but has wide application
across the engineering spectrum.

 Appendix A lists all of the functions and special symbols (or characters) intro-
duced in the text. Appendix B describes strategies for scaling data, so that the
resulting plots are linear. Appendix C includes the complete MATLAB® code to
create the Ready_Aim_Fire graphical user interface described in Chapter 15 . An
instructor web -site includes the following material:

• M-fi les containing solutions to practice exercises
• M-fi les containing solutions to example problems
• M-fi les containing solutions to homework problems
• PowerPoint slides for each chapter
• All of the fi gures used in the text, suitable for inclusion in your own PowerPoint

presentations
• A series of lectures (including narration) suitable for use with online classes or

as reviews

 ABOUT THE THIRD EDITION

 New versions of MATLAB® are rolled out every 6 months, which makes keeping
any text up-to-date a challenge. The major changes included in this edition are as
follows:

• All of the screen shots throughout the book were updated to refl ect the 2011a
release.

• The introduction to cell mode was moved to Chapter 2 from Chapter 7 . The
description of the cell mode publishing features was expanded and updated in
 Chapter 7 .

xiv About This Book

• Information on debugging features was added to Chapters 7 and 8.
• Based on student and instructor feedback, Chapter 8 was signifi cantly revised

and split into two chapters.
 ❍ The new Chapter 8 introduces MATLAB®’s logical functions such as find ,

and the more traditional selection structures if , if/else , and switch/case .
 ❍ The new Chapter 9 deals exclusively with repetition structures.

• The symbolic toolbox was changed signifi cantly in the 2007b edition, which
required changes to the symbolic algebra materials in Chapter 12 .

• Two additional chapters were added in an attempt to make the text useful to a
wider audience.

 ❍ Chapter 15 describes graphical user interfaces.
 ❍ Chapter 16 is an introduction to Simulink®.

• Problems were added at the end of each chapter.
• Additional example problems were added.
• A number of new functions are introduced throughout the book, suggested to

us by adopters of the text.

xv

 Dedication and
Acknowledgments

 This project would not have been possible without the support of my family, which
endured reading multiple drafts of the text and ate a lot of frozen pizza while I con-
centrated on writing. Thanks to Mike, Heidi, Meagan, and David, and to my hus-
band, Dr. Steven Purcell. I also benefi ted greatly from the suggestions for problems
related to electricity from Lee Brinton and Gene Riggs of the SLCC Electrical
Engineering Department. Their cheerful efforts to educate me on the mysteries of
electricity are much appreciated. I’d also like to thank Dr. Ghassan Hamarneh for
his careful review of the second edition, which helped tremendously as I prepared
this latest manuscript.

 This book is dedicated to my father, Professor George Moore, who taught in the
Department of Electrical Engineering at the South Dakota School of Mines and
Technology for almost 20 years. Professor Moore earned his college degree at the age
of 54 after a successful career as a pilot in the United States Air Force and was a living
reminder that you are never too old to learn. My mother, Jean Moore, encouraged
both him and her two daughters to explore outside the box. Her loving support made
it possible for both my sister and I to enjoy careers in engineering—something few
women attempted in the early 1970s. I hope that readers of this text will take a minute
to thank those people in their lives who’ve helped them make their dreams come
true. Thanks Mom and Dad.

This page intentionally left blank

1

 1.1 WHAT IS MATLAB ® ?

 MATLAB ® is one of a number of commercially available, sophisticated mathematical
computation tools, which also include Maple, Mathematica, and MathCad. Despite
what proponents may claim, no single one of these tools is “the best.” Each has strengths
and weaknesses. Each allows you to perform basic mathematical computations. They
differ in the way they handle symbolic calculations and more complicated mathemati-
cal processes, such as matrix manipulation. For example, MATLAB ® (short for Mat rix
 Lab oratory) excels at computations involving matrices, whereas Maple excels at sym-
bolic calculations. At a fundamental level, you can think of these programs as sophisti-
cated computer-based calculators. They can perform the same functions as your
scientifi c calculator—and many more . If you have a computer on your desk, you may
fi nd yourself using MATLAB ® instead of your calculator for even the simplest mathe-
matical applications—for example, balancing your checkbook. In many engineering
classes, the use of programs such as MATLAB ® to perform computations is replacing
more traditional computer programming. Although programs such as MATLAB ® have
become a standard tool for engineers and scientists, this doesn’t mean that you
shouldn’t learn a high-level language such as C++, JAVA, or FORTRAN.

 Because MATLAB ® is so easy to use, you can perform many programming tasks
with it, but it isn’t always the best tool for a programming task. It excels at numerical
calculations—especially matrix calculations—and graphics, but you wouldn’t want to

 After reading this chapter, you
should be able to:
 • Understand what

MATLAB ® is and why it is
widely used in engineering
and science

 • Understand the advantages
and limitations of the stu-
dent edition of MATLAB ®

 • Formulate problems by
using a structured prob-
lem-solving approach

 Objectives

 About MATLAB ®

 C H A P T E R

2 Chapter 1 About MATLAB®

use it to write a word-processing program. For large applications, such as operating
systems or design software, C++, JAVA, or FORTRAN would be the programs of
choice. (In fact, MATLAB ® , which is a large application program, was originally
written in FORTRAN and later rewritten in C, a precursor of C++.) Usually, high-
level programs do not offer easy access to graphing—an application at which
MATLAB ® excels. The primary area of overlap between MATLAB ® and high-level
programs is “number crunching”—repetitive calculations or the processing of large
quantities of data. Both MATLAB ® and high-level programs are good at processing
numbers. A “number-crunching” program is generally easier to write in MATLAB ® ,
but usually it will execute faster in C++ or FORTRAN. The one exception to this
rule is calculations involving matrices. MATLAB ® is optimized for matrices. Thus, if
a problem can be formulated with a matrix solution, MATLAB ® executes substan-
tially faster than a similar program in a high-level language.

 MATLAB ® is available in both a professional and a student version. The profes-
sional version is probably installed in your college or university computer laboratory,
but you may enjoy having the student version at home. MATLAB ® is updated regu-
larly; this textbook is based on MATLAB ® 7.12. If you are using earlier versions such
as MATLAB ® 6, you may notice some minor differences between it and MATLAB ®
7.12. There are substantial differences in versions that predate MATLAB ® 5.5.

 The standard installation of the professional version of MATLAB ® is capable of
solving a wide variety of technical problems. Additional capability is available in the
form of function toolboxes. These toolboxes are purchased separately, and they
may or may not be available to you. You can fi nd a complete list of the MATLAB ®
product family at The MathWorks web site, www.mathworks.com .

 1.2 STUDENT EDITION OF MATLAB ®

 The professional and student editions of MATLAB ® are very similar. Beginning stu-
dents probably won’t be able to tell the difference. Student editions are available for
Microsoft Windows, Mac OSX, and Linux operating systems and can be purchased
from college bookstores or online from The MathWorks at www.mathworks.com .

 The MathWorks packages its software in groups called releases , and MATLAB ® 7.12
is featured, along with other products, such as Simulink® 7.7, in Release R2011a. New
versions are released every 6 months. The release number is the same for both the stu-
dent and professional edition, but the student version may lag the professional version
by several months. The student edition of R2011a includes the following features:

 • Full MATLAB ®
 • Simulink®, with the ability to build models with up to 1000 blocks (the profes-

sional version allows an unlimited number of blocks)
 • Symbolic Math Toolbox
 • Control System Toolbox
 • Signal Processing Toolbox
 • DSP System Toolbox
 • Statistics Toolbox
 • Optimization Toolbox
 • Image Processing Toolbox
 • Software manuals for both MATLAB ® 7 and Simulink®
 • A CD containing the full electronic documentation
 • A single-user license, limited to students for use in their classwork (the profes-

sional version is licensed either singly or to a group)

 KEY IDEA
 MATLAB ® is optimized for
matrix calculations

 KEY IDEA
 MATLAB ® is regularly
updated

www.mathworks.com
www.mathworks.com

 1.3 How Is MATLAB® Used in Industry 3

 Toolboxes other than those included with the student edition may be pur-
chased separately. You should be aware that if you are using a professional installa-
tion of MATLAB ® , all of the toolboxes available in the student edition may not be
available to you.

 The biggest difference you should notice between the professional and student
editions is the command prompt, which is

>>

 in the professional version and

EDU>>

 in the student edition.

 1.3 HOW IS MATLAB ® USED IN INDUSTRY?

 The ability to use tools such as MATLAB ® is quickly becoming a requirement for
many engineering positions. A recent job search on Monster.com found the follow-
ing advertisement:

 . . . is looking for a System Test Engineer with Avionics experience. . . .
Responsibilities include modifi cation of MATLAB ® scripts, execution of
Simulink® simulations, and analysis of the results data. Candidate MUST
be very familiar with MATLAB ® , Simulink®, and C++. . .

 This ad isn’t unusual. The same search turned up 660 different companies that
specifi cally required MATLAB ® skills for entry-level engineers. Widely used in all
engineering and science fi elds, MATLAB ® is particularly popular for electrical engi-
neering applications. The sections that follow outline a few of the many applica-
tions currently using MATLAB ® .

 1.3.1 Electrical Engineering

 MATLAB ® is used extensively in electrical engineering for signal-processing appli-
cations. For example, Figure 1.1 includes several images created during a research
program at the University of Utah to simulate collision-detection algorithms used
by the housefl y (and adapted to silicon sensors in the laboratory). The research
resulted in the design and manufacture of a computer chip that detects imminent
collisions. This has potential use in the design of autonomous robots using vision
for navigation and especially in automobile safety applications.

 1.3.2 Biomedical Engineering

 Medical images are usually saved as dicom files (the Digital Imaging and
Communications in Medicine standard). Dicom fi les use the fi le extension .dcm.

 KEY IDEA
 MATLAB ® is widely used in
engineering

 Figure 1.1
 Image processing using a
fi sheye lens camera to
simulate the visual system
of a housefl y’s brain.
 (Used by permission of
Dr. Reid Harrison,
University of Utah.)

4 Chapter 1 About MATLAB®

The MathWorks offers an Image Processing Toolbox that can read these fi les, mak-
ing their data available to MATLAB ® . (The Image Processing Toolbox is included
with the student edition and is optional with the professional edition.) The Image
Processing Toolbox also includes a wide range of functions, many of them espe-
cially appropriate for medical imaging. A limited MRI data set that has already been
converted to a format compatible with MATLAB ® ships with the standard MATLAB ®
program. This data set allows you to try out some of the imaging functions available
both with the standard MATLAB ® installation and with the expanded imaging tool-
box, if you have it installed on your computer. Figure 1.2 shows six images of hori-
zontal slices through the brain based on the MRI data set.

 The same data set can be used to construct a three-dimensional image, such as
either of those shown in Figure 1.3 . Detailed instructions on how to create these
images are included in the MATLAB ® tutorial, accessed from the help button on
the MATLAB ® toolbar.

 1.3.3 Fluid Dynamics

 Calculations describing fl uid velocities (speeds and directions) are important in a
number of different fi elds. Aerospace engineers in particular are interested in the
behavior of gases, both outside an aircraft or space vehicle and inside the combustion
chambers. Visualizing the three-dimensional behavior of fl uids is tricky, but MATLAB ®

 Figure 1.2
 Horizontal slices through
the brain, based on the
sample data fi le included
with MATLAB ® .

 Figure 1.3
 Three-dimensional
visualization of MRI data,
based on the sample data
set included with
MATLAB ® .

 1.4 Problem Solving in Engineering and Science 5

offers a number of tools that make it easier. In Figure 1.4 , the fl ow-fi eld calculation
results for a thrust-vector control device are represented as a quiver plot. Thrust-vector
control is the process of changing the direction in which a nozzle points (and hence
the direction a rocket travels) by pushing on an actuator (a piston-cylinder device).
The model in the fi gure represents a high-pressure reservoir of gas (a plenum) that
eventually feeds into the piston and thus controls the length of the actuator.

 1.4 PROBLEM SOLVING IN ENGINEERING AND SCIENCE

 A consistent approach to solving technical problems is important throughout engi-
neering, science, and computer programming disciplines. The approach we out-
line here is useful in courses as diverse as chemistry, physics, thermodynamics, and
engineering design. It also applies to the social sciences, such as economics and
sociology. Different authors may formulate their problem-solving schemes differ-
ently, but they all have the same basic format:

 • State the problem .
 ❍ Drawing a picture is often helpful in this step.
 ❍ If you do not have a clear understanding of the problem, you are not likely

to be able to solve it.
 • Describe the input values (knowns) and the required outputs (unknowns).

 ❍ Be careful to include units as you describe the input and output values.
Sloppy handling of units often leads to wrong answers.

 ❍ Identify constants you may need in the calculation, such as the ideal-gas con-
stant and the acceleration due to gravity.

 ❍ If appropriate, label a sketch with the values you have identifi ed, or group
them into a table.

2

1.5

0.5

0
0 0.5 1

x-axis

y-
ax

is

Flow Velocities from a Plenum into a Curved Pipe

1.5 2

1

 KEY IDEA
 Always use a systematic
problem-solving strategy

 Figure 1.4
 Quiver plot of gas behavior
in a thrust-vector control
device.

6 Chapter 1 About MATLAB®

 • Develop an algorithm to solve the problem. In computer applications, this can
often be accomplished with a hand example . You’ll need to
❍ Identify any equations relating the knowns and unknowns.
❍ Work through a simplifi ed version of the problem by hand or with a calculator.

 • Solve the problem. In this book, this step involves creating a MATLAB ® solution .
 • Test the solution .

 ❍ Do your results make sense physically?
 ❍ Do they match your sample calculations?
 ❍ Is your answer really what was asked for?
 ❍ Graphs are often useful ways to check your calculations for reasonableness.

 If you consistently use a structured problem-solving approach, such as the one
just outlined, you’ll fi nd that “story” problems become much easier to solve.
 Example 1.1 illustrates this problem-solving strategy.

 THE CONVERSION OF MATTER TO ENERGY
 Albert Einstein (Figure 1.5) is arguably the most famous physicist of the 20th cen-
tury. Einstein was born in Germany in 1879 and attended school in both Germany
and Switzerland. While working as a patent clerk in Bern, he developed his famous
theory of relativity. Perhaps the best-known physics equation today is his

 E � mc2

 This astonishingly simple equation links the previously separate worlds of matter
and energy and can be used to fi nd the amount of energy released as matter is
changed in form in both natural and human-made nuclear reactions.

 EXAMPLE 1.1

 Figure 1.5
 Albert Einstein.
(Courtesy of the Library
of Congress, LC-
USZ62-60242.)

 1.4 Problem Solving in Engineering and Science 7

 The sun radiates 385 � 1024 J/s of energy, all of which is generated by nuclear
reactions converting matter to energy. Use MATLAB ® and Einstein’s equation to
determine how much matter must be converted to energy to produce this much
radiation in one day.

 1. State the Problem
 Find the amount of matter necessary to produce the amount of energy radiated

by the sun every day.
 2. Describe the Input and Output

 Input

 Energy: E �385 �1024 J/s which must be converted into the
total energy radiated during one day

 Speed of light: c � 3.0 � 108 m/s

 Output
 Mass m in kg

 3. Develop a Hand Example
 The energy radiated in one day is

 385 � 1024 J>s � 3600 s>h � 24 h>day � 1 day � 3.33 � 1031 J

 The equation E � mc2 must be solved for m and the values for E and c substi-
tuted. We have

 m �
E
c2

 m �
3.33 � 1031 J

(3.0 � 108m>s)2

 � 3.7 � 1014
J

m2s2

 We can see from the output criteria that we want the mass in kg, so what went
wrong? We need to do one more unit conversion:

 1 J � 1 kg m2>s2

 � 3.7 � 1014
kg m2>s2

m2>s2 � 3.7 � 1014 kg

 4. Develop a MATLAB ® Solution
 At this point, you have not learned how to create MATLAB ® code. However,

you should be able to see from the following sample code that MATLAB ® syn-
tax is similar to that used in most algebraic scientifi c calculators. MATLAB ®

commands are entered at the prompt (>>), and the results are reported on the
next line. The code is as follows:

>> E=385e24 The user types in this information
E =

3.8500e+026 This is the computer's response
>> E=E*3600*24
E =

3.3264e+031
>> c=3e8
c =

300000000

8 Chapter 1 About MATLAB®

>> m=E/c^2
m =

3.6960e+014

 From this point on, we will not show the prompt when describing interactions
in the command window.

5. Test the Solution
 The MATLAB ® solution matches the hand calculation, but do the numbers make

sense? Anything times 1014 is a really large number. Consider, however, that the
mass of the sun is 2 � 1030 kg . We can calculate how long it would take to con-
sume the mass of the sun completely at a rate of 3.7 � 1014 kg>day . We have

 Time �
Mass of the sun

Rate of consumption

 Time �
2 � 1030 kg

3.7 � 1014 kg>day
�

year

365 days
� 1.5 � 1013 years

 That’s 15 trillion years! We don’t need to worry about the sun running out of
matter to convert to energy in our lifetimes.

>> m=E/c^2
m =

3.6960e+014

 From this point on, we will not show the prompt when describing interactions
in the command window.

5. Test the Solution
 The MATLAB ® solution matches the hand calculation, but do the numbers make
sense? Anything times 1014 is a really large number. Consider, however, that the
mass of the sun is 2 � 1030 kg . We can calculate how long it would take to con-
sume the mass of the sun completely at a rate of 3.7 � 1014 kg>dayaa . We have

Time �
Mass of the sun

Rate of consumption

Time �
2 � 1030 kg

3.7 � 1014 kg>dayaa
�

year

365 dayaa s
� 1.5 � 1013 years

 That’s 15 trillion years! We don’t need to worry about the sun running out of
matter to convert to energy in our lifetimes.

2

 2.1 GETTING STARTED

 Using MATLAB ® for the fi rst time is easy; mastering it can take years. In this chapter,
we will introduce you to the MATLAB ® environment and show you how to perform
basic mathematical computations. After reading this chapter, you should be able to
start using MATLAB ® for homework assignments or on the job. Of course, you will be
able to do more things as you complete the rest of the chapters.

 Because the procedure for installing MATLAB ® depends upon your operating sys-
tem and your computing environment, we will assume that you have already installed
MATLAB ® on your computer or that you are working in a computing laboratory with
MATLAB ® already installed. To start MATLAB ® in either the Windows or Apple envi-
ronment, click on the icon on the desktop, or use the start menu to fi nd the program.
In the UNIX environment, type Matlab at the shell prompt. No matter how you start
it, once MATLAB ® opens, you should see the MATLAB ® prompt (>> or EDU>>) , which
tells you that MATLAB ® is ready for you to enter a command. When you have fi nished

 After reading this chapter, you
should be able to:
 • Start the MATLAB ® pro-

gram and solve simple
problems in the command
window

 • Understand MATLAB ® ’s
use of matrices

 • Identify and use the vari-
ous MATLAB ® windows

 • Defi ne and use simple
matrices

 • Name and use variables
 • Understand the order of

operations in MATLAB ®

 • Understand the difference
between scalar, array, and
matrix calculations in
MATLAB ®

 • Express numbers in either
fl oating-point or scientifi c
notation

 • Adjust the format used to
display numbers in the
command window

 • Save the value of variables
used in a MATLAB ®
 session

 • Save a series of commands
in an M-fi le

 Objectives

 MATLAB ®
Environment

 C H A P T E R

10 Chapter 2 MATLAB ® Environment

your MATLAB ® session, you can exit MATLAB ® by typing quit or exit at the
MATLAB ® prompt. MATLAB ® also uses the standard Windows menu bar, so you can
exit the program by choosing EXIT MATLAB from the File menu or by selecting the
close icon (x) at the upper right-hand corner of the screen. The default MATLAB ®
screen, which opens each time you start the program, is shown in Figure 2.1 .

 To start using MATLAB ® , you need be concerned only with the command win-
dow (in the center of the screen). You can perform calculations in the command
window in a manner similar to the way you perform calculations on a scientifi c cal-
culator. Even most of the syntax is the same. For example, to compute the value of
5 squared, type the command

5^2

 The following output will be displayed:

ans =
25

 Or, to fi nd the value of cos 1p2, type

cos(pi)

 which results in the output

ans =
-1

 MATLAB ® uses the standard algebraic rules for order of operation, which
becomes important when you chain calculations together. These rules are discussed
in Section 2.3.2. Notice that the value of pi is built into MATLAB ® , so you do not
have to enter it yourself.

Help Exit MATLAB
icon

Close window
and undock
window icons

Command History

Current folder

Workspace
Window

File
 Figure 2.1
 MATLAB ® opening
window. The MATLAB ®
environment consists of a
number of windows, four of
which open in the default
view. Others open as
needed during a MATLAB ®
session.

 KEY IDEA
 MATLAB ® uses the
standard algebraic rules
for order of operation

2.2 MATLAB® Windows 11

 Before going any further, try Practice Exercise 2.1.

 HINT
 You may think some of the examples are too simple to type in yourself—that
just reading the material is suffi cient. However, you will remember the mate-
rial better if you both read it and type it!

 HINT
 You may fi nd it frustrating to learn that when you make a mistake, you cannot
just overwrite your command after you have executed it. This occurs because
the command window is creating a list of all the commands you have entered.
You cannot “un-execute” a command, or “un-create” it. What you can do is
enter the command correctly and then execute your new version. MATLAB ®
offers several ways to make this easier for you. One way is to use the arrow keys,
usually located on the right-hand side of your keyboard. The up arrow, q,
allows you to move through the list of commands you have executed. Once
you fi nd the appropriate command, you can edit it and then execute your new
version.

 2.2 MATLAB ® WINDOWS

 MATLAB ® uses several display windows. The default view, shown in Figure 2.1 ,
includes in the middle a large command window , located on the right, the command
history window and workspace windows, and located on the left the current folder win-
dow . Older versions of MATLAB ® also included a launch pad window, which has
been replaced by the start button in the lower left-hand corner. In addition, docu-
ment windows , graphics windows , and editing windows will automatically open when
needed. Each is described in the sections that follow. MATLAB ® also includes a
built-in help tutorial that can be accessed from the menu bar, as shown in Figure 2.1 .
To personalize your desktop, you can resize any of these windows, stack them on

 PRACTICE EXERCISE 2.1

 Type the following expressions into MATLAB ® at the command prompt,
and observe the results:

 1. 5 � 2
 2. 5 * 2
 3. 5/2
 4. 3 � 2 * 14 � 32
 5. 2.54 * 8>2.6
 6. 6.3 � 2.1045
 7. 3.6^2
 8. 1� 2^2
 9. sqrt(5)
 10. cos(pi)

12 Chapter 2 MATLAB ® Environment

top of each other, close the ones you are not using with the close icon (the x in the
upper right-hand corner of each window), or “undock” them with the undock icon,
 , also located in the upper right-hand corner of each window. You can restore the
default confi guration by selecting Desktop on the menu bar, then navigating to
Desktop Layout, and then to Default.

 2.2.1 Command Window

 The command window is located in the center pane of the default view of the
MATLAB ® screen, as shown in Figure 2.1 . The command window offers an environ-
ment similar to a scratch pad. Using it allows you to save the values you calculate,
but not the commands used to generate those values. If you want to save the com-
mand sequence, you will need to use the editing window to create an M-file . M-fi les
are described in Section 2.4.2. Both approaches are valuable. Before we introduce
M-fi les, we will concentrate on using the command window.

 2.2.2 Command History

 The command history window records the commands you issued in the command win-
dow. When you exit MATLAB ® , or when you issue the clc command, the command
window is cleared. However, the command history window retains a list of all your com-
mands. You may clear the command history with the edit menu. If you work on a pub-
lic computer, as a security precaution, MATLAB ® ’s defaults may be set to clear the
history when you exit MATLAB ® . If you entered the earlier sample commands listed in
this book, notice that they are repeated in the command history window. This window
is valuable for a number of reasons, among them that it allows you to review previous
MATLAB ® sessions and that it can be used to transfer commands to the command
window. For example, fi rst clear the contents of the command window by typing

clc

 This action clears the command window but leaves the data in the command
history window intact. You can transfer any command from the command history
window to the command window by double-clicking (which also executes the com-
mand) or by clicking and dragging the line of code into the command window. Try
double-clicking

cos(pi)

 in the command history window. The command is copied into the command win-
dow and executed. It should return

ans =
-1

 Now click and drag

5^2

 from the command history window into the command window. The command will
not execute until you hit Enter, and then you will get the result:

ans =
25

 You will fi nd the command history useful as you perform more and more com-
plicated calculations in the command window.

 KEY IDEA
 The command window is
similar to a scratch pad

 KEY IDEA
 The command history
records all of the
commands issued in the
command window

2.2 MATLAB® Windows 13

 2.2.3 Workspace Window

 The workspace window keeps track of the variables you have defi ned as you execute
commands in the command window. These variables represent values stored in
the computer memory, which are available for you to use. If you have been doing
the examples, the workspace window should show just one variable, ans , and indi-
cate that it has a value of 25 and is a double array:

 KEY IDEA
 The workspace window
lists information describing
all the variables created by
the program

 Name Value Size Bytes Class

 ans 25 1 � 1 8 double

 (Your view of the workspace window may be slightly different, depending on
how your installation of MATLAB ® is confi gured.)

 Set the workspace window to show more about the displayed variables by right-
clicking on the bar with the column labels. (This feature is new to MATLAB ® 7 and
will not work if you have an older version.) Check size and bytes , in addition to
 name , value , and class . Your workspace window should now display the following
information, although you may need to resize the window to see all the columns:

 Name Value Class

 ans 25 double

 The yellow grid-like symbol indicates that the variable ans is an array. The size,
 1 � 1, tells us that it is a single value (one row by one column) and therefore a sca-
lar. The array uses 8 bytes of memory. MATLAB ® was written in C, and the class
designation tells us that in the C language, ans is a double-precision fl oating-point
array. For our needs, it is enough to know that the variable ans can store a fl oating-
point number (a number with a decimal point). Actually, MATLAB ® considers
every number you enter to be a fl oating-point number, whether you insert a deci-
mal point or not.

 In addition to information about the size of the arrays and type of data stored
in them, you can also choose to display statistical information about the data. Once
again right click the bar in the workspace window that displays the column head-
ings. Notice that you can select from a number of different statistical measures,
such as the max, min, and standard deviation.

 You can defi ne additional variables in the command window, and they will be
listed in the workspace window. For example, typing

A = 5
 returns

A =
5

 Notice that the variable A has been added to the workspace window, which lists
variables in alphabetical order. Variables beginning with capital letters are listed
fi rst, followed by variables starting with lowercase letters.

 KEY IDEA
 The default data type is
double-precision fl oating-
point numbers stored in a
matrix

14 Chapter 2 MATLAB ® Environment

 In Section 2.3.2 we will discuss in detail how to enter matrices into MATLAB ® .
For now, you can enter a simple one-dimensional matrix by typing

B = [1, 2, 3, 4]

 This command returns

B =
1 2 3 4

 The commas are optional; you would get the same result with

B = [1 2 3 4]
B =

1 2 3 4

 Notice that the variable B has been added to the workspace window and that it
is a 1 � 4 array:

 Name Value Size Bytes Class

 A 5 1 � 1 8 double

 ans 25 1 � 1 8 double

 Name Value Size Bytes Class

 A 5 1 � 1 8 double
 B [1 2 3 4] 1 � 4 32 double
 ans 25 1 � 1 8 double

 Name Value Size Bytes Class

 A 5 1 � 1 8 double
 B [1 2 3 4] 1 � 4 32 double
 C � 3 � 4 double� 3 � 4 96 double
 ans 25 1 � 1 8 double

 You can defi ne two-dimensional matrices in a similar fashion. Semicolons are
used to separate rows. For example,

C = [1 2 3 4; 10 20 30 40; 5 10 15 20]

 returns

C =
1 2 3 4
10 20 30 40
5 10 15 20

 Notice that C appears in the workspace window as a 3 � 4 matrix. To conserve
space, the values stored in the matrix are not listed.

2.2 MATLAB® Windows 15

 You can recall the values for any variable by typing in the variable name. For
example, entering

A

 returns

A =
5

 Although the only variables we have introduced are matrices containing num-
bers, other types of variables are possible.

 In describing the command window, we introduced the clc command. This
command clears the command window, leaving a blank page for you to work on.
However, it does not delete from memory the actual variables you have created.
The clear command deletes all of the saved variables. The action of the clear
command is refl ected in the workspace window. Try it out by typing

clear

 in the command window. The workspace window is now empty:

 Name Value Size Bytes Class

 Name Size Bytes Class

 A 1 � 1 8 double
 B 1 � 4 32 double
 C 3 � 4 96 double
 ans 1 � 1 8 double

 If you suppress the workspace window (closing it either from the fi le menu or
with the close icon in the upper right-hand corner of the window), you can still fi nd
out which variables have been defi ned by using the whos command:

whos

 If executed before we entered the clear command, whos would have returned

 2.2.4 Current Folder Window

 The current folder window lists all the fi les in the active directory. When MATLAB ®
either accesses fi les or saves information, it uses the current folder unless told dif-
ferently. The default for the location of the current folder varies with your version
of the software and the way it was installed. However, the current folder is listed at
the top of the main window. The current folder can be changed by selecting another
directory from the drop-down list located next to the directory listing or by brows-
ing through your computer fi les. Browsing is performed with the browse button,
located next to the drop-down list (see Figure 2.2).

16 Chapter 2 MATLAB ® Environment

 2.2.5 Document Window

 Double-clicking on any variable listed in the workspace window automatically
launches a document window, containing the variable editor . Values stored in the
variable are displayed in a spreadsheet format. You can change values in the array
editor, or you can add new values. For example, if you have not already entered the
two-dimensional matrix C, enter the following command in the command window:

C = [1 2 3 4; 10 20 30 40; 5 10 15 20];

 Placing a semicolon at the end of the command suppresses the output so that it
is not repeated in the command window. However, C should now be listed in the
workspace window. If you double-click on it, a document window will open above
the command window, as shown in Figure 2.3 . You can now add more values to the
 C matrix or change existing values.

 The document window/variable editor can also be used in conjunction with
the workspace window to create entirely new arrays. Run your mouse slowly over the
icons in the shortcut bar at the top of the workspace window. If you are patient, you
should see the function of each icon appear. The new variable icon looks like a grid
with a large asterisk behind it. Select the new variable icon, and a new variable
called unnamed should appear on the variable list. You can change its name by
right-clicking and selecting rename from the pop-up menu. To add values to this
new variable, double-click on it and add your data from the array editor window.
The new variable button is a new feature in MATLAB ® 7; if you are using an older
version, you will not be able to create variables this way.

 When you are fi nished creating new variables, close the array editor by select-
ing the close window icon in the upper right-hand corner of the window.

 2.2.6 Graphics Window

 The graphics window launches automatically when you request a graph. To demon-
strate this feature, fi rst create an array of x values:

x = [1 2 3 4 5];

Current folder Drop-Down
Menu and Browse Button

 Figure 2.2
 The Current Folder Window
lists all the fi les in the active
directory. You can change
the current folder by using
the drop-down menu or the
browse button.

 KEY IDEA
 A semicolon suppresses the
output from commands
issued in the command
window

2.2 MATLAB® Windows 17

 (Remember, the semicolon suppresses the output from this command; how-
ever, a new variable, x, appears in the workspace window.)

 Now create a list of y values:

y = [10 20 30 40 50];

 To create a graph, use the plot command:

plot(x,y)

 The graphics window opens automatically (see Figure 2.4). Notice that a new
window label appears on the task bar at the bottom of the windows screen. It will be
titled either <Student Version> Figure… or simply Figure 1 , depending on whether
you are using the student or professional version, respectively, of the software. Any
additional graphs you create will overwrite Figure 1, unless you specifi cally com-
mand MATLAB ® to open a new graphics window.

 MATLAB ® makes it easy to modify graphs by adding titles, x and y labels, multi-
ple lines, etc. Annotating graphs is covered in a separate chapter on plotting.
Engineers and scientists never present a graph without labels!

 2.2.7 Edit Window

 To open the edit window, choose File from the menu bar, then New , and, fi nally
 Script (File : New : Script). This window allows you to type and save a series of
commands without executing them. You may also open the edit window by typing
 edit at the command prompt or by selecting the New Script button on the toolbar.

 2.2.8 Start Button

 The start button is located in the lower left-hand corner of the MATLAB ® window.
It offers alternative access to the various MATLAB ® windows, as well as to the help
function, Internet products, demos and MATLAB ® toolboxes. Toolboxes provide
additional MATLAB ® functionality for specifi c content areas. The symbolic toolbox
in particular is highly useful to scientists and engineers. The start button is new to
MATLAB ® 7 and replaces the launchpad window used in MATLAB ® 6.

New Variable
Icon

 Figure 2.3
 The Document Window
displays the Variable Editor.

 KEY IDEA
 Always add a title and axis
labels to graphs

18 Chapter 2 MATLAB ® Environment

 2.3 SOLVING PROBLEMS WITH MATLAB ®

 The command window environment is a powerful tool for solving engineering
problems. To use it effectively, you will need to understand more about how
MATLAB ® works.

 2.3.1 Using Variables

 Although you can solve many problems by using MATLAB ® like a calculator, it is
usually more convenient to give names to the values you are using. MATLAB ® uses
the naming conventions that are common to most computer programs:

 • All names must start with a letter. The names can be of any length, but only
the fi rst 63 characters are used in MATLAB ® 7. (Use the namelengthmax com-
mand to confi rm this.) Although MATLAB ® will let you create long variable names,
excessive length creates a signifi cant opportunity for error. A common guideline is
to use lowercase letters and numbers in variable names and to use capital letters for
the names of constants. However, if a constant is traditionally expressed as a lower-
case letter, feel free to follow that convention. For example, in physics textbooks the
speed of light is always lowercase c . Names should be short enough to remember
and should be descriptive.

 • The only allowable characters are letters, numbers, and the underscore. You
can check to see if a variable name is allowed by using the isvarname command.
As is standard in computer languages, the number 1 means that something is true
and the number 0 means false. Hence,

isvarname time
ans =

1

 Figure 2.4
 MATLAB ® makes it easy to
create graphs.

2.3 Solving Problems with MATLAB® 19

 indicates that time is a legitimate variable name, and

isvarname cool-beans
ans =

0

 tells us that cool-beans is not a legitimate variable name. (Recall that the dash is
not an allowed character.)

 • Names are case sensitive. The variable x is different from the variable X .

 • MATLAB ® reserves a list of keywords for use by the program, which you can-
not assign as variable names. The iskeyword command causes MATLAB ® to list
these reserved names:

iskeyword
ans =
'break'
'case'
'catch'
'classdef'
'continue'
'else'
'elseif'
'end'
'for'
'function'
'global'
'if'
'otherwise'
'parfor'
'persistent'
'return'
'spmd'
'switch'
'try'
'while'

 • MATLAB ® allows you to reassign built-in function names as variable names.
For example, you could create a new variable called sin with the command

sin = 4

 which returns

sin =
4

 This is clearly a dangerous practice, since the sin (i.e., sine) function is no longer
available. If you try to use the overwritten function, you’ll get an error statement:

sin(3)
??? Index exceeds matrix dimensions.

 You can check to see if a variable is a built-in MATLAB ® function by using the
 which command:

which sin
sin is a variable.

20 Chapter 2 MATLAB ® Environment

 You can reset sin back to a function by typing

clear sin

 Now when you ask

which sin

 the response is

built-in (C:\ProgramFiles\MATLAB\R2011a\toolbox\matlab\elfun\
 @double\sin)
% double method

 which tells us the location of the built-in function.

 PRACTICE EXERCISE 2.2

 Which of the following names are allowed in MATLAB ® ? Make your predic-
tions, then test them with the isvarname , iskeyword , and which
 commands.

 1. test
 2. Test
 3. if
 4. my-book
 5. my_book
 6. Thisisoneverylongnamebutisitstillallowed?
 7. 1stgroup
 8. group_one
 9. zzaAbc
 10. z34wAwy?12#
 11. sin
 12. log

 2.3.2 Matrices in MATLAB ®

 The basic data type used in MATLAB ® is the matrix . A single value, called a scalar , is
represented as a 1 � 1 matrix. A list of values, arranged in either a column or a row,
is a one-dimensional matrix called a vector . A table of values is represented as a two-
dimensional matrix. Although we’ll limit ourselves to scalars, vectors, and two-
dimensional matrices in this chapter, MATLAB ® can handle higher order arrays.
(The terms matrix and array are used interchangeably by MATLAB ® users, even
though they are technically different in a mathematical context.)

 In mathematical nomenclature, matrices are represented as rows and columns
inside square brackets:

 A � [5] B � [2 5] C � c1
5

2
7
d

 In this example, A is a 1 � 1 matrix, B is a 1 � 2 matrix, and C is a 2 � 2 matrix.
The advantage in using matrix representation is that whole groups of information
can be represented with a single name. Most people feel more comfortable assign-
ing a name to a single value, so we’ll start by explaining how MATLAB ® handles
scalars and then move on to more complicated matrices.

 KEY IDEA
 The matrix is the primary
data type in MATLAB ® and
can hold numeric as well
as other types of
information

 VECTOR
 A matrix composed of a
single row or a single
column

2.3 Solving Problems with MATLAB® 21

 Scalar Operations
 MATLAB ® handles arithmetic operations between two scalars much as do other
computer programs and even your calculator. The syntax for addition, subtraction,
multiplication, division, and exponentiation is shown in Table 2.1 . The command

a = 1 + 2

 should be read as “ a is assigned a value of 1 plus 2,” which is the addition of two sca-
lar quantities. Arithmetic operations between two scalar variables use the same syn-
tax. Suppose, for example that you have defi ned a in the previous statement and
that b has a value of 5:

b = 5

 Then

x = a + b

 returns the following result:

x =
8

 A single equals sign (�) is called an assignment operator in MATLAB ® . The
assignment operator causes the result of your calculations to be stored in a com-
puter memory location. In the preceding example, x is assigned a value of 8. If you
enter the variable name

x

 into MATLAB ® , you get the following result:

x =
8

 The assignment operator is signifi cantly different from an equality. Consider
the statement

x = x + 1

 This is not a valid algebraic statement, since x is clearly not equal to x + 1 .
However, when interpreted as an assignment statement, it tells us to replace the cur-
rent value of x stored in memory with a new value that is equal to the old x plus 1 .

 Since the value stored in x was originally 8, the statement returns

x =
9

 SCALAR
 A single-valued matrix

 Table 2.1 Arithmetic Operations Between Two Scalars (Binary Operations)

 Operation Algebraic Syntax MATLAB ® Syntax

 Addition a � b a � b

 Subtraction a � b a � b
 Multiplication a � b a * b

 Division
a
b

 or a � b a / b

 Exponentiation ab a^b

 KEY IDEA
 The assignment operator is
different from an equality

22 Chapter 2 MATLAB ® Environment

 indicating that the value stored in the memory location named x has been changed
to 9. The assignment statement is similar to the familiar process of saving a fi le.
When you fi rst save a word-processing document, you assign it a name. Subsequently,
after you’ve made changes, you resave your fi le, but still assign it the same name.
The fi rst and second versions are not equal: You’ve just assigned a new version of
your document to an existing memory location.

 Order of Operations
 In all mathematical calculations, it is important to understand the order in which
operations are performed. MATLAB ® follows the standard algebraic rules for the
order of operation:

 • First perform calculations inside parentheses, working from the innermost set
to the outermost.

 • Next, perform exponentiation operations.
 • Then perform multiplication and division operations, working from left to

right.
 • Finally, perform addition and subtraction operations, working from left to

right.

 To better understand the importance of the order of operations, consider the
calculations involved in fi nding the surface area of a right circular cylinder.

 The surface area is the sum of the areas of the two circular bases and the area
of the curved surface between them, as shown in Figure 2.5 . If we let the height of
the cylinder be 10 cm and the radius 5 cm, the following MATLAB ® code can be
used to fi nd the surface area:

radius = 5;
height = 10;
surface_area = 2*pi*radius^2 + 2*pi*radius*height

 The code returns

surface_area =
471.2389

 In this case, MATLAB ® fi rst performs the exponentiation, raising the radius to
the second power. It then works from left to right, calculating the fi rst product and
then the second product. Finally, it adds the two products together. You could
instead formulate the expression as

surface_area = 2*pi*radius*(radius + height)

h

r

pr2

SA 2pr2 2prh 2pr(r h)

2prh

pr2

 Figure 2.5
 Finding the surface area of
a right circular cylinder
involves addition,
multiplication, and
exponentiation.

2.3 Solving Problems with MATLAB® 23

 which also returns

surface_area =
471.2389

 In this case, MATLAB ® fi rst fi nds the sum of the radius and height and then
performs the multiplications, working from left to right. If you forgot to include the
parentheses, you would have

surface_area = 2*pi*radius*radius + height

 in which case the program would have first calculated the product of
 2*pi*radius*radius and then added height —obviously resulting in the
wrong answer. Note that it was necessary to include the multiplication operator
before the parentheses, because MATLAB ® does not assume any operators and
would misinterpret the expression

radius(radius + height)

 as follows. The value of radius plus height is 15 1radius � 10 and height � 52, so
MATLAB ® would have looked for the 15th value in an array called radius. This
interpretation would have resulted in the following error statement.

??? Index exceeds matrix dimensions.

 It is important to be extra careful in converting equations into MATLAB ® state-
ments. There is no penalty for adding extra parentheses, and they often make the
code easier to interpret, both for the programmer and for others who may use the
code in the future. Here’s another common error that could be avoided by liberally
using parentheses. Consider the following mathematical expression

 e
Q

RT

 In MATLAB ® the mathematical constant e is evaluated as the function, exp , so
the appropriate syntax is

exp(-Q/(R*T))

 Unfortunately, leaving out the parentheses as in

exp(-Q/R*T)

 gives a very different result. Since the expression is evaluated from left to right, fi rst
 Q is divided by R , then the result is multiplied by T —not at all what was intended.

 Another way to make computer code more readable is to break long expres-
sions into multiple statements. For example, consider the equation

f �
log1ax2 � bx � c2 � sin1ax2 � bx � c2
4px2 � cos1x � 22 * 1ax2 � bx � c2

 It would be very easy to make an error keying in this equation. To minimize the
chance of that happening, break the equation into several pieces. For example, fi rst
assign values for x , a , b , and c :

x = 9;
a = 1;
b = 3;
c = 5;

24 Chapter 2 MATLAB ® Environment

 Then defi ne a polynomial and the denominator:

poly = a*x^2 + b*x + c;
denom = 4*pi*x^2 + cos(x - 2)*poly;

 Combine these components into a fi nal equation:

f = (log(poly) - sin(poly))/denom

 The result is

f =
0.0044

 As mentioned, this approach minimizes your opportunity for error. Instead of
keying in the polynomial three times (and risking an error each time), you need
key it in only once. Your MATLAB ® code is more likely to be accurate, and it’s easier
for others to understand.

 KEY IDEA
 Try to minimize your
opportunity for error

 HINT
 MATLAB ® does not read “white space,” so you may add spaces to your com-
mands without changing their meaning. A long expression is easier to read if
you add a space before and after plus 1�2 signs and minus 1�2 signs but not
before and after multiplication 1*2 and division (/) signs.

 PRACTICE EXERCISES 2.3

 Predict the results of the following MATLAB ® expressions, then check your
predictions by keying the expressions into the command window:

 1. 6>6 � 5
 2. 2 * 6^2
 3. 13 � 52 * 2
 4. 3 � 5 * 2
 5. 4 * 3 > 2 * 8
 6. 3 � 2>4 � 6^2
 7. 2^3^4
 8. 2^13^42
 9. 3^5 � 2
 10. 3^15 � 22
 Create and test MATLAB ® syntax to evaluate the following expressions,
then check your answers with a handheld calculator.

 11.
5 � 3
9 � 1

 12. 23 �
4

5 � 3

 13.
52�1

4 � 1

2.3 Solving Problems with MATLAB® 25

 14. 4

1
2
 * 5

2
3

 15.
5 � 6 *

7
3

� 22

2
3
 *

3
3 * 6

 SCALAR OPERATIONS
 Wind tunnels (see Figure 2.6) play an important role in our study of the behavior of
high-performance aircraft. In order to interpret wind tunnel data, engineers need
to understand how gases behave. The basic equation describing the properties of
gases is the ideal gas law, a relationship studied in detail in freshman chemistry
classes. The law states that

 PV � nRT

 where P � pressure in kPa,
 V � volume in m3,
n � number of kmoles of gas in the sample,
 R � ideal gas constant, 8.314 kPa m3/kmol K, and
 T � temperature, expressed in kelvins (K).

 In addition, we know that the number of kmoles of gas is equal to the mass of
the gas divided by the molar mass (also known as the molecular weight) or

 n � m >MW

 where
 m � mass in kg and
 MW � molar mass in kg/kmol.

 Different units can be used in the equations if the value of R is changed
 accordingly.

 EXAMPLE 2.1

 Figure 2.6
 Wind tunnels are used to
test aircraft designs. (Louis
Bencze/Getty Images Inc.,
Stone Allstock.)

(continued)

26 Chapter 2 MATLAB ® Environment

 Now suppose you know that the volume of air in the wind tunnel is 1000 m3
 .

Before the wind tunnel is turned on, the temperature of the air is 300 K, and the
pressure is 100 kPa. The average molar mass (molecular weight) of air is approxi-
mately 29 kg/kmol. Find the mass of the air in the wind tunnel.

 To solve this problem, use the following problem-solving methodology:

1. State the Problem
 When you solve a problem, it is a good idea to restate it in your own words:
 Find the mass of air in a wind tunnel.
2. Describe the Input and Output

 Input

 Volume V � 1000 m3
 Temperature T � 300 K
 Pressure P � 100 kPa
 Molecular weight MW � 29 kg>kmol
 Gas constant R � 8.314 kPa m3

 > kmol K

 Output

 Mass m � ? kg

 3. Develop a Hand Example
 Working the problem by hand (or with a calculator) allows you to outline an

algorithm, which you can translate to MATLAB ® code later. You should choose
simple data that make it easy to check your work. In this problem, we know two
equations relating the data:

 PV � nRT ideal gas law
 n � m > MW relationship between mass and moles

 Solve the ideal gas law for n , and plug in the given values:

 n � PV > RT

 �
100 kPa � 1000 m3

8.314 kPa m3>kmol K � 300K

 � 40.0930 kmol

 Convert moles to mass by solving the conversion equation for the mass m and
plugging in the values:

 m � n � MW � 40.0930 kmol � 29 kg/mol

 m � 1162.70 kg

 4. Develop a MATLAB ® Solution
 First, clear the screen and memory:

clear, clc

 Now perform the following calculations in the command window:

P = 100
P =

100
T = 300

2.3 Solving Problems with MATLAB® 27

T =
300

V = 1000
V =

1000
MW = 29
MW =

29
R = 8.314
R =

8.3140
n = (P*V)/(R*T)
n =

40.0930
m = n*MW
m =

1.1627e+003

 There are several things you should notice about this MATLAB ® solution. First,
because no semicolons were used to suppress the output, the values of the varia-
bles are repeated after each assignment statement. Notice also the use of paren-
theses in the calculation of n . They are necessary in the denominator, but not in
the numerator. However, using parentheses in both makes the code easier to read.

 5. Test the Solution
 In this case, comparing the result with that obtained by hand is suffi cient. More

complicated problems solved in MATLAB ® should use a variety of input data,
to confi rm that your solution works in a variety of cases. The MATLAB ® screen
used to solve this problem is shown in Figure 2.7 .

 Figure 2.7
 MATLAB ® screen used to
solve the ideal gas
problem.

(continued)

28 Chapter 2 MATLAB ® Environment

 Notice that the variables defi ned in the command window are listed in the
workspace window. Notice also that the command history lists the commands
executed in the command window. If you were to scroll up in the command his-
tory window, you would see commands from previous MATLAB ® sessions. All of
these commands are available for you to move to the command window.

 Array Operations
 Using MATLAB ® as a glorifi ed calculator is fi ne, but its real strength is in matrix
manipulations. As described previously, the simplest way to defi ne a matrix is to use
a list of numbers, called an explicit list . The command

x = [1 2 3 4]

 returns the row vector

x =
1 2 3 4

 Recall that, in defi ning this vector, you may list the values either with or without
commas. A new row is indicated by a semicolon, so a column vector is specifi ed as

y = [1; 2; 3; 4]

 and a matrix that contains both rows and columns is created with the statement

a = [1 2 3 4; 2 3 4 5 ; 3 4 5 6]

 and will return

a =
1 2 3 4
2 3 4 5
3 4 5 6

 EXPLICIT LIST
 A list identifying each
member of a matrix

 HINT
 It’s easier to keep track of how many values you’ve entered into a matrix if
you enter each row on a separate line—the semicolon is optional.

 a = [1 2 3 4;
2 3 4 5;

3 4 5 6]

 While a complicated matrix might have to be entered by hand, evenly spaced
matrices can be entered much more readily. The command

b = 1:5

 and the command

b = [1:5]

 are equivalent statements. Both return a row matrix

b =
1 2 3 4 5

2.3 Solving Problems with MATLAB® 29

 (The square brackets are optional.) The default increment is 1, but if you want
to use a different increment, put it between the fi rst and fi nal values on the right
side of the command. For example,

c = 1:2:5

 indicates that the increment between values will be 2 and returns

c =
1 3 5

 If you want MATLAB ® to calculate the spacing between elements, you may use
the linspace command. Specify the initial value, the fi nal value, and how many
total values you want. For example,

d = linspace(1, 10, 3)

 returns a vector with three values, evenly spaced between 1 and 10:

d =
1 5.5 10

 You can create logarithmically spaced vectors with the logspace command ,
which also requires three inputs. The fi rst two values are powers of 10 representing
the initial and fi nal values in the array. The fi nal value is the number of elements in
the array. Thus,

e = logspace(1, 3, 3)

 returns three values:

e =
10 100 1000

 Notice that the fi rst element in the vector is 101 and the last element in the
array is 103.

 HINT
 New MATLAB ® users often err when using the logspace command by enter-
ing the actual fi rst and last values requested, instead of the corresponding
power of 10. For example,

logspace(10,100,3)

 is interpreted by MATLAB ® as: Create a vector from 1010 to 10100 with three
values. The result is

ans =
1.0e+100 *
0.0000 0.0000 1.0000

 A common multiplier 11 � 101002 is specifi ed for each result, but the fi rst
two values are so small in comparison to the third, that they are effectively 0.

30 Chapter 2 MATLAB ® Environment

 Matrices can be used in many calculations with scalars. If a = [1 2 3] , we
can add 5 to each value in the matrix with the syntax

b = a + 5

 which returns

b =
6 7 8

 This approach works well for addition and subtraction; however, multiplication
and division are a little different. In matrix mathematics, the multiplication opera-
tor 1*2 has a specifi c meaning. Because all MATLAB ® operations can involve matri-
ces, we need a different operator to indicate element-by-element multiplication.
That operator is .* (called dot multiplication or array multiplication). For example,

a.*b

 results in element 1 of matrix a being multiplied by element 1 of matrix b ,
 element 2 of matrix a being multiplied by element 2 of matrix b ,
 element n of matrix a being multiplied by element n of matrix b .

 For the particular case of our a (which is [1 2 3]) and our b (which is [6 7 8]),

a.*b

 returns

ans =
6 14 24

 (Do the math to convince yourself that these are the correct answers.)
 When you multiply a scalar times an array you may use either operator (* or .*),

but when you multiply two arrays together they mean something quite different. Just
using * implies a matrix multiplication, which in this case would return an error mes-
sage, because a and b here do not meet the rules for multiplication in matrix algebra.
The moral is, be careful to use the correct operator when you mean element-by-
element multiplication.

 Similar syntax holds for exponentiation (.^) and element-by-element division
(./) of individual elements:

a.^2
a./b

 Unfortunately, when you divide a scalar by an array you still need to use the ./
syntax, because the / means taking the matrix inverse to MATLAB ® . As a general
rule, unless you specifi cally are doing problems involving linear algebra (matrix
mathematics), you should use the dot operators.

 As an exercise, predict the values resulting from the preceding two expressions,
and then test your predictions by executing the commands in MATLAB ® .

 KEY IDEA
 Matrix multiplication is
different from element-by-
element multiplication

 HINT
 You can include mathematical operations inside a matrix defi nition state-
ment. For example, you might have

 HINT
 You can include mathematical operations inside a matrix defi nition state-
ment. For example, you might have a = [0 : pi/10 : pi].

 KEY IDEA
 Unless you are specifi cally
performing matrix algebra
calculations, use the dot
operators

2.3 Solving Problems with MATLAB® 31

 The matrix capability of MATLAB ® makes it easy to do repetitive calculations.
For example, suppose you have a list of angles in degrees that you would like to
convert to radians. First put the values into a matrix. For angles of 10, 15, 70, and
90, enter

degrees = [10 15 70 90];

 To change the values to radians, you must multiply by p>180:

radians = degrees*pi/180

 This command returns a matrix called radians , with the values in radians. (Try
it!) In this case, you could use either the * or the .* operator, because the multiplica-
tion involves a single matrix (degrees) and two scalars (pi and 180). Thus, you could
have written

radians = degrees.*pi/180

 PRACTICE EXERCISES 2.4

 As you perform the following calculations, recall the difference between
the * and . * operators, as well as the / and ./ and the ̂ and .^ operators:

 1. Defi ne the matrix a � [2.3 5.8 9] as a MATLAB ® variable.
 2. Find the sine of a .
 3. Add 3 to every element in a .
 4. Defi ne the matrix b � [5.2 3.14 2] as a MATLAB ® variable.
 5. Add together each element in matrix a and in matrix b .
 6. Multiply each element in a by the corresponding element in b .
 7. Square each element in matrix a .
 8. Create a matrix named c of evenly spaced values from 0 to 10, with an

increment of 1.
 9. Create a matrix named d of evenly spaced values from 0 to 10, with an

increment of 2.
 10. Use the linspace function to create a matrix of six evenly spaced

values from 10 to 20.
 11. Use the logspace function to create a matrix of fi ve logarithmically

spaced values between 10 and 100.

 KEY IDEA
 The matrix capability of
MATLAB ® makes it easy to
do repetitive calculations

 HINT
 The value of p is built into MATLAB ® as a fl oating-point number called pi .

 Because p is an irrational number, it cannot be expressed exactly with a
fl oating-point representation, so the MATLAB ® constant pi is really an
approximation. You can see this when you fi nd sin(pi) . From trigonome-
try, the answer should be 0. However, MATLAB ® returns a very small number,
1.2246e–016. In most calculations, this won’t make a difference in the fi nal
result.

32 Chapter 2 MATLAB ® Environment

 Another useful matrix operator is transposition. The transpose operator
changes rows to columns and vice versa. For example,

degrees'

 returns

ans =
10
15
70
90

 This makes it easy to create tables. For example, to create a table that converts
degrees to radians, enter

table = [degrees', radians']

 which tells MATLAB ® to create a matrix named table , in which column 1 is
degrees and column 2 is radians:

table =
10.0000 0.1745
15.0000 0.2618
70.0000 1.2217
90.0000 1.5708

 If you transpose a two-dimensional matrix, all the rows become columns and all
the columns become rows. For example, the command

table'

 results in

10.0000 15.0000 70.0000 90.0000
0.1745 0.2618 1.2217 1.5708

 Note that table is not a MATLAB ® command but merely a convenient variable
name. We could have used any meaningful name, say, conversions or degrees_to_radians.

 MATRIX CALCULATIONS WITH SCALARS
 Scientifi c data, such as data collected from wind tunnels, is usually in SI (Système
International) units. However, much of the manufacturing infrastructure in the
United States has been tooled in English (sometimes called American Engineering
or American Standard) units. Engineers need to be fl uent in both systems and
should be especially careful when sharing data with other engineers. Perhaps the
most notorious example of unit confusion problems is the Mars Climate Orbiter
(Figure 2.8), which was the second fl ight of the Mars Surveyor Program. The
spacecraft burned up in the orbit of Mars in September of 1999 because of a
lookup table embedded in the craft’s software. The table, probably generated
from wind-tunnel testing, used pounds force (lbf) when the program expected
values in newtons (N).

 EXAMPLE 2.2

2.3 Solving Problems with MATLAB® 33

 In this example, we’ll use MATLAB ® to create a conversion table of pounds
force to newtons. The table will start at 0 and go to 1000 lbf, at 100-lbf intervals. The
conversion factor is

 1 lbf � 4.4482216 N

 1. State the Problem
 Create a table converting pounds force (lbf) to newtons (N).
 2. Describe the Input and Output

 Input

 The starting value in the table is 0 lbf
 The fi nal value in the table is 1000 lbf
 The increment between values is 100 lbf
 The conversion from lbf to N is 1 lbf � 4.4482216 N

 Output

Table listing pounds force (lbf) and newtons (N)

 3. Develop a Hand Example
 Since we are creating a table, it makes sense to check a number of different

values. Choosing numbers for which the math is easy makes the hand example
simple to complete, but still valuable as a check:

 0 * 4.4482216 � 0
 100 * 4.4482216 � 444.82216
 1000 * 4.4482216 � 4448.2216

4. Develop a MATLAB ® Solution

clear, clc
lbf = [0:100:1000];
N = lbf * 4.44822;
[lbf',N']
ans =

1.0e+003 *
 0 0
0.1000 0.4448
0.2000 0.8896
0.3000 1.3345

 Figure 2.8
 Mars Climate Orbiter.
(Courtesy of NASA/Jet
Propulsion Laboratory.)

In this example, we’ll use MATLAB ® to create a conversion table of pounds
force to newtons. The table will start at 0 and go to 1000 lbf, at 100-lbf intervals. The
conversion factor is

1 lbf � 4.4482216 N

1. State the Problem
 Create a table converting pounds force (lbf) to newtons (N).

2. Describe the Input and Output

Input

The starting value in the table is 0 lbf
The fi nal value in the table is 1000 lbf
The increment between values is 100 lbf
The conversion from lbf to N is 1 lbf � 4.4482216 N

Output

Table listing pounds force (lbf) and newtons (N)

3. Develop a Hand Example
 Since we are creating a table, it makes sense to check a number of different
values. Choosing numbers for which the math is easy makes the hand example
simple to complete, but still valuable as a check:

 0 * 4.4482216 � 0
 100 * 4.4482216 � 444.82216
 1000 * 4.4482216 � 4448.2216

4. Develop a MATLAB ® Solution

clear, clc
lbf = [0:100:1000];
N = lbf * 4.44822;
[lbf',N']
ans =

1.0e+003 *
 0 0

0.1000 0.4448
0.2000 0.8896
0.3000 1.3345

 Figure 2.8
 Mars Climate Orbiter.
(Courtesy of NASA/Jet
Propulsion Laboratory.)

(continued)

34 Chapter 2 MATLAB ® Environment

0.4000 1.7793
0.5000 2.2241
0.6000 2.6689
0.7000 3.1138
0.8000 3.5586
0.9000 4.0034
1.0000 4.4482

 It is always a good idea to clear both the workspace and the command window
before starting a new problem. Notice in the workspace window (Figure 2.9)
that lbf and N are 1 � 11 matrices and that ans (which is where the table we
created is stored) is an 11 � 2 matrix. The output from the fi rst two commands
was suppressed by adding a semicolon at the end of each line. It would be very
easy to create a table with more entries by changing the increment to 10 or
even to 1. Notice also that you’ll need to multiply the results shown in the table
by 1000 to get the correct answers. MATLAB ® tells you that this is necessary
directly above the table, where the common scale factor is shown.

 5. Test the Solution
 Comparing the results of the MATLAB ® solution with the hand solution shows

that they are the same. Once we’ve verifi ed that our solution works, it’s easy to
use the same algorithm to create other conversion tables. For instance, modify
this example to create a table that converts newtons (N) to pounds force (lbf),
with an increment of 10 N, from 0 N to 1000 N.

Common Scale
Factor

 Figure 2.9
 The MATLAB ® workspace
window shows the
variables as they are
created.

2.3 Solving Problems with MATLAB® 35

 CALCULATING DRAG
 One performance characteristic that can be determined in a wind tunnel is drag.
The friction related to drag on the Mars Climate Observer (caused by the atmos-
phere of Mars) resulted in the spacecraft’s burning up during course corrections.
Drag is extremely important in the design of terrestrial aircraft as well (see
 Figure 2.10).

 Drag is the force generated as an object, such as an airplane, moves through a
fl uid. Of course, in the case of a wind tunnel, air moves past a stationary model, but
the equations are the same. Drag is a complicated force that depends on many fac-
tors. One factor is skin friction, which is a function of the surface properties of the
aircraft, the properties of the moving fl uid (air in this case), and the fl ow patterns
caused by the shape of the aircraft (or, in the case of the Mars Climate Observer, by
the shape of the spacecraft). Drag can be calculated with the drag equation

drag � Cd
rV 2A

2

 where Cd � drag coeffi cient, which is determined experimentally, usually in a
wind tunnel,

 r � air density,
V � velocity of the aircraft,
 A � reference area (the surface area over which the air fl ows).

 Although the drag coeffi cient is not a constant, it can be taken to be constant at
low speeds (less than 200 mph). Suppose the following data were measured in a
wind tunnel:

 drag 20,000 N
r 1 � 10�6 kg > m3
 V 100 mph (you’ll need to convert this to meters per second)
 A 1 m2

 Calculate the drag coeffi cient. Finally, use this experimentally determined drag
coeffi cient to predict how much drag will be exerted on the aircraft at velocities
from 0 mph to 200 mph.

 EXAMPLE 2.3

Weight
Thrust

Lift
Drag

 Figure 2.10
 Drag is a mechanical force
generated by a solid object
moving through a fl uid.

(continued)

36 Chapter 2 MATLAB ® Environment

1. State the Problem
 Calculate the drag coeffi cient on the basis of the data collected in a wind tun-

nel. Use the drag coeffi cient to determine the drag at a variety of velocities.
2. Describe the Input and Output

 Input

 Drag 20,000 N
 Air density r 1 � 10�6 kg > m3
 Velocity V 100 mph
 Surface area A 1 m2

 Output

 Drag coeffi cient
 Drag at velocities from 0 to 200 mph

 3. Develop a Hand Example
 First fi nd the drag coeffi cient from the experimental data. Notice that the

velocity is in miles/h and must be changed to units consistent with the rest of
the data (m/s). The importance of carrying units in engineering calculations
cannot be overemphasized!

 Cd �
drag � 2

r � V 2 � A

 �
120,000 N � 22

1 � 10�6 kg>m3 � a100 miles>h � 0.4470
m>s

miles>h
b2

� 1m2

 � 2.0019 � 107

 Since a newton is equal to a kg m > s2, the drag coeffi cient is dimensionless.
 Now use the drag coeffi cient to fi nd the drag at different velocities:

 drag � Cd � r � V 2 � A>2

 Using a calculator, fi nd the value of the drag with V � 200 mph :

 drag �

2.0019 � 107 � 1 � 10�6 kg>m3 � a200 miles>h � 0.4470
m>s

miles>h
b2

� 1 m2

2

 drag � 80,000 N

 4. Develop a MATLAB ® Solution

drag = 20000; Defi ne the variables, and
density = 0.000001; change V to SI units.
velocity = 100*0.4470;
area = 1;
cd = drag*2/(density*velocity^2*area) Calculate the coeffi cient
cd = of drag.
2.0019e+007
velocity = 0:20:200; Redefi ne V as a matrix.
velocity = velocity*0.4470; Change it to SI units and

calculate the drag.

2.3 Solving Problems with MATLAB® 37

drag = cd*density*velocity.^2*area/2;
table = [velocity', drag']
table =
1.0e+004 *
0 0

0.0009 0.0800
0.0018 0.3200
0.0027 0.7200
0.0036 1.2800
0.0045 2.0000
0.0054 2.8800
0.0063 3.9200
0.0072 5.1200
0.0080 6.4800
0.0089 8.0000

 Notice that the equation for drag, or

drag = cd * density * velocity.^2 * area/2;

 uses the .^ operator, because we intend that each value in the matrix veloc-
ity be squared, not that the entire matrix velocity be multiplied by itself.
Using just the exponentiation operator 1^2 would result in an error message.
We could have used the .* operator as well in places where * was used, but since
all the other quantities are scalars it doesn’t matter. Unfortunately, it is possible
to compose problems in which using the wrong operator does not give us an
error message but does give us a wrong answer. This makes step 5 in our
 problem-solving methodology especially important.

 Figure 2.11
 The command history
window creates a record of
previous commands.

(continued)

38 Chapter 2 MATLAB ® Environment

5. Test the Solution
 Comparing the hand solution with the MATLAB ® solution (Figure 2.11), we

see that they give the same results. Once we have confi rmed that our algorithm
works with sample data, we can substitute new data and be confi dent that the
results will be correct. Ideally, the results should also be compared with experi-
mental data, to confi rm that the equations we are using accurately model the
real physical process.

 2.3.3 Number Display

 Scientifi c Notation
 Although you can enter any number in decimal notation, that isn’t always the best
way to represent very large or very small numbers. For example, a number that is
used frequently in chemistry is Avogadro’s constant, whose value, to four signifi cant
digits, is 602,200,000,000,000,000,000,000. Similarly, the diameter of an iron atom is
approximately 140 picometers, which is 0.000000000140 m. Scientifi c notation
expresses a value as a number between 1 and 10, multiplied by a power of 10 (the
exponent). Thus, Avogadro’s number becomes 6.022 � 1023, and the diameter of
an iron atom, 1.4 � 10�10 m. In MATLAB ® , values in scientifi c notation are desig-
nated with an e between the decimal number and the exponent. (Your calculator
probably uses similar notation.) For example, you might have

Avogadro's_constant = 6.022e23;
Iron_diameter = 140e-12; or
Iron_diameter = 1.4e-10;

 It is important to omit blanks between the decimal number and the exponent.
For instance, MATLAB ® will interpret

6.022 e23

 as two values (6.022 and 1023). Since putting two values in an assignment statement
is an error, MATLAB ® will generate the message:

Error: Unexpected MATLAB® expression.

 SCIENTIFIC NOTATION
 A number represented as a
value between one and ten
times ten to an appropriate
power

 KEY IDEA
 MATLAB ® does not
differentiate between
integers and fl oating-point
numbers, unless special
functions are invoked

 HINT
 Although it is a common convention to use e to identify a power of 10, stu-
dents (and teachers) sometimes confuse this nomenclature with the mathe-
matical constant e , which is equal to 2.7183. To raise e to a power, use the exp
function, for example exp(3) is equivalent to e3.

 Display Format
 A number of different display formats are available in MATLAB ® . No matter which
display format you choose, MATLAB ® uses double-precision fl oating-point num-
bers in its calculations, which results in approximately 16 decimal digits of preci-
sion. Changing the display format does not change the accuracy of the results.
Unlike some other computer programs, MATLAB ® handles both integers and deci-
mal numbers as fl oating-point numbers.

2.3 Solving Problems with MATLAB® 39

 When elements of a matrix are displayed in MATLAB ® , integers are always
printed without a decimal point. However, values with decimal fractions are printed
in the default short format that shows four digits after the decimal point. Thus,

A = 5

 returns

A =
5

 but

A = 5.1

 returns

A =
5.1000

 and

A = 51.1

 returns

A =
51.1000

 MATLAB ® allows you to specify other formats that show additional digits. For
example, to specify that you want values to be displayed in a decimal format with
15 digits after the decimal point, use the command

format long

 which changes all subsequent displays. Thus, with format long specifi ed,

A

 now returns

A =
51.100000000000001

 Notice that the fi nal digit in this case is 1, which represents a round-off error.
Two decimal digits are displayed when the format is specifi ed as format bank :

A =
51.10

 The bank format displays only real numbers, so it’s not appropriate when com-
plex numbers need to be represented. Thus the command

A = 5+3i

 returns the following using bank format

A =
5.00

 Using format long the same command returns

A =
5.000000000000000 + 3.000000000000000i

 KEY IDEA
 No matter what display
format is selected,
calculations are performed
using double-precision
fl oating-point numbers

40 Chapter 2 MATLAB ® Environment

 You can return the format to four decimal digits with the command

format short

 To check the results, recall the value of A :

A
A =

5.0000 + 3.0000i

 When numbers become too large or too small for MATLAB ® to display in the
default format, it automatically expresses them in scientifi c notation. For example,
if you enter Avogadro’s constant into MATLAB ® in decimal notation as

a = 602000000000000000000000

 the program returns

a =
6.0200e+023

 You can force MATLAB ® to display all numbers in scientifi c notation with format
short e (with four decimal digits) or format long E (with 15 decimal digits). For
instance,

format short e
x = 10.356789

 returns

x =
1.0357e+001

 Another pair of formats that are often useful to engineers and scientists, format
short eng and format long eng , are similar to scientifi c notation but require the
power of 10 to be a multiple of three. This corresponds to common naming conven-
tions. For example,

 1 millimeter � 1 � 10�3 meters

 1 micrometer � 1 � 10�6 meters

 1 nanometer � 1 � 10�9 meters

 1 picometer � 1 � 10�12 meters

 Consider the following example. First change to engineering format and then
enter a value for y .

format short eng
y = 12000

 which gives the result

y =
12.0000e+003

 When a matrix of values is sent to the screen, and if the elements become very
large or very small, a common scale factor is often applied to the entire matrix. This
scale factor is printed along with the scaled values. For example, when the com-
mand window is returned to

format short

 2.3 Solving Problems with MATLAB® 41

 the results from Example 2.3 are displayed as

table =
1.0e+005 *

0 0
0.0002 0.0400
0.0004 0.1602
0.0006 0.3603
0.0008 0.6406 etc . . .

 Two other formats that you may occasionally fi nd useful are format + and
 format rat . When a matrix is displayed in format + , the only characters printed
are plus and minus signs. If a value is positive, a plus sign will be displayed; if a value
is negative, a minus sign will be displayed. If a value is zero, nothing will be dis-
played. This format allows us to view a large matrix in terms of its signs:

format +
B = [1, -5, 0, 12; 10005, 24, -10,4]
B =

+- +
++-+

 The format rat command displays numbers as rational numbers (i.e., as
fractions). Thus,

format rat
x = 0:0.1:0.5

 returns

x =
0 1/10 1/5 3/10 2/5 1/2

 If you’re not sure which format is the best for your application, you may select
 format short g or format long g . This format selects the best of fi xed-point
or fl oating-point representations.

 The format command also allows you to control how tightly information is
spaced in the command window. The default (format loose) inserts a line feed
between user-supplied expressions and the results returned by the computer. The
 format compact command removes those line feeds. The examples in this text
use the compact format to save space. Table 2.2 shows how the value of p is dis-
played in each format.

 RATIONAL NUMBER
 A number that can be
represented as a fraction

 Table 2.2 Numeric Display Formats

 MATLAB ® Command Display Example

 format short 4 decimal digits 3.1416
 123.4568

 format long 14 decimal digits 3.14159265358979
 1.234567890000000e+002

 format short e 4 decimal digits 3.1416 e +000
 scientifi c notation 1.2346e+002

 format long e 14 decimal digits 3.141592653589793 e +000
 scientifi c notation 1.234567890000000e+002

(Continued)

42 Chapter 2 MATLAB ® Environment

 If none of these predefi ned numeric display formats is right for you, you can
control individual lines of output with the fprintf function, described in a later
chapter.

 2.4 SAVING YOUR WORK

 Working in the command window is similar to performing calculations on your sci-
entifi c calculator. When you turn off the calculator or when you exit the program,
your work is gone. It is possible to save the values of the variables you defi ned in the
command window and that are listed in the workspace window, but while doing so
is useful, it is more likely that you will want to save the list of commands that gener-
ated your results. The diary command allows you to do just that. Also we will show
you how to save and retrieve variables (the results of the assignments you made and
the calculations you performed) to MAT-fi les or to DAT-fi les. Finally we’ll introduce
script M-fi les, which are created in the edit window. Script M-fi les allow you to save
a list of commands and to execute them later. You will fi nd script M-fi les especially
useful for solving homework problems. When you create a program in MATLAB ® ,
it is stored in an M-fi le.

 2.4.1 Diary

 The diary function allows you to record a MATLAB ® session in a fi le and retrieve it
for later review. Both the MATLAB ® commands and the results are stored—
including all your mistakes. To activate the diary function simply type

diary

 or

diary on

 at the command prompt. To end a recording session type diary again, or diary
off. A fi le named diary should appear in the current folder. You can retrieve the
fi le by double-clicking on the fi le name in the current folder window. An editor win-
dow will open with the recorded commands and results. You can also open the fi le

 MATLAB ® Command Display Example

 format bank 2 decimal digits 3.14
 only real values are displayed

 format short eng 4 decimal digits 3.1416 e +000
 engineering notation 123.4568e+000

 format long eng 14 decimal digits 3.141592653589793 e +000
 engineering notation 123.456789000000e+000

 format + �, �, blank +

 format rat fractional form 355/113

 format short g MATLAB ® selects the best format 3.1416
 123.46

 format long g MATLAB ® selects the best format 3.14159265358979
 123.456789

Table 2.2 (Continued)

2.4 Saving Your Work 43

in any text editor, such as Notepad. Subsequent sessions are added to the end of the
fi le. If you prefer to store the diary session in a different fi le, specify the fi lename

diary' <filename>

 or

diary('filename')

 In this text we’ll use angle brackets (< >) to indicate user-defi ned names. Thus, to
save a diary session in a fi le named My_diary_fi le type

diary My_diary_file

 or

diary('My_diary_file')

 2.4.2 Saving Variables

 To preserve the variables you created in the command window (check the work-

space window on the left-hand side of the MATLAB ® screen for the list of variables),
you must save the contents of the workspace window to a fi le. The default format is
a binary fi le called a MAT-fi le. To save the workspace (remember, this is just the
variables, not the list of commands in the command window) to a fi le, type

save <file_name>

 at the prompt. Recall that, although save is a MATLAB ® command, file_name is a
user-defi ned fi le name. It can be any name you choose, as long as it conforms to the
naming conventions for variables in MATLAB ® . Actually, you don’t even need to
supply a fi le name. If you don’t, MATLAB ® names the fi le matlab.mat . You could
also choose

File : Save Workspace As

 from the menu bar, which will then prompt you to enter a fi le name for your data.
To restore a workspace, type

load <file_name>

 Again, load is a MATLAB ® command, but file_name is the user-defi ned fi le
name. If you just type load , MATLAB ® will look for the default matlab.mat fi le.

 The fi le you save will be stored in the current folder.
 For example, type

clear, clc

 This command will clear both the workspace and the command window. Verify
that the workspace is empty by checking the workspace window or by typing

whos

 Now defi ne several variables—for example,

a = 5;
b = [1,2,3];
c = [1, 2; 3,4];

 Check the workspace window once again to confi rm that the variables have
been stored. Now, save the workspace to a fi le called my_example_fi le:

save my_example_file

 Confi rm that a new fi le has been stored in the current folder. If you prefer to save
the fi le to another directory (for instance, onto a fl ash drive), use the browse button

44 Chapter 2 MATLAB ® Environment

(see Figure 2.2) to navigate to the directory of your choice. Remember that in a pub-
lic computer lab the current folder is probably purged after each user logs off the
system.

 Now, clear the workspace and command window by typing

clear, clc

 The workspace window should be empty. You can recover the missing variables
and their values by loading the fi le (my_example_fi le.mat) back into the workspace:

load my_example_file

 The fi le you want to load must be in the current folder, or MATLAB ® won’t be
able to fi nd it. In the command window, type

a

 which returns

a =
5

 Similarly,

b

 returns

b =
1 2 3

 and typing

c

 returns

c =
1 2
3 4

 MATLAB ® can also store individual matrices or lists of matrices into a fi le in the
current folder with the command

save <file_name> <variable_list>

 where file_name is the user-defi ned fi le name designating the location in memory
at which you wish to store the information, and variable_list is the list of variables to
be stored in the fi le. For example,

save my_new_file a b

 would save just the variables a and b into my_new_file.mat .
 If your saved data will be used by a program other than MATLAB ® (such as C or

C++), the .mat format is not appropriate, because .mat files are unique to
MATLAB ® . The ASCII format is standard between computer platforms and is more
appropriate if you need to share fi les. MATLAB ® allows you to save fi les as ASCII
fi les by modifying the save command to

save <file_name> <variable_list> -ascii

2.4 Saving Your Work 45

 The command -ascii tells MATLAB ® to store the data in a standard eight-
digit text format. ASCII fi les should be saved into a .dat fi le or .txt fi le instead of a
.mat fi le; be sure to add .the extension to your fi le name:

save my_new_file.dat a b -ascii

 If you don’t add .dat, MATLAB ® will default to .mat.
 If more precision is needed, the data can be stored in a 16-digit text format:

save file_name variable_list -ascii -double

 You can retrieve the data from the current folder with the load command:

load <file_name>

 For example, to create the matrix z and save it to the fi le data_2.dat in eight-
digit text format, use the following commands:

z = [5 3 5; 6 2 3];
save data_2.dat z –ascii

 Together, these commands cause each row of the matrix z to be written to a
separate line in the data fi le. You can view the data_2.dat fi le by double-clicking the
fi le name in the current folder window (see Figure 2.12). Perhaps the easiest way to
retrieve data from an ASCII .dat fi le is to enter the load command followed by the
fi le name. This causes the information to be read into a matrix with the same name
as the data fi le. However, it is also quite easy to use MATLAB ® ’s interactive Import
Wizard to load the data. When you double-click a data fi le name in the current
folder to view the contents of the fi le, the Import Wizard will automatically launch.
Just follow the directions to load the data into the workspace, with the same name
as the data fi le. You can use this same technique to import data from other pro-
grams, including Excel spreadsheets, or you can select File : Import Data . . .
from the menu bar.

 2.4.3 Script M-Files

 Using the command window for calculations is an easy and powerful tool. However,
once you close the MATLAB ® program, all of your calculations are gone. Fortunately,
MATLAB ® contains a powerful programming language. As a programmer, you can
create and save code in fi les called M-fi les. These fi les can be reused anytime you
wish to repeat your calculations. An M-fi le is an ASCII text fi le similar to a C or
FORTRAN source-code fi le. It can be created and edited with the MATLAB ® M-fi le

 ASCII
 Binary data storage format

 KEY IDEA
 When you save the
workspace, you save only
the variables and their
values; you do not save the
commands you’ve executed

 Figure 2.12
 Double-clicking the fi le
name in the command
directory launches the
Import Wizard.

46 Chapter 2 MATLAB ® Environment

editor/debugger (the edit window discussed in Section 2.2.7), or you can use
another text editor of your choice. To open the editing window, select

File : New : Script

 from the MATLAB ® menu bar, or select the New Script icon, located directly below
the fi le menu. The MATLAB ® edit window is shown in Figure 2.13 . Many program-
mers prefer to dock the editing window onto the MATLAB ® desktop, using the
docking arrow in the upper right-hand corner of the window. This allows you to
see both the contents of the M-fi le and the results displayed when the program is
executed. The results from an M-fi le program are displayed in the command win-
dow.

 If you choose a different text editor, make sure that the fi les you save are ASCII
fi les. Notepad is an example of a text editor that defaults to an ASCII fi le structure.
Other word processors, such as WordPerfect or Word, will require you to specify the
ASCII structure when you save the fi le. These programs default to proprietary fi le
structures that are not ASCII compliant and may yield some unexpected results if
you try to use code written in them without specifying that the fi les be saved in
ASCII format.

 When you save an M-fi le, it is stored in the current folder. You’ll need to name
your fi le with a valid MATLAB ® variable name—that is, a name starting with a letter
and containing only letters, numbers, and the underscore 1_2. Spaces are not
allowed (see Section 2.3.1).

 There are two types of M-fi les, called scripts and functions. A script M-fi le is simply
a list of MATLAB ® statements that are saved in a fi le with a .m fi le extension. The script
can use any variables that have been defi ned in the workspace, and any variables cre-
ated in the script are added to the workspace when the script executes. You can exe-
cute a script created in the MATLAB ® edit window by selecting the Save and Run icon
from the menu bar, as shown in Figure 2.13 . (The Save and Run icon changed appear-
ance with MATLAB ® 7.5. Previous versions of the program used an icon similar to an
exclamation point.) You can also execute a script by typing a fi le name or by using the
run command from the command window as shown in Table 2.3 . No matter how you
do it, you can only run an M-fi le if it is in the current folder.

 You can fi nd out what M-fi les and MAT fi les are in the current folder by typing
what

 into the command window. You can also browse through the current folder by look-
ing in the current folder window.

 Using script M-fi les allows you to work on a project and to save the list of com-
mands for future use. Because you will be using these fi les in the future, it is a good

The Save and
Run Icon

The docking
arrow

 Figure 2.13
 The MATLAB ® edit window,
also called the editor/
debugger.

 M-FILE
 A list of MATLAB ®
commands stored in a
separate fi le

 KEY IDEA
 The two types of M-fi les are
scripts and functions

2.4 Saving Your Work 47

idea to sprinkle them liberally with comments. The comment operator in MATLAB ®
is the percentage sign, as in

% This is a comment

 MATLAB ® will not execute any code on a commented line.
 You can also add comments after a command, but on the same line:

a = 5 %The variable a is defined as 5

 Here is an example of MATLAB ® code that could be entered into an M-fi le and
used to solve Example 2.3 :

clear, clc
% A Script M-file to find Drag
% First define the variables
drag = 20000; %Define drag in Newtons
density= 0.000001; %Define air density in kg/m^3
velocity = 100*0.4470; %Define velocity in m/s
area = 1; %Define area in m^2
% Calculate coefficient of drag
cd = drag *2/(density*velocity^2*area)
% Find the drag for a variety of velocities
velocity = 0:20:200; %Redefine velocity
velocity = velocity*.4470 %Change velocity to m/s
drag = cd*density*velocity.^2*area/2; %Calculate drag
table = [velocity',drag'] %Create a table of results

 This code can be run either from the M-fi le or from the command window. The
results will appear in the command window in either case, and the variables will be
stored in the workspace. The advantage of an M-fi le is that you can save your pro-
gram to run again later.

 Table 2.3 Approaches to Executing a Script M-File from the Command Window

 MATLAB ® Command Comments

 myscript Type the fi le name, for example myscript . The .m fi le extension is assumed.
 run myscript Use the run command with the fi le name.
 run('myscript') Use the functional form of the run command.

 HINT
 You can execute a portion of an M-fi le by highlighting a section and then
right-clicking and selecting Evaluate Section . You can also comment or
“uncomment” whole sections of code from this menu; doing so is useful when
you are creating programs while you are still debugging your work.

 Example 2.4 uses a script M-fi le to fi nd the velocity and acceleration that a
spacecraft might reach in leaving the solar system.

 KEY IDEA
 Liberally comment
MATLAB® code

48 Chapter 2 MATLAB ® Environment

 CREATING AN M-FILE TO CALCULATE THE
ACCELERATION OF A SPACECRAFT
 In the absence of drag, the propulsion power requirements for a spacecraft are
determined fairly simply. Recall from basic physical science that

 F � ma

 In other words, force (F) is equal to mass (m) times acceleration (a). Work (W)
is force times distance (d), and since power (P) is work per unit time, power
becomes force times velocity (v):

 W � Fd

 P �
W
t

� F �
d
t

� F � v � m � a � v

 This means that the power requirements for the spacecraft depend on its mass,
how fast it’s going, and how quickly it needs to speed up or slow down. If no power
is applied, the spacecraft just keeps traveling at its current velocity. As long as we
don’t want to do anything quickly, course corrections can be made with very little
power. Of course, most of the power requirements for spacecraft are not related to
navigation. Power is required for communication, for housekeeping, and for sci-
ence experiments and observations.

 The Voyager 1 and 2 spacecraft explored the outer solar system during the last
quarter of the 20th century (see Figure 2.14). Voyager 1 encountered both Jupiter
and Saturn; Voyager 2 not only encountered Jupiter and Saturn but continued on to
Uranus and Neptune. The Voyager program was enormously successful, and the
 Voyager spacecraft continue to gather information as they leave the solar system.
The power generators (low-level nuclear reactors) on each spacecraft are expected
to function until at least 2020. The power source is a sample of plutonium-238,
which, as it decays, generates heat that is used to produce electricity. At the launch
of each spacecraft, its generator produced about 470 watts of power. Because the
plutonium is decaying, the power production had decreased to about 335 watts
in 1997, almost 20 years after launch. This power is used to operate the science

 EXAMPLE 2.4

 Figure 2.14
 The Voyager 1 and
Voyager 2 spacecraft were
launched in 1977 and
have since left the solar
system. (Courtesy of
NASA/Jet Propulsion
Laboratory.)

2.4 Saving Your Work 49

package, but if it were diverted to propulsion, how much acceleration would it pro-
duce in the spacecraft? Voyager 1 is currently traveling at a velocity of 3.50 AU/year
(an AU is an astronomical unit), and Voyager 2 is traveling at 3.15 AU/year. Each
spacecraft weighs 721.9 kg.

 1. State the Problem
 Find the acceleration that is possible with the power output from the spacecraft

power generators.
 2. Describe the Input and Output

 Input

 Mass � 721.9 kg
 Power � 335 watts � 335 J > s
 Velocity � 3.50 AU > year 1Voyager 12
 Velocity � 3.15 AU > year 1Voyager 22
 Output

 Acceleration of each spacecraft, in m/s/s

 3. Develop a Hand Example
 We know that

 P � m � a � v

 which can be rearranged to give

 a �
P

m � v

 The hardest part of this calculation will be keeping the units straight. First let’s
change the velocity to m/s. For Voyager 1 ,

 v � 3.50
AU
year

�
150 � 109m

AU
�

year

365 days
�

day

24 h
�

h
3600 s

� 16,650 m /s

 Then we calculate the acceleration:

 a �
335 J>s � 1 kg � m2>s2J

721.9 kg � 16,650 m>s
� 2.7 � 10�5 m>s2

 4. Develop a MATLAB ® Solution

clear, clc
% Example 2.4
%Find the possible acceleration of the Voyager 1
%and Voyager 2 Spacecraft using the on board power
%generator
format short
mass=721.9; %mass in kg
power=335; %power in watts
velocity=[3.5 3.15]; %velocity in AU/year
%Change the velocity to m/sec
velocity=velocity*150e9/365/24/3600
%Calculate the acceleration
acceleration=power./(mass.*velocity)

(continued)

50 Chapter 2 MATLAB ® Environment

 To evaluate the program, select the Save and Run icon. The results are printed
in the command window, as shown in Figure 2.15 .

5. Test the Solution
 Compare the MATLAB ® results with the hand example results. Notice that the

velocity and acceleration calculated from the hand example and the MATLAB ®

solution for Voyager 1 match. The acceleration seems quite small, but applied
over periods of weeks or months such an acceleration can achieve signifi cant
velocity changes. For example, a constant acceleration of 2.8 � 10�5 m > s2

results in a velocity change of about 72 m/s over the space of a month:

2.8 � 10�5 m > s2 � 3600 s > h

� 24 h > day � 30 days > month � 72.3 m > s

 Now that you have a MATLAB ® program that works, you can use it as the start-
ing point for other, more complicated calculations.

Results are reported
in the command
window

M-file code

 Figure 2.15
 The results of an M-fi le
execution print into the
command window. The
variables created are
refl ected in the workspace
and the M-fi le is listed in
the current folder window.
The commands issued in
the M-fi le are not mirrored
in the command history.

 2.4.4 Cell Mode

 New to MATLAB ® 7 is a utility that allows the user to divide M-fi les into sections, or
cells, that can be executed one at a time. This feature is particularly useful as you
develop MATLAB ® programs. To activate the cell mode, select

Cell : Enable Cell Mode

 from the menu bar in the edit window, as shown in Figure 2.16 . Once the cell mode
has been enabled, the cell toolbar appears, as shown in Figure 2.17 .

 To divide your M-fi le program into cells, you can create cell dividers by using a
double percentage sign followed by a space. If you want to name the cell, just add a
name on the same line as the cell divider:

%% Cell Name

 KEY IDEA
 Cell mode is new to
MATLAB ® 7

 KEY IDEA
 Cell mode allows you to
execute portions of the
code incrementally

 CELL
 A section of MATLAB ®
code located between cell
dividers (%%)

2.4 Saving Your Work 51

 It’s important to include the space after the double percentage sign (%%). If you
don’t, the line is recognized as a comment, not a cell divider.

 Once the cell dividers are in place, if you position the cursor anywhere inside
the cell, the entire cell turns pale yellow. For example, in Figure 2.17 , the fi rst four
lines of the M-fi le program make up the fi rst cell. Now we can use the evaluation
icons on the cell toolbar to evaluate a single section, evaluate the current section
and move on to the next section, or evaluate the entire fi le. Also on the cell toolbar
is an icon that lists all the cell titles in the M-fi le, as shown in Figure 2.18 .

 Figure 2.18 shows the fi rst 14 lines of an M-fi le written to solve some homework
problems. By dividing the program into cells, it was possible to work on each prob-
lem separately. Be sure to save any M-fi les you’ve developed this way by selecting
 Save or Save As from the fi le menu:

File : Save

 or

File : Save As

Cell Menu

 Figure 2.16
 You can access the cell
mode from the menu bar in
the edit window .

Cell
Toolbar

Cell Dividers

 Figure 2.17
 The cell toolbar allows the
user to execute one cell, or
section, at a time.

52 Chapter 2 MATLAB ® Environment

 The reason for using these commands is that in cell mode, the program is not
automatically saved every time you run it.

 Dividing a homework M-fi le into cells offers a big advantage to the person who
must evaluate it. By using the evaluate cell and advance function, the grader can
step through the program one problem at a time. Even more important, the pro-
grammer can divide a complicated project into manageable sections and evaluate
these sections independently.

 Figure 2.18
 The show cell titles icon lists
all the cells in the M-fi le.

 SUMMARY

 In this chapter, we introduced the basic MATLAB ® structure. The MATLAB ® envi-
ronment includes multiple windows, four of which are open in the default view:

 • Command window
 • Command history window
 • Workspace window
 • Current folder window

 In addition, the

 • Document window
 • Graphics window
 • Edit window

 open as needed during a MATLAB ® session.
 Variables defi ned in MATLAB ® follow common computer naming conventions:

 • Names must start with a letter.
 • Letters, numbers, and the underscore are the only characters allowed.

Summary 53

 • Names are case sensitive.
 • Names may be of any length, although only the fi rst 63 characters are used by

MATLAB ® .
 • Some keywords are reserved by MATLAB ® and cannot be used as variable names.
 • MATLAB ® allows the user to reassign function names as variable names, although

doing so is not good practice.

 The basic computational unit in MATLAB ® is the matrix. Matrices may be

 • Scalars (1 � 1 matrix)
 • Vectors (1 � n or n � 1 matrix, either a row or a column)
 • Two-dimensional arrays (m � n or n � m)
 • Multidimensional arrays

 Matrices often store numeric information, although they can store other kinds
of information as well. Data can be entered into a matrix manually or can be
retrieved from stored data fi les. When entered manually, a matrix is enclosed in
square brackets, elements in a row are separated by either commas or spaces, and a
new row is indicated by a semicolon:

a = [1 2 3 4; 5 6 7 8]

 Evenly spaced matrices can be generated with the colon operator. Thus, the
command

b = 0:2:10

 creates a matrix starting at 0, ending at 10, and with an increment of 2. The lin-
space and logspace functions can be used to generate a matrix of specifi ed
length from given starting and ending values, spaced either linearly or logarithmi-
cally. The help function or the MATLAB ® Help menu can be used to determine
the appropriate syntax for these and other functions.

 MATLAB ® follows the standard algebraic order of operations. The operators
supported by MATLAB ® are listed in the “MATLAB ® Summary” section of this
chapter.

 MATLAB ® supports both standard (decimal) and scientifi c notation. It also
supports a number of different display options, described in the “MATLAB ®
Summary” section. No matter how values are displayed, they are stored as double-
precision fl oating-point numbers.

 MATLAB ® variables can be saved or imported from either .MAT or .DAT fi les.
The .MAT format is proprietary to MATLAB ® and is used because it stores data
more effi ciently than other fi le formats. The .DAT format employs the standard
ASCII format and is used when data created in MATLAB ® will be shared with other
programs.

 Collections of MATLAB ® commands can be saved in script M-fi les. This is the
best way to save the list of commands used to solve a problem so that they can be
reused at a later time. Cell mode allows the programmer to group M-fi le code into
sections and to run each section individually. It is especially convenient when one
M-fi le is used to solve multiple problems.

54 Chapter 2 MATLAB ® Environment

 MATLAB ® SUMMARY

 The following MATLAB ® summary lists all the special characters, commands, and
functions that were defi ned in this chapter:

 Special Characters

 [] forms matrices

 () used in statements to group operations

 used with a matrix name to identify specifi c elements

 , separates subscripts or matrix elements

 ; separates rows in a matrix defi nition

 suppresses output when used in commands

 : used to generate matrices

 indicates all rows or all columns

 = assignment operator assigns a value to a memory location;

 not the same as an equality

 % indicates a comment in an M-fi le

 %% cell divider

 + scalar and array addition

 - scalar and array subtraction

 * scalar multiplication and multiplication in matrix algebra

 .* array multiplication (dot multiply or dot star)

 / scalar division and division in matrix algebra

 ./ array division (dot divide or dot slash)

 ̂ scalar exponentiation and matrix exponentiation in matrix algebra

 .^ array exponentiation (dot power or dot caret)

 Commands and Functions

 ans default variable name for results of MATLAB ® calculations

 ascii indicates that data should be saved in standard ASCII format

 Clc clears command window

 Clear clears workspace

 Diary creates a copy of all the commands issued in the workspace window, and
most of the results

 exit terminates MATLAB ®

 format + sets format to plus and minus signs only

 format compact sets format to compact form

 format long sets format to 14 decimal places

 format long e sets format to scientifi c notation with 14 decimal places

 format long eng sets format to engineering notation with 14 decimal places

 format long g allows MATLAB ® to select the best format (either fi xed point or fl oating
point), using 14 decimal digits

 format loose sets format to the default, noncompact form

 format short sets format to the default, 4 decimal places

 format short e sets format to scientifi c notation with 4 decimal places

 format short eng sets format to engineering notation with 4 decimal places

Problems 55

 Commands and Functions

 format short g allows MATLAB ® to select the best format (either fi xed point or fl oating
point), using 4 decimal digits

 format rat sets format to rational (fractional) display

 help invokes help utility

 linspace linearly spaced vector function

 load loads matrices from a fi le

 logspace logarithmically spaced vector function

 namelengthmax fi nds the maximum variable name length

 pi numeric approximation of the value of p

 quit terminates MATLAB ®

 save saves variables in a fi le

 who lists variables in memory

 whos lists variables and their sizes

 arguments
 array
 array editor
 array operators
 ASCII
 assignment
 cell mode
 command history
 command window

 current folder
 document window
 dot operators
 edit window
 function
 graphics window
 M-fi le
 matrix
 operator

 prompt
 scalar
 scientifi c notation
 script
 start button
 transpose
 vector
 workspace

 KEY TERMS

 PROBLEMS

 You can either solve these problems in the command window, using MATLAB ® as an elec-
tronic calculator, or you can create an M-fi le of the solutions. If you are solving these prob-
lems as a homework assignment, or if you want to keep a record
of your work, the best strategy is to use an M-fi le, divided into cells with the cell divider %%.

 Getting Started

 2.1 Predict the outcome of the following MATLAB ® calculations:

 1 � 3>4
 5 * 6 * 4 > 2
 5 > 2 * 6 * 4
 5^2*3
 5^(2*3)
 1 � 3 � 5>5 � 3 � 1
 11 � 3 � 52 15 � 3 � 12

 Check your results by entering the calculations into the command window.

56 Chapter 2 MATLAB ® Environment

 Using Variables

 2.2 Identify which name in each of the following pairs is a legitimate MATLAB ®
variable name:

 fred fred!
 book_1 book-1
 2ndplace Second_Place
 #1 No_1
 vel_5 vel.5
 tan while

 Test your answers by using isvarname —for example,

isvarname fred

 Remember, isvarname returns a 1 if the name is valid and a 0 if it is not.
Although it is possible to reassign a function name as a variable name, doing
so is not a good idea. Use which to check whether the preceding names are
function names—for example,

which sin

 In what case would MATLAB ® tell you that sin is a variable name, not a
function name?

 Scalar Operations and Order of Operations

 2.3 Create MATLAB ® code to perform the following calculations:
 52

5 � 3
5 # 6

 24 � 63 (Hint: A square root is the same thing as a 1/2 power.)

 9
6
12

 � 7 # 53 � 2

 1 � 5 # 3 > 62 � 22 � 4 # 1 > 5.5

 Check your code by entering it into MATLAB ® and performing the
calculations on your scientifi c calculator.

 2.4 As you answer the following questions, consider the shapes shown in
Figure P2.4.

 (a) The area of a circle is pr2. Defi ne r as 5, then fi nd the area of a circle,
using MATLAB ® .

 (b) The surface area of a sphere is 4pr2. Find the surface area of a sphere
with a radius of 10 ft.

 (c) The volume of a sphere is 4/3pr3. Find the volume of a sphere with a
radius of 2 ft.

 2.5 As you answer the following questions, consider the shape shown in
Figure P2.5.

 (a) The area of a square is the edge length squared 1A � edge22 . Defi ne
the edge length as 5, then fi nd the area of a square, using MATLAB ® .

 (b) The surface area of a cube is 6 times the edge length squared
 1SA � 6 � edge22 . Find the surface area of a cube with edge length 10.

 (c) The volume of a cube is the edge length cubed 1V � edge32 . Find the
volume of a cube with edge length 12.

 2.6 Consider the barbell shown in Figure P2.6 .

r

 Figure P2.4(a)

e

e

 Figure P2.5 (a–c)

 Figure P2.6
 The geometry of a barbell can
be modeled as two spheres
and a cylindrical rod.

Problems 57

 (a) Find the volume of the fi gure, if the radius of each sphere is 10 cm, the
length of the bar connecting them is 15 cm, and the diameter of the
bar is 1 cm. Assume that the bar is a simple cylinder.

 (b) Find the surface area of the fi gure.
 2.7. The ideal gas law was introduced in Example 2.1 . It describes the relation-

ship between pressure (P), temperature (T), volume (V), and the number
of moles of gas (n).

 PV � nRT

 The additional symbol, R , represents the ideal gas constant. The ideal gas
law is a good approximation of the behavior of gases when the pressure is
low and the temperature is high. (What constitutes low pressure and high
temperature varies with different gases.) In 1873, Johannes Diderik van der
Waals (Figure P2.7) proposed a modifi ed version of the ideal gas law that
better models the behavior of real gases over a wider range of temperature
and pressure.

 aP �
n2a
V 2 b 1V � nb2 � nRT

 In this equation the additional variables a and b represent values
characteristic of individual gases.

 Use both the ideal gas law and van der Waals’ equation to calculate the
temperature of water vapor (steam), given the following data.

 Pressure, P 220 bar
 Moles, n 2 mol
 Volume, V 1 L
 a 5.536 L2bar > mol2 *
 B 0.03049 L/mol *
 Ideal gas constant, R 0.08314472 L bar/K mol

 * Source : Weast, R. C. (Ed.), Handbook of Chemistry and Physics
(53rd Edn.) , Cleveland: Chemical Rubber Co., 1972.

 Array Operations

 2.8 (a) The volume of a cylinder is pr2h. Defi ne r as 3 and h as the matrix

 h = [1, 5, 12]

 Find the volume of the cylinders (see Figure P2.8a).

 (b) The area of a triangle is 1/2 the length of the base of the triangle, times
the height of the triangle. Defi ne the base as the matrix

 b = [2, 4, 6]

 and the height h as 12, and find the area of the triangles (see
 Figure P2.8b).

 (c) The volume of any right prism is the area of the base of the prism, times
the vertical dimension of the prism. The base of the prism can be any
shape—for example, a circle, a rectangle, or a triangle.

 Find the volume of the prisms created from the triangles of part (b).
Assume that the vertical dimension of these prisms is 6 (see Figure P2.8c).

h

r

 Figure P2.8(a)

h

b

 Figure P2.8(b)

58 Chapter 2 MATLAB ® Environment

base is
a circle

base is a
rectangle

base is a
triangle

 Figure P2.8(c)

 2.9 The response of circuits containing resistors, inductors, and capacitors
depends upon the relative values of the resistors and the way they are con-
nected. An important intermediate quantity used in describing the response
of such circuits is s . Depending on the values of R , L , and C , the values of s
will be either both real values, a pair of complex values, or a duplicated
value.

R

L�100 mHC�1 �F

 Figure P2.9
 Series circuit.

 The equation that identifi es the response of a particular series circuit
(Figure P2.9) is

 S � �
R
2L

	 A a R
2L
b2

�
1

LC

 (a) Determine the values of s for a resistance of 800 Ω.
 (b) Create a vector of values for R ranging from 100 to 1000Ω and evaluate s .

Refi ne your values of R until you fi nd the approximate size of resistor
that yields a pure real value of s . Describe the effect on s as R increases in
value.

 Hint :
 1 μF = 1e-6F
 1 mH = 1e-3H

 2.10 The equation that identifi es the response parameter, s , of the parallel cir-
cuit shown in Figure P2.10 is

 S � �
1

2RC
	 A a 1

2RC b2
�

1
LS

 (a) Determine the values of s for a resistance of 200 Ω.
 (b) Create a vector of values for R ranging from 100 to 1000 Ω and evaluate s .

Refi ne your values of R until you fi nd the size of resistor that yields a pure
real value of s . Describe the effect on s as R decreases.

Problems 59

R

L�.64 H

t � 0

I

C�1 �F

 Figure P2.10
 Parallel circuit.

 2.11 Burning one gallon of gasoline in your car produces 19.4 pounds of CO2.
Calculate the amount of CO2 emitted during a year for the following vehi-
cles, assuming they all travel 12,000 miles per year. The reported fuel-
effi ciency numbers were extracted from the manufacturers’ websites based
on the EPA 2010 criteria; they are an average of the city and highway
 estimates.

 2010 Smart Car Fortwo 37 mpg
 2010 Civic Coupe 29 mpg
 2010 Civic Hybrid 43 mpg
 2010 Chevrolet Cobalt 31 mpg
 2010 Toyota Prius (Hybrid) 48 mpg
 2010 Toyota Yaris 32 mpg

 2.12 (a) Create an evenly spaced vector of values from 1 to 20 in increments of 1.
 (b) Create a vector of values from zero to 2p in increments of p > 10.
 (c) Create a vector containing 15 values, evenly spaced between 4 and 20. (Hint :

Use the linspace command. If you can’t remember the syntax, type
 help linspace .)

 (d) Create a vector containing 10 values, spaced logarithmically between
10 and 1000. (Hint : Use the logspace command.)

 2.13 (a) Create a table of conversions from feet to meters. Start the feet column
at 0, increment it by 1, and end it at 10 feet. (Look up the conversion
factor in a textbook or online.)

 (b) Create a table of conversions from radians to degrees. Start the radians
column at 0 and increment by 0.1p radian, up to p radians. (Look up
the conversion factor in a textbook or online.)

 (c) Create a table of conversions from mi/h to ft/s. Start the mi/h column
at 0 and end it at 100 mi/h. Print 15 values in your table. (Look up the
conversion factor in a textbook or online.)

 (d) The acidity of solutions is generally measured in terms of p H. The p H
of a solution is defi ned as - log10 of the concentration of hydronium
ions. Create a table of conversions from concentration of hydronium
ion to p H, spaced logarithmically from .001 to .1 mol/liter with 10 val-
ues. Assuming that you have named the concentration of hydronium
ions H_conc , the syntax for calculating the negative of the logarithm
of the concentration (and thus the pH) is

pH = -log10(H_conc)

60 Chapter 2 MATLAB ® Environment

 2.14 The general equation for the distance that a freely falling body has traveled
(neglecting air friction) is

 d �
1
2
 gt2

 Assume that g � 9.8 m > s2. Generate a table of time versus distance traveled
for values of time from 0 to 100 seconds. Choose a suitable increment for
your time vector. (Hint : Be careful to use the correct operators; t2 is an array
operation!)

 2.15 In direct current applications, electrical power is calculated using Joule’s
law as

 P � VI

 where P is power in watts
 V is the potential difference, measured in volts
 I is the electrical current, measured in amperes

 Joule’s law can be combined with Ohm’s law

 V � IR

 to give

 P � I 2R

 where R is resistance measured in ohms.
 The resistance of a conductor of uniform cross section (a wire or rod

for example) is

 R � r
l
A

 where
 r is the electrical resistivity measured in ohm-meters
 l is the length of the wire
 A is the cross-sectional area of the wire

 This results in the equation for power

 P � I 2r
l
A

 Electrical resistivity is a material property that has been tabulated for many
materials. For example

 Material Resistivity, ohm-meters (measured at 20°C)

 Silver 1.59 × 10 �8

 Copper 1.68 × 10 �8
 Gold 2.44 × 10 �8
 Aluminum 2.82 × 10 �8
 Iron 1.0 × 10 �7

Problems 61

 Calculate the power that is dissipated through a wire with the following
dimensions for each of the materials listed.

 diameter 0.001 m
 length 2.00 m

 Assume the wire carries a current of 120 amps.
 2.16 Repeat the previous problem for 10 wire lengths, from 1 m to 1 km. Use

logarithmic spacing.
 2.17 Newton’s law of universal gravitation tells us that the force exerted by one

particle on another is

 F � G
m1m2

r2

 where the universal gravitational constant G is found experimentally to be

 G � 6.673 � 10�11 N m2
 > kg2

 The mass of each particle is m1 and m2, respectively, and r is the distance
between the two particles. Use Newton’s law of universal gravitation to fi nd
the force exerted by the earth on the moon, assuming that

 the mass of the earth is approximately 6 � 1024 kg,
 the mass of the moon is approximately 7.4 � 1022 kg, and
 the earth and the moon are an average of 3.9 � 108 m apart.

 2.18 We know that the earth and the moon are not always the same distance apart.
Based on the equation in the previous problem, fi nd the force the moon
exerts on the earth for 10 distances between 3.8 � 108 m and 4.0 � 108 m.
Be careful when you do the division to use the correct operator.

 2.19 Recall from Problem 2.7 that the ideal gas law is:

 PV � nRT

 and that the van der Waals modifi cation of the ideal gas law is

 aP �
n2a
V 2 b 1V � nb2 � nRT

 Using the data from Problem 2.7, fi nd the value of temperature (T), for

 (a) 10 values of pressure from 0 bar to 400 bar for volume of 1 L
 (b) 10 values of volume from 0.1 L to 10 L for a pressure of 220 bar

 Number Display

 2.20 Create a matrix a equal to [� 1>3, 0, 1/3, 2/3], and use each of the built-in
format options to display the results:

format short (which is the default)
format long
format bank
format short e
format long e

62 Chapter 2 MATLAB ® Environment

format short eng
format long eng
format short g
format long g
format �

format rat

 Saving Your Work in Files

 2.21 • Create a matrix called D_to_R composed of two columns, one represent-
ing degrees and the other representing the corresponding value in radi-
ans. Any value set will do for this exercise.

 • Save the matrix to a fi le called degrees.dat.
 • Once the fi le is saved, clear your workspace and then load the data from

the fi le back into MATLAB ® .
 2.22 Create a script M-fi le and use it to do the homework problems you’ve been

assigned from this chapter. Your fi le should include appropriate comments
to identify each problem and to describe your calculation process. Don’t
forget to include your name, the date, and any other information your
instructor requests. Divide the script up into convenient sections, using
cell mode.

3

 INTRODUCTION

 The vast majority of engineering computations require quite complicated mathemati-
cal functions, including logarithms, trigonometric functions, and statistical analysis
functions. MATLAB ® has an extensive library of built-in functions to allow you to per-
form these calculations.

 3.1 USING BUILT-IN FUNCTIONS

 Many of the names for MATLAB ® ’s built-in functions are the same as those defi ned
not only in the C programming language, but in Fortran and Java as well. For exam-
ple, to take the square root of the variable x , we type

b = sqrt(x)

 A big advantage of MATLAB ® is that function arguments can generally be either sca-
lars or matrices. In our example, if x is a scalar, a scalar result is returned. Thus, the
statement

x = 9;
b = sqrt(x)

 After reading this chapter, you
should be able to:
 • Use a variety of common

mathematical functions
 • Understand and use trigo-

nometric functions in
MATLAB ®

 • Compute and use statistical
and data analysis functions

 • Generate uniform and
Gaussian random-number
matrices

 • Understand the computa-
tional limits of MATLAB ®

 • Recognize and be able to
use the special values and
functions built into
MATLAB ®

 Objectives

 Built-In MATLAB ®
Functions

 C H A P T E R

64 Chapter 3 Built-In MATLAB ® Functions

 returns a scalar:

b =
3

 However, the square-root function, sqrt , can also accept matrices as input. In
this case, the square root of each element is calculated, so

x = [4, 9, 16];
b = sqrt(x)

 returns

b =
2 3 4

 All functions can be thought of as having three components: a name, input,
and output. In the preceding example, the name of the function is sqrt , the
required input (also called the argument) goes inside the parentheses and can be a
scalar or a matrix, and the output is a calculated value or values. In this example,
the output was assigned the variable name b .

 Some functions require multiple inputs. For example, the remainder function,
 rem , requires two inputs: a dividend and a divisor. We represent this as rem(x,y) , so

rem(10,3)

 calculates the remainder of 10 divided by 3:

ans =
1

 The size function is an example of a function that returns two outputs, which are
stored in a single array. It determines the number of rows and columns in a matrix.
Thus,

d = [1, 2, 3; 4, 5, 6];
f = size(d)

 returns the 1 � 2 result matrix

f =
2 3

 You can also assign variable names to each of the answers by representing the
left-hand side of the assignment statement as a matrix. For example,

[rows,cols] = size(d)

 gives

rows =
2

cols =
3

 A useful feature of the more recent versions of MATLAB ® is the adaptive help
capability. As you type a function name, a screen tip appears showing the correct
function format. It also includes a link to the function’s help page.

 You can create more complicated expressions by nesting functions. For
instance,

g = sqrt(sin(x))

 KEY IDEA
 Most of the MATLAB ®
function names are the
same as those used in other
computer programs

 ARGUMENT
 Input to a function

 NESTING
 Using one function as the
input to another

 3.2 Using the Help Feature 65

 fi nds the square root of the sine of whatever values are stored in the matrix named
 x . If x is assigned a value of 2,

x = 2;

 the result is

g =
0.9536

 Nesting functions can result in some complicated MATLAB ® code. Be sure to include
the arguments for each function inside their own set of parentheses. Often, your code
will be easier to read if you break nested expressions into two separate statements. Thus,

a = sin(x);
g = sqrt(a)

 gives the same result as g � sqrt1sin1x22 and is easier to follow.

 HINT
 You can probably guess the name and syntax for many MATLAB ® functions.
However, check to make sure that the function of interest is working the way
you assume it is, before you do any important calculations.

 3.2 USING THE HELP FEATURE

 MATLAB ® includes extensive help tools, which are especially useful in understand-
ing how to use functions. There are two ways to get help from within MATLAB ® : a
command-line help function (help) and an HTML-based set of documentation
available by selecting Help from the menu bar, selecting the help icon (a question
mark) or by using the F1 function key, usually located at the top of your keyboard
(or found by typing helpwin in the command window). There is also an online
help set of documentation, available through the Start button or the Help icon on
the menu bar. However, the online help usually just refl ects the HTML-based docu-
mentation. You should use both help options, since they provide different informa-
tion and insights into how to use a specifi c function.

 To use the command-line help function, type help in the command window:

help

 A list of help topics will appear:

HELP topics:

MATLAB\general – General-purpose commands
MATLAB\ops – Operators and special characters
MATLAB\lang – Programming language constructs
MATLAB\elmat – Elementary matrices and matrix

manipulation
MATLAB\elfun – Elementary math functions
MATLAB\specfun – Specialized math functions

and so on

 To get help on a particular topic, type help <topic> . (Recall that the angle
brackets, 6 7 , identify where you should type your input; they are not included in
your actual MATLAB ® statement.)

 KEY IDEA
 Use the help function to
help you use MATLAB ® ’s
built-in functions

66 Chapter 3 Built-In MATLAB ® Functions

 For example, to get help on the tangent function, type

help tan

 The following should be displayed:

TAN Tangent of argument in radians.
TAN(X) is the tangent of the elements of X.

See also atan, tand, atan2.

 To use the windowed help screen, select Help : Product Help from the menu
bar. A windowed version of the help list will appear (see Figure 3.1). You can then
navigate to the appropriate topic. To access this version of the help utility directly
from the command window, type doc <topic> . Thus, to access the windowed
help for tangent, type

doc tan

 The contents of the two methods for getting help on a function are differ-
ent. If your question isn’t immediately answered by whichever method you try
fi rst, it’s often useful to try the other technique. The windowed help utility
includes a MATLAB ® tutorial that you will fi nd extremely useful. The list in the
left-hand window is a table of contents. Notice that it includes a link to a list of
functions, organized both by category and alphabetically by name. You can use
this link to fi nd out what MATLAB ® functions are available to solve many prob-
lems. For example, you might want to round a number you’ve calculated. Use
the MATLAB ® help window to determine whether an appropriate MATLAB ®
function is available.

 Select the MATLAB ® Functions-By Category link (see Figure 3.1) and then the
 Mathematics link (see Figure 3.2).

 Figure 3.1
 The MATLAB ® help
environment.

 3.2 Using the Help Feature 67

 Figure 3.2
 Functions-By Category help
window. Notice the link to
Mathematics functions in
the right-hand pane.

 Figure 3.3
 Mathematics help window.

 Near the middle of the page is the category Elementary Math (Figure 3.3),
which lists rounding as a topic. Follow the links and you will fi nd a whole category
devoted to rounding functions. For example, round rounds to the nearest integer.

68 Chapter 3 Built-In MATLAB ® Functions

 3.3 ELEMENTARY MATH FUNCTIONS

 Elementary math functions include logarithms, exponentials, absolute value,
rounding functions, and functions used in discrete mathematics.

 3.3.1 Common Computations

 The functions listed in Table 3.1 accept either a scalar or a matrix of x values.

 PRACTICE EXERCISES 3.1

 1. Use the help command in the command window to fi nd the appropriate
syntax for the following functions:
 a. cos
 b. sqrt
 c. exp

 2. Use the windowed help function from the menu bar to learn about the
functions in Exercise 1.

 3. Go to the online help function at www.mathworks.com to learn about
the functions in Exercise 1.

 KEY IDEA
 Most functions accept
scalars, vectors, or matrices
as input

 Table 3.1 Common Math Functions

 abs(x) Finds the absolute value of x. abs(�3)
 ans � 3

 sqrt(x) Finds the square root of x. sqrt(85)
 ans � 9.2195
 nthroot(x,n) Finds the real nth root of x. This function

will not return complex results. Thus,
 nthroot(�2, 3)
 ans �

 (-2)^(1/3) �1.2599
 does not return the same result, yet both

answers are legitimate third roots of -2.

(�2)^(1/3)

 ans �
 0.6300 � 1.0911i

 sign(x) Returns a value of -1 if x is less than zero,
a value of 0 if x equals zero, and a value
of �1 if x is greater than zero.

 sign(�8)
ans � �1

 rem(x,y) Computes the remainder of x/y. rem(25,4)
 ans � 1
 exp(x) Computes the value of ex, where e

is the base for natural logarithms, or
approximately 2.7183.

 exp(10)
ans � 2.2026e �
004

 log(x) Computes ln(x), the natural logarithm of x
(to the base e).

 log(10)
ans � 2.3026

 log10(x) Computes log10 (x), the common logarithm
of x (to the base 10).

 log10(10)
ans � 1

 You could have also found the syntax for the round function by selecting
 Functions—Alphabetical List.

www.mathworks.com

 3.3 Elementary Math Functions 69

 HINT
 As a rule, the function log in all computer languages means the natural
logarithm . Although not the standard in mathematics textbooks, it is the
standard in computer programming. Not knowing this distinction is a com-
mon source of errors, especially for new users. If you want logarithms to the
base 10, you’ll need to use the log10 function. A log2 function is also
included in MATLAB ® , but logarithms to any other base will need to be com-
puted; there is no general logarithm function that allows the user to input
the base.

 PRACTICE EXERCISES 3.2

 1. Create a vector x from �2 to �2 with an increment of 1. Your vector
should be

 x � 3�2, �1, 0, 1, 24
 a. Find the absolute value of each member of the vector.
 b. Find the square root of each member of the vector.

 2. Find the square root of both �3 and �3.
 a. Use the sqrt function.
 b. Use the nthroot function. (You should get an error statement for �3.)
 c. Raise �3 and �3 to the ½ power.

 How do the results vary?
 3. Create a vector x from �9 to 12 with an increment of 3.

 a. Find the result of x divided by 2.
 b. Find the remainder of x divided by 2.

 4. Using the vector from Exercise 3, fi nd ex.
 5. Using the vector from Exercise 3:

 a. Find ln(x) (the natural logarithm of x).
 b. Find log10 (x) (the common logarithm of x). Explain your results.

 6. Use the sign function to determine which of the elements in vector x
are positive.

 7. Change the format to rat , and display the value of the x vector
divided by 2.

 (Don’t forget to change the format back to format short when you
are done with this exercise set.)

 HINT
 The mathematical notation and MATLAB ® syntax for raising e to a power are
not the same. To raise e to the third power, the mathematical notation would
be e3. However, the MATLAB ® syntax is exp(3) . Students also sometimes
confuse the syntax for scientifi c notation with exponentials. The number 5e3
should be interpreted as 5 � 103.

70 Chapter 3 Built-In MATLAB ® Functions

 USING THE CLAUSIUS–CLAPEYRON EQUATION
 Meteorologists study the atmosphere in an attempt to understand and ultimately
predict the weather (see Figure 3.4). Weather prediction is a complicated process,
even with the best data. Meteorologists study chemistry, physics, thermodynamics,
and geography, in addition to specialized courses about the atmosphere.

 One equation used by meteorologists is the Clausius–Clapeyron equation,
which is usually introduced in chemistry classes and examined in more detail in
advanced thermodynamics classes. Rudolf Clausius and Emile Clapeyron were phys-
icists responsible for the early development of thermodynamic principles during
the mid-1800s (see Figures 3.5a and Figure 3.5b).

 In meteorology, the Clausius–Clapeyron equation is employed to determine
the relationship between saturation water-vapor pressure and the atmospheric tem-
perature. The saturation water-vapor pressure can be used to calculate relative
humidity, an important component of weather prediction, when the actual partial
pressure of water in the air is known.

 The Clausius–Clapeyron equation is

 lna P 0

6.11
b � a �Hv

Rair
b * a 1

273
�

1
T
b

 EXAMPLE 3.1

 Figure 3.4
 View of the earth’s weather
from space. (Courtesy of
NASA/Jet Propulsion
Laboratory.)

 Figure 3.5
 Portraits of (a) Rudolf
Clausius and (b) Emile
Clapeyron .

(a) (b)

 3.3 Elementary Math Functions 71

 where

P 0 = saturation vapor pressure for water, in mbar, at temperature T
�Hv = latent heat of vaporization for water, 2.453 � 106 J>kg
Rair = gas constant for moist air, 461 J/kg
T = temperature in kelvins (K).

 It is rare that temperatures on the surface of the earth are lower than �60�F or
higher than 120°F. Use the Clausius–Clapeyron equation to fi nd the saturation
vapor pressure for temperatures in this range. Present your results as a table of
Fahrenheit temperatures and saturation vapor pressures.

 1. State the Problem
 Find the saturation vapor pressure at temperatures from �60�F to 120°F, using

the Clausius–Clapeyron equation.
 2. Describe the Input and Output

 Input

 �Hv � 2.453 � 106 J>kg
 Rair � 461 J>kg

 T � �60�F to 120�F

 Since the number of temperature values was not specifi ed, we’ll choose to
recalculate every 10°F.

 Output

 Saturation vapor pressures

3. Develop a Hand Example
 The Clausius–Clapeyron equation requires that all the variables have consistent

units. This means that temperature (T) needs to be in kelvins. To change
degree Fahrenheit to kelvin, we use the conversion equation

Tk �
1Tf � 459.62

1.8

 (There are lots of places to fi nd units conversions. The Internet is one source,
as are science and engineering textbooks.)

 Now we need to solve the Clausius–Clapeyron equation for the saturation
vapor pressure P 0. We have

lna P 0

6.11
b � a �Hv

Rair
b � a 1

273
�

1
T
b

P 0 � 6.11 � e a a �Hv

Rair
b � a 1

273
�

1
T
b b

 Next, we solve for one temperature—for example, T � 0�F. Since the equation
requires temperature in kelvins we must perform the unit conversion to obtain

T �
10 � 459.62

1.8
� 255.3333 K

 Finally, we substitute values to get

P 0 � 6.11 � e a a2.453 � 106

461
b � a 1

273
�

1
255.3333

b b � 1.5836 mbar

 where

P 0 = saturation vapor pressure for water, in mbar, at temperature T
�HvHH = latent heat of vaporization for water, 2.453 � 106 J>kg
RaRR ir = gas constant for moist air, 461 J/kg
T = temperature in kelvins (K). T

It is rare that temperatures on the surface of the earth are lower than �60�F or
higher than 120°F. Use the Clausius–Clapeyron equation to fi nd the saturation
vapor pressure for temperatures in this range. Present your results as a table of
Fahrenheit temperatures and saturation vapor pressures.

1. State the Problem
 Find the saturation vapor pressure at temperatures from �60�F to 120°F, using
the Clausius–Clapeyron equation.

2. Describe the Input and Output

 Input

�HvHH � 2.453 � 106 J>kg
RaRR ir � 461 J>kg

T � �60�F to 120�F

 Since the number of temperature values was not specifi ed, we’ll choose to
recalculate every 10°F.

Output

 Saturation vapor pressures

3. Develop a Hand Example
 The Clausius–Clapeyron equation requires that all the variables have consistent

units. This means that temperature (T) needs to be in kelvins. To changeTT
degree Fahrenheit to kelvin, we use the conversion equation

TkTT �
1TfTT � 459.62

1.8

 (There are lots of places to fi nd units conversions. The Internet is one source,
as are science and engineering textbooks.)

 Now we need to solve the Clausius–Clapeyron equation for the saturation
vapor pressure P 0. We have

lna P 0

6.11
b � a �HvHH

RaRR ir
b � a 1

273
�

1
T
b

P 0 � 6.11 � e a a �HvHH
Rair
b � a 1

273
�

1
T
b b

 Next, we solve for one temperature—for example, T � 0�F. Since the equation
requires temperature in kelvins we must perform the unit conversion to obtain

T �
10 � 459.62

1.8
� 255.3333 K

 Finally, we substitute values to get

P 0 � 6.11 � e a a2.453 � 106

461
b � a 1

273
�

1
255.3333

b b � 1.5836 mbar

72 Chapter 3 Built-In MATLAB ® Functions

4. Develop a MATLAB ® Solution
 Create the MATLAB ® solution in an M-fi le, and then run it in the command

environment:

%Example 3.1
%Using the Clausius–Clapeyron Equation, find the
%saturation vapor pressure for water at different
%temperatures

TempF=[-60:10:120]; %Define temp matrix in F
TempK=(TempF + 459.6)/1.8; %Convert temp to K
Delta_H=2.45e6; %Define latent heat of

%vaporization
R_air = 461; %Define ideal gas constant

%for air
%
%Calculate the vapor pressures
Vapor_Pressure=6.11*exp((Delta_H/R_air)*(1/273 - 1./TempK));
%Display the results in a table
my_results = [TempF',Vapor_Pressure']

 When you create a MATLAB ® program, it is a good idea to comment liberally
(lines beginning with %). This makes your program easier for others to under-
stand and may make it easier for you to “debug.” Notice that most of the lines
of code end with a semicolon, which suppresses the output. Therefore, the only
information that displays in the command window is the table my_results:

my_results =
-60.0000 0.0698
-50.0000 0.1252
-40.0000 0.2184
...
120.0000 118.1931

 5. Test the Solution
 Compare the MATLAB ® solution when T � 0�F with the hand solution:

 Hand solution: P0 � 1.5888 mbar
 MATLAB ® solution: P0 � 1.5888 mbar

 The Clausius–Clapeyron equation can be used for more than just humidity
problems. By changing the values of �H and R, you could generalize the pro-
gram to deal with any condensing vapor.

 3.3.2 Rounding Functions

 MATLAB ® contains functions for a number of different rounding techniques
(Table 3.2). You are probably most familiar with rounding to the closest integer;
however, you may want to round either up or down, depending on the situation.

 For example, suppose you want to buy apples at the grocery store. The apples
cost $0.52 a piece. You have $5.00. How many apples can you buy? Mathematically,

$5.00

$0.52>apple
� 9.6154 apples

 3.3 Elementary Math Functions 73

 But clearly, you can’t buy part of an apple, and the grocery store won’t let you round
to the nearest number of apples. Instead, you need to round it down. The MATLAB ®
function to accomplish this is fix . Thus,

fix(5/0.52)

 returns the maximum number of apples you can buy:

ans =
9

 3.3.3 Discrete Mathematics

 MATLAB ® includes functions to factor numbers, fi nd common denominators and
multiples, calculate factorials, and explore prime numbers (Table 3.3). All of these
functions require integer scalars as input. In addition, MATLAB ® includes the
 rats function, which expresses a fl oating-point number as a rational number—
that is, a fraction. Discrete mathematics is the mathematics of whole numbers.
Factoring, calculating common denominators, and fi nding least common multiples
are procedures usually covered in intermediate algebra courses. Factorials are usu-
ally covered in statistics or probability courses and may not be familiar to beginning
engineering students.

 A factorial is the product of all the positive integers from 1 to a given value. Thus
3 factorial (indicated as 3!) is 3 � 2 � 1 � 6. Many problems involving probability
can be solved with factorials. For example, the number of ways that fi ve cards can be
arranged is 5 � 4 � 3 � 2 � 1 � 5! � 120. When you select the fi rst card, you have
fi ve choices; when you select the second card, you have only four choices remaining,
then three, two, and one. This approach is called combinatorial mathematics, or
combinatorics. To calculate a factorial in MATLAB ® use the factorial function. Thus

factorial(5)
ans =

120

 gives the same result as

5*4*3*2*1
ans =

120

 The value of a factorial quickly becomes very large. Ten factorial is 3,628,800.
MATLAB ® can handle up to 170! Anything larger gives Inf for an answer, because
the maximum value for a real number is exceeded.

 Table 3.2 Rounding Functions

 round(x) Rounds x to the nearest integer. round(8.6)
 ans � 9
 fi x(x) Rounds (or truncates) x to the nearest integer toward

zero. Notice that 8.6 truncates to 8, not 9, with this
function.

 fi x(8.6)
ans � 8
fi x(�8.6)

 ans � �8

 fl oor(x) Rounds x to the nearest integer
toward negative infi nity.

 fl oor(�8.6)
 ans � �9

 ceil(x) Rounds x to the nearest integer
toward positive infi nity.

 ceil(�8.6)
ans � �8

74 Chapter 3 Built-In MATLAB ® Functions

factorial(170)
ans =
7.2574e+306

factorial(171)
ans =

Inf

 Factorials are used to calculate the number of permutations and combinations
of possible outcomes. A permutation is the number of subgroups that can be
formed when sampling from a larger group, when the order matters. Consider the fol-
lowing problem. How many different teams of two people can you form from a
group of four? Assume that the order matters, since for this problem the fi rst per-
son chosen is the group leader. If we represent each person as a letter, the possibili-
ties are as follows:

 AB BA CA DA
 AC BC CB DB
 AD BD CD DC

 Table 3.3 Functions Used in Discrete Mathematics

 factor(x) Finds the prime factors of x. factor(12)
 ans �

 2 2 3
 gcd(x,y) Finds the greatest common denominator of

x and y.
 gcd(10,15)
ans �
 5

 lcm(x,y) Finds the least common multiple of x and y. lcm(2,5)
 ans �

 10
 lcm(2,10)
 ans �

 10
 rats(x) Represents x as a fraction. rats(1.5)
 ans �

 3/2
 factorial(x) Finds the value of x factorial (x!).

A factorial is the product of all the integers
less than x. For example,
 6! � 6 � 5 � 4 � 3 � 2 � 1 � 720.

 factorial(6)
 ans �
 720

 nchoosek(n,k) Finds the number of possible combinations of k items
from a group of n items. For example, use this function
to determine the number of possible subgroups of 3
chosen from a group of 10.

 nchoosek(10,3)
ans �
 120

 primes(x) Finds all the prime numbers less than x. primes(10)
ans �
 2 3 5 7

 isprime(x) Checks to see if x is a prime number. If it
is, the function returns 1; if not, it returns 0.

 isprime(7)
ans �
 1
isprime(10)
 ans �
 0

 3.3 Elementary Math Functions 75

 For the fi rst member of the team, there are four choices, and for the second there
are three choices, so the number of possible teams is 4 � 3 � 12. We could also
express this as 4!/2!. More generally, if you have a large group to choose from, call
the group size n, and the size of the subgroup (team) m. Then the possible number
of permutations is

n!1n � m2!

 If there are 100 people to choose from, the number of teams of two (where order
matters) is

100!1100 � 22! � 9900

 But, what if the order doesn’t matter? In this case, team AB is the same as team
BA, and we refer to all the possibilities as combinations instead of permutations.
The possible number of combinations is

n!1n � m2! � m!

 Although you could use MATLAB ® ’s factorial function to calculate the number
of combinations, the nchoosek function will do it for you, and it offers some
advantages when using larger numbers. If we want to know the number of possible
teams of 2, chosen from a pool of 100 (100 choose 2),

nchoosek(100,2)
ans =

4950

 The nchoosek function allows us to calculate the number of combinations
even if the pool size is greater than 170, which would not be possible using the fac-
torial approach.

nchoosek(200,2)
ans =

19900
factorial(200)/(factorial(198)*factorial(2))
ans =

NaN

 PRACTICE EXERCISES 3.3

 1. Factor the number 322.
 2. Find the greatest common denominator of 322 and 6.
 3. Is 322 a prime number?
 4. How many primes occur between 0 and 322?
 5. Approximate p as a rational number.
 6. Find 10! (10 factorial).
 7. Find the number of possible groups containing 3 people from a group

of 20, when order does not matter. (20 choose 3)

76 Chapter 3 Built-In MATLAB ® Functions

 3.4 TRIGONOMETRIC FUNCTIONS

 MATLAB ® includes a complete set of the standard trigonometric functions and the
hyperbolic trigonometric functions. Most of these functions assume that angles are
expressed in radians. To convert radians to degrees or degrees to radians, we need
to take advantage of the fact that p radians equals 180:

 degrees � radians a180
p
b and radians � degrees a p

180
b

 The MATLAB ® code to perform these conversions is

degrees = radians * 180/pi;
radians = degrees * pi/180;

 To carry out these calculations, we need the value of p, so a constant, pi , is built into
MATLAB ® . However, since p cannot be expressed as a fl oating-point number, the con-
stant pi in MATLAB ® is only an approximation of the mathematical quantity p. Usually
this is not important; however, you may notice some surprising results. For example, for

sin(pi)
ans =

1.2246e-016

 when you expect an answer of zero.
 MATLAB ® also includes a set of trigonometric functions that accept the angle

in degrees so that you need not do the conversion to radians. These include sind ,
 cosd , and tand .

 You may access the help function from the menu bar for a complete list of
trigonometric functions available in MATLAB ® . Table 3.4 shows some of the more
common ones.

 KEY IDEA
 Most trig functions require
input in radians

 Table 3.4 Some of the Available Trigonometric Functions

 sin(x) Finds the sine of x when x is expressed in radians. sin(0)
 ans � 0
 cos(x) Finds the cosine of x when x is expressed in radians. cos(pi)
 ans � �1
 tan(x) Finds the tangent of x when x is expressed in radians. tan(pi)
 ans �

�1.2246
e�016

 asin(x) Finds the arcsine, or inverse sine, of x, where x
must be between �1 and 1. The function returns
an angle in radians between p>2 and �p>2.

 asin(�1)
ans �
�1.5708

 sinh(x) Finds the hyperbolic sine of x when x is expressed
in radians.

 sinh(pi)
ans �
11.5487

 asinh(x) Finds the inverse hyperbolic sin of x. asinh(1)
 ans �

0.8814
 sind(x) Finds the sin of x when x is expressed in degrees. sind(90)
 ans �

 1
 asind(x) Finds the inverse sin of x and reports the result

in degrees.
 asind(1)
ans �
 90

 3.4 Trigonometric Functions 77

 HINT
 Math texts often use the notation sin�11x2 to indicate an inverse sine func-
tion, also called an arcsine. Students are often confused by this notation and
try to create parallel MATLAB ® code. Note, however, that

a = sin^-1(x)

 is not a valid MATLAB ® statement but instead should be

 a = sin(x)

 PRACTICE EXERCISES 3.4

 Calculate the following (remember that mathematical notation is not nec-
essarily the same as MATLAB ® notation):

1. sin12u2 for u � 3p.
2. cos1u2 for 0 … u … 2p; let u change in steps of 0.2p.

 3. sin�1112.
 4. cos�11x2 for �1 … x … 1; let x change in steps of 0.2.
 5. Find the cosine of 45°.

 a. Convert the angle from degrees to radians, and then use the cos
function.

 b. Use the cosd function.
 6. Find the angle whose sine is 0.5. Is your answer in degrees or radians?
 7. Find the cosecant of 60. You may have to use the help function to fi nd

the appropriate syntax.

 USING TRIGONOMETRIC FUNCTIONS
 A basic calculation in engineering is fi nding the resulting force on an object that is
being pushed or pulled in multiple directions. Adding up forces is the primary cal-
culation performed in both statics and dynamics classes. Consider a balloon that is
acted upon by the forces shown in Figure 3.6 .

 To fi nd the net force acting on the balloon, we need to add up the force due to
gravity, the force due to buoyancy, and the force due to the wind. One approach is
to fi nd the force in the x direction and the force in the y direction for each indi-
vidual force and then to recombine them into a fi nal result.

 The forces in the x and y directions can be found by trigonometry:

 F = total force
 Fx = force in the x direction
 Fy = force in the y direction

 We know from trigonometry that the sine is the opposite side over the hypote-
nuse, so

 sin1u2 � Fy>F

 EXAMPLE 3.2

Wind

Buoyancy

Gravity

 Figure 3.6
 Force balance on a balloon.

78 Chapter 3 Built-In MATLAB ® Functions

 and therefore,

 Fy � F sin1u2
 Similarly, since the cosine is the adjacent side over the hypotenuse,

 Fx � F cos1u2
 We can add up all the forces in the x direction and all the forces in the y direction
and use these totals to fi nd the resulting force:

 Fx total � �Fxi Fy total � �Fyi

 To fi nd the magnitude and angle for Ftotal, we use trigonometry again. The tan-
gent is the opposite side over the adjacent side. Therefore,

 tan1u2 �
Fy total

Fx total

 We use an inverse tangent to write

 u � tan�1 a Fy total

Fx total
b

 (The inverse tangent is also called the arctangent; you’ll see it on your scientifi c cal-
culator as atan.)

 Once we know u, we can fi nd Ftotal, using either the sine or the cosine. We have

 Fx total � Ftotal cos 1u2
 and rearranging terms gives

 Ftotal �
Fx total

cos1u2
 Now consider again the balloon shown in Figure 3.6 . Assume that the force due to
gravity on this particular balloon is 100 N, pointed downward. Assume further that
the buoyant force is 200 N, pointed upward. Finally, assume that the wind is push-
ing on the balloon with a force of 50 N, at an angle of 30� from horizontal.

 Find the resulting force on the balloon.

 1. State the Problem
 Find the resulting force on a balloon. Consider the forces due to gravity, buoy-

ancy, and the wind.
 2. Describe the Input and Output

 Input

 Force Magnitude Direction

 Gravity 100 N �90
 Buoyancy 200 N �90
 Wind 50 N �30

 Output

 We’ll need to fi nd both the magnitude and the direction of the resulting force.

 3.4 Trigonometric Functions 79

3. Develop a Hand Example
 First fi nd the x and y components of each force and sum the components:

 Force Horizontal Component Vertical Component

 Gravity Fx � F cos1u2 Fy � F sin1u2
 Fx � 100 cos1�90�2 � 0 N Fy � 100 sin1�90�2 � �100 N

 Buoyancy Fx � F cos1u2 Fy � F sin1u2
 Fx � 200 cos1�90�2 � 0 N Fy � 200 sin1�90�2 � �200 N

 Wind Fx � F cos1u2 Fy � F sin1u2
 Fx � 50 cos1�30�2 � 43.301 N Fy � 50 sin1�30�2 � �25 N

 Sum Fx total � 0 � 0 � 43.301 Fy total � �100 � 200 � 25

 � 43.301 N � 125 N

 Find the resulting angle:

 u � tan�1 a Fy total

Fx total
b

 u � tan�1
125

43.301
� 70.89�

 Find the magnitude of the total force:

 Ftotal �
Fx total

cos1u2

 Ftotal �
43.301

cos170.89�2 � 132.29 N

 4. Develop a MATLAB ® Solution
 One solution is

%Example 3_2
clear, clc
%Define the input
Force =[100, 200, 50];
theta = [-90, +90, +30];
%convert angles to radians
theta = theta*pi/180;
%Find the x components
ForceX = Force.*cos(theta);
%Sum the x components
ForceX_total = sum(ForceX);
%Find and sum the y components in the same step
ForceY_total = sum(Force.*sin(theta));
%Find the resulting angle in radians
result_angle = atan(ForceY_total/ForceX_total);
%Find the resulting angle in degrees
result_degrees = result_angle*180/pi
%Find the magnitude of the resulting force
Force_total = ForceX_total/cos(result_angle)

80 Chapter 3 Built-In MATLAB ® Functions

 which returns

result_degrees =
70.8934

Force_total =
132.2876

 Notice that the values for the force and the angle were entered into an array.
This makes the solution more general. Notice also that the angles were con-
verted to radians. In the program listing, the output from all but the fi nal calcu-
lations was suppressed. However, while developing the program, we left off the
semicolons so that we could observe the intermediate results.

5. Test the Solution
 Compare the MATLAB ® solution with the hand solution. Now that you know it

works, you can use the program to fi nd the resultant of multiple forces. Just add
the additional information to the defi nitions of the force vector Force and the
angle vector theta . Note that we assumed a two-dimensional world in this exam-
ple, but it would be easy to extend our solution to forces in all three dimensions.

 3.5 DATA ANALYSIS FUNCTIONS

 Analyzing data statistically in MATLAB ® is particularly easy, partly because whole
data sets can be represented by a single matrix and partly because of the large num-
ber of built-in data analysis functions.

 3.5.1 Maximum and Minimum

 Table 3.5 lists functions that fi nd the minimum and maximum in a data set and the
element at which those values occur.

 Table 3.5 Maxima and Minima

 max(x) Finds the largest value in a vector x. For example,
if x � 31 5 34 , the maximum value is 5.

 x�[1, 5, 3];
max(x)

 ans �
 5

 Creates a row vector containing the maximum element from each

column of a matrix x. For example, if x � c1 5 3
2 4 6

d , then

the maximum value in column 1 is 2, the maximum value in
column 2 is 5, and the maximum value in column 3 is 6.

 x�[1, 5, 3; 2, 4, 6];
max(x)
ans �
 2 5 6

 [a,b]=max(x) Finds both the largest value in a vector x and its location in vector x.
For x � 31 5 34 the maximum value is named a and is found
to be 5. The location of the maximum value is element 2 and
is named b.

 x�[1, 5, 3];
[a,b] � max(x)
 a �
 5
 b �
 2

 Creates a row vector containing the maximum element from each
column of a matrix x and returns a row vector with the location of the

maximum in each column of matrix x. For example, if x � c1 5 3
2 4 6

d ,
then the maximum value in column 1 is 2, the maximum value in
column 2 is 5, and the maximum value in column 3 is 6.
These maxima occur in row 2, row 1, and row 2, respectively.

 x�[1, 5, 3; 2, 4, 6];
[a,b] � max(x)
 a �
 2 5 6
 b �
 2 1 2

 3.5 Data Analysis Functions 81

 All of the functions in this section work on the columns in two-dimensional
matrices. MATLAB ® is column dominant—in other words if there is a choice to
make, MATLAB ® will choose columns fi rst over rows. If your data analysis requires
you to evaluate data in rows, the data must be transposed. (In other words, the rows
must become columns and the columns must become rows.) The transpose opera-
tor is a single quote ('). For example, if you want to fi nd the maximum value in each
row of the matrix

 x � c1 5 3
2 4 6

d
 use the command

max(x')

 max(x,y) Creates a matrix the same size as x and y. (Both x and y must
have the same number of rows and columns.) Each element
in the resulting matrix contains the maximum value from the
corresponding positions in x and y. For example,

if x � c1 5 3
2 4 6

d and y � c10 2 4
1 8 7

d then the resulting

matrix will be x � c10 5 4
2 8 7

d

 x�[1, 5, 3; 2, 4, 6];
y�[10,2,4; 1, 8, 7];
max(x,y)
ans �
 10 5 4
 2 8 7

 min(x) Finds the smallest value in a vector x. For example, if x � 31 5 34
the minimum value is 1.

 x�[1, 5, 3];
min(x)
ans �
 1

 Creates a row vector containing the minimum element from each

column of a matrix x. For example, if x � c1 5 3
2 4 6

d , then the

minimum value in column 1 is 1, the minimum value in column 2 is 4,
and the minimum value in column 3 is 3.

 x�[1, 5, 3; 2, 4, 6];
min(x)
 ans �
 1 4 3

 [a,b]=min(x) Finds both the smallest value in a vector x and its location in
vector x. For x � 31 5 34 , the minimum value is named a and
is found to be 1. The location of the minimum value is element 1
and is named b.

 x�[1, 5, 3];
 [a,b]�min(x)
 a �
 1
 b �
 1

 Creates a row vector containing the minimum element from
each column of a matrix x and returns a row vector with the
location of the minimum in each column of matrix x.

For example, if x � c1 5 3
2 4 6

d , then the minimum value in

column 1 is 1, the minimum value in column 2 is 4, and the
minimum value in column 3 is 3. These minima occur in row 1,
row 2, and row 1, respectively.

 x�[1, 5, 3; 2, 4, 6];
[a,b]�min(x)
 a �
 1 4 3
 b �
 1 2 1

 min(x,y) Creates a matrix the same size as x and y. (Both x and y must
have the same number of rows and columns.) Each element in the
resulting matrix contains the minimum value from the

corresponding positions in x and y. For example, if x � c1 5 3
2 4 6

d
and y � c10 2 4

1 8 7
d , then the resulting matrix will be � c1 2 3

1 4 6
d

 x�[1, 5, 3; 2, 4, 6];
 y�[10,2,4; 1, 8, 7];
min(x,y)
ans �
 1 2 3
 1 4 6

82 Chapter 3 Built-In MATLAB ® Functions

 3.5.2 Mean and Median

 There are several ways to fi nd the “average” value in a data set. In statistics, the
 mean of a group of values is probably what most of us would call the average. The
mean is the sum of all the values, divided by the total number of values. Another
kind of average is the median , or the middle value. There are an equal number of
values both larger and smaller than the median. The mode is the value that appears
most often in a data set. MATLAB ® provides functions for fi nding the mean,
median, and the mode, as shown in Table 3.6 . Recall that all of these functions are
column dominant and will return an answer for each column in a two-dimensional
matrix.

 HINT
 A common mistake when fi nding the maximum or minimum value in a data
set is to name the result max or min. This overwrites the function and it is no
longer available for calculations. For example

max = max(x)

 results in a variable named max for the answer. This is allowable MATLAB ®
code, but not wise. Trying to use the max function later in the program will
result in an error. For example

another_max = max(y)

 will return

??? Index exceeds matrix dimensions.

 PRACTICE EXERCISES 3.5

 Consider the following matrix:

 x � ≥4 90 85 75
2 55 65 75
3 78 82 79
1 84 92 93

¥

 1. What is the maximum value in each column?
 2. In which row does that maximum occur?
 3. What is the maximum value in each row? (You’ll have to transpose the

matrix to answer this question.)
 4. In which column does the maximum occur?
 5. What is the maximum value in the entire table?

 MEAN
 The average of all the
values in the data set

 MEDIAN
 The middle value in a
data set

 which returns

ans=
5 6

 3.5 Data Analysis Functions 83

 Table 3.6 Averages

 mean(x) Computes the mean value (or average value)
of a vector x. For example if x � 31 5 34 ,
the mean value is 3.

 x=[1, 5, 3];
mean(x)
 ans =
 3.0000

 Returns a row vector containing the mean
value from each column of a matrix x.

For example, if x � c1 5 3
2 4 6

d then the

mean value of column 1 is 1.5, the mean
value of column 2 is 4.5, and the mean
value of column 3 is 4.5.

 x=[1, 5, 3; 2, 4, 6];
mean(x)
ans =
 1.5 4.5 4.5

 median(x) Finds the median of the elements of a
vector x. For example, if x � 31 5 34 ,
the median value is 3.

 x=[1, 5, 3];
median(x)
ans =
 3

 Returns a row vector containing the median
value from each column of a matrix x.

For example, if x � £1 5 3
2 4 6
3 8 4

§ ,
then the median value from column 1 is 2,
the median value from column 2 is 5, and
the median value from column 3 is 4.

 x=[1, 5, 3;
2, 4, 6;
3, 8, 4];
median(x)
ans =
 2 5 4

 mode(x) Finds the value that occurs most often
in an array. Thus, for the array
 x � 31, 2, 3, 34
the mode is 3.

 x=[1,2,3,3]
mode(x)
 ans =
 3

 PRACTICE EXERCISES 3.6

 Consider the following matrix:

 x � ≥4 90 85 75
2 55 65 75
3 78 82 79
1 84 92 93

¥

 1. What is the mean value in each column?
 2. What is the median for each column?
 3. What is the mean value in each row?
 4. What is the median for each row?
 5. What is returned when you request the mode?
 6. What is the mean for the entire matrix?

 3.5.3 Sums and Products

 Often it is useful to add up (sum) all of the elements in a matrix or to multiply all of
the elements together. MATLAB ® provides a number of functions to calculate both
sums and products, as shown in Table 3.7 .

84 Chapter 3 Built-In MATLAB ® Functions

 Table 3.7 Sums and Products

 sum(x) Sums the elements in vector x. For example,
if x � 31 5 34 , the sum is 9.

 x�[1, 5, 3];
sum(x)
ans �
 9

 Computes a row vector containing the sum
of the elements in each column of a

matrix x. For example, if x � c1 5 3
2 4 6

d
then the sum of column 1 is 3, the sum of
column 2 is 9, and the sum of column 3 is 9.

 x�[1, 5, 3; 2, 4, 6];
sum(x)
ans �
 3 9 9

 prod(x) Computes the product of the elements of a
vector x. For example, if x � 31 5 34
the product is 15.

 x�[1, 5, 3];
prod(x)
ans �
 15

 Computes a row vector containing the product
of the elements in each column of a matrix x .

For example, if x � c1 5 3
2 4 6

d , then the

product of column 1 is 2, the product of column 2
is 20, and the product of column 3 is 18.

 x�[1, 5, 3; 2, 4, 6];
prod(x)
ans �
 2 20 18

 cumsum(x) Computes a vector of the same size as, and
containing cumulative sums of the elements of,
a vector x. For example, if x � 31 5 34 ,
the resulting vector is x � 31 6 94 .

 x�[1, 5, 3];
cumsum(x)
ans �
 1 6 9

 Computes a matrix containing the cumulative sum of
the elements in each column of a matrix x . For

example, if x � c1 5 3
2 4 6

d , the resulting

matrix is x � c1 5 3
3 9 9

d .
 x�[1, 5, 3; 2, 4, 6];
cumsum(x)
ans �
 1 5 3
 3 9 9

 cumprod(x) Computes a vector of the same size as, and
containing cumulative products of the elements
of, a vector x . For example, if x � 31 5 34 ,
the resulting vector is x � 31 5 154 .

 x�[1, 5, 3];
cumprod(x)
ans �
 1 5 15

 Computes a matrix containing the cumulative
product of the elements in each column of a

 matrix . For example, if x � c1 5 3
2 4 6

d ,
the resulting matrix is x � c1 5 3

2 20 18
d .

 x�[1, 5, 3; 2, 4, 6];
cumprod(x)
ans �
 1 5 3
 2 20 18

 In addition to simply adding up all the elements, which returns a single value
for each column in the array, the cumsum function (cumulative sum) adds all of the
previous elements in an array and creates a new array of these intermediate totals.
This is useful when dealing with the sequences of numbers in a series. Consider the
harmonic series

 a
n

k�1

1
k

 which is equivalent to

1
1

�
1
2

�
1
3

�
1
4

� ... �
1
n

 3.5 Data Analysis Functions 85

 We could use MATLAB ® to create a sequence representing the fi rst fi ve values in
the sequence as follows

k = 1:5;
sequence = 1./k

 which gives us

sequence =
1.0000 0.5000 0.3333 0.2500 0.2000

 We could view the series as a sequence of fractions by changing the format to
rational with the following code

format rat
sequence =

1 1/2 1/3 1/4 1/5

 Now we could use the cumsum function to fi nd the value of the entire series for
values of n from 1 to 5

format short
series = cumsum(sequence)
series =

1.0000 1.5000 1.8333 2.0833 2.2833

 Similarly the cumprod function fi nds the cumulative product of a sequence of
numbers stored in an array.

 3.5.4 Sorting Values

 Table 3.8 lists several commands to sort data in a matrix into ascending or descend-
ing order. For example, if we defi ne an array x

 x � [1 6 3 9 4]

 we can use the sort function to rearrange the values.

sort(x)
ans =

1 3 4 6 9

 The default is ascending order, but adding the string “descend” to the second fi eld
will force the function to list the values in descending order.

sort(x, 'descend')
ans =

9 6 4 3 1

 You can also use the sort command to rearrange entire matrices. This function is
consistent with other MATLAB ® functions, and sorts based on columns. Each col-
umn will be sorted independently. Thus

 x � [1 3; 10 2; 3 1; 82 4; 5 5]

86 Chapter 3 Built-In MATLAB ® Functions

 Table 3.8 Sorting Functions

 sort(x) Sorts the elements of a vector x into
ascending order. For example, if x � 31 5 34 ,
the resulting vector is x � 31 3 54 . x�[1, 5, 3];

sort(x)
ans �
 1 3 5

 Sorts the elements in each column of a
matrix x into ascending order. For example,

if x � c1 5 3
2 4 6

d ,
the resulting matrix is x � c1 4 3

2 5 6
d .

 x�[1, 5, 3; 2, 4, 6];
sort(x)
ans �
 1 4 3
 2 5 6

 sort(x,'descend') Sorts the elements in each column in
descending order.

 x�[1, 5, 3; 2, 4, 6];
sort(x,'descend')
ans �
 2 5 6
 1 4 3

 sortrows(x) Sorts the rows in a matrix in ascending
order on the basis of the values in the fi rst
column, and keeps each row intact. For

example, if x � £3 1 2
1 9 3
4 3 6

§ ,

then using the sortrows command will move
the middle row into the top position. The fi rst
column defaults to the basis for sorting.

 x�[3, 1, 3; 1, 9, 3;
4, 3, 6]
sortrows(x)
ans �
 1 9 3
 3 1 2
 4 3 6

 sortrows(x,n) Sorts the rows in a matrix on the basis of
the values in column n. If n is negative, the
values are sorted in descending order. If n is
not specifi ed, the default column used as the
basis for sorting is column 1.

 sortrows(x,2)
ans �
 3 1 2
 4 3 6
 1 9 3

 gives

x =
1 3
10 2
3 1
82 4
5 5

 When we sort the array

sort(x)

 each column is sorted in ascending order.

ans =
1 1
3 2
5 3
10 4
82 5

 The sortrows allows you to sort entire rows, based on the value in a specifi ed col-
umn. Thus

 sortrows(x,1)

 3.5 Data Analysis Functions 87

 sorts based on the fi rst column, but maintains the relationship between values in
columns one and two.

ans =
1 3
3 1
5 5
10 2
82 4

 Similarly you can sort based on values in the second column.

sortrows(x,2)
ans =

3 1
10 2
1 3
2 4
5 5

 These functions are particularly useful in analyzing data. Consider the results of the
Men’s 2006 Olympic 500-m speed skating event shown in Table 3.9 .

 The skaters were given a random number for this illustration, but once the race
is over we’d like to sort the table in ascending order, based on the times in the sec-
ond column.

skating_results = [1.0000 42.0930
2.0000 42.0890
3.0000 41.9350
4.0000 42.4970
5.0000 42.0020]

sortrows(skating_results,2)
ans =

3.0000 41.9350
5.0000 42.0020
2.0000 42.0890
1.0000 42.0930
4.0000 42.4970

 As you may remember, the winning time was posted by Apolo Anton Ohno, who in
our example, is skater number 3.

 Table 3.9 2006 Olympic Speed Skating Times

 Skater Number Time (min)

 1 42.093

 2 42.089
 3 41.935
 4 42.497
 5 42.002

88 Chapter 3 Built-In MATLAB ® Functions

 The sortrows function can also sort in descending order but uses a different
syntax from the sort function. To sort in descending order, place a minus sign in
front of the column number used for sorting. Thus

sortrows(skating_results, -2)

 sorts the array in descending order, based on the second column. The result of this
command is

ans =
4.0000 42.4970
1.0000 42.0930
2.0000 42.0890
5.0000 42.0020
3.0000 41.9350

 3.5.5 Determining Matrix Size

 MATLAB ® offers three functions (Table 3.10) that allow us to determine how big a
matrix is: size , length , and numel . The size function returns the number of
rows and columns in a matrix. The length function returns the larger of the
matrix dimensions. The numel function returns the total number of elements in a
matrix. For example, if

x = [1 2 3; 4 5 6];
size(x);

 MATLAB ® returns the following result

ans =
2 3

 This tells us that the x array has two rows and three columns. However, if we use
the length function

length(x)

 the result is

ans =
3

 Table 3.10 Size Functions

 size(x) Determines the number of rows and columns in
matrix x. (If x is a multidimensional array, size
determines how many dimensions exist and
how big they are.)

 x�[1, 5, 3; 2, 4, 6];
size(x)
ans �
 2 3

 [a,b] = size(x) Determines the number of rows and columns in
matrix x and assigns the number of rows to a
and the number of columns to b .

 [a,b]�size(x)
a �
 2
b �
 3

 length(x) Determines the largest dimension of a matrix x. x�[1, 5, 3; 2, 4, 6];
length(x)
ans �
 3

 numel(x) Determines the total number of elements in a
matrix x.

 x�[1, 5, 3; 2, 4, 6];
numel(x)
ans �
 6

 3.5 Data Analysis Functions 89

 because the largest of the array dimensions is 3.
 Finally, if we use the numel function

numel(x)

 the result is

ans =
6

 The length function is particularly useful when used with a loop structure,
since it can easily determine how many times to execute the loop—based on the
dimensions of an array.

 EXAMPLE 3.3
 WEATHER DATA
 The National Weather Service collects massive amounts of weather data every day
(Figure 3.7). Those data are available to all of us on the agency’s online service at
 http://cdo.ncdc.noaa.gov/CDO/cdo . Analyzing large amounts of data can be con-
fusing, so it’s a good idea to start with a small data set, develop an approach that
works, and then apply it to the larger data set that we are interested in.

 We have extracted precipitation information from the National Weather Service
for one location for all of 1999 and stored it in a fi le called Weather_Data.xls.
(The .xls indicates that the data are in an Excel spreadsheet.) Each row repre-
sents a month, so there are 12 rows, and each column represents the day of
the month (1 to 31), so there are 31 columns. Since not every month has the same
number of days, data are missing for some locations in the last several columns.
We place the number � 99999 in those locations. The precipitation information
is presented in hundredths of an inch. For example, on February 1 there was
0.61 inch of precipitation, and on April 1, 2.60 inches. A sample of the data is
displayed in Table 3.11 , with labels added for clarity; however, the data in the fi le
contain only numbers.

 Figure 3.7
 Satellite photo of a
hurricane. (Courtesy of
NASA/Jet Propulsion
Laboratory.)

 Table 3.11 Precipitation Data from Asheville, North Carolina

 1999 Day1 Day2 Day3 Day4 . . . Day28 Day29 Day30 Day31

 January 0 0 272 0 0 0 33 33

 February 61 103 0 2 62 -99999 -99999 -99999

 March 2 0 17 27 0 5 8 0

 April 260 1 0 0 13 86 0 -99999

 May 47 0 0 0 0 0 0 0

 June 0 0 30 42 14 14 8 -99999

 July 0 0 0 0 5 0 0 0

 August 0 45 0 0 0 0 0 0

 September 0 0 0 0 138 58 10 -99999

 October 0 0 0 14 0 0 0 1

 November 1 163 5 0 0 0 0 -99999

 December 0 0 0 0 0 0 0 0

http://cdo.ncdc.noaa.gov/CDO/cdo

90 Chapter 3 Built-In MATLAB ® Functions

 Use the data in the fi le to fi nd the following:

a. The total precipitation in each month.
b. The total precipitation for the year.
c. The month and day on which the maximum precipitation during the year

was recorded.

1. State the Problem
 Using the data in the fi le Weather_Data.xls, fi nd the total monthly precipitation,

the total precipitation for the year, and the day on which it rained the most.
2. Describe the Input and Output

Input The input for this example is included in a data fi le called Weather_
Data.xls and consists of a two-dimensional matrix. Each row represents a month,
and each column represents a day.

Output The output should be the total precipitation for each month, the total
precipitation for the year, and the day on which the precipitation was a maxi-
mum. We have decided to present precipitation in inches, since no other units
were specifi ed in the statement of the problem.

3. Develop a Hand Example
 For the hand example, deal only with a small subset of the data. The informa-
tion included in Table 3.11 is enough. The total for January, days 1 to 4, is

 total_1 � 10 � 0 � 272 � 02 >100 � 2.72 inches

 The total for February, days 1 to 4, is

 total_2 � 161 � 103 � 0 � 22 >100 � 1.66 inches

 Now add the months together to get the combined total. If our sample “year” is
just January and February, then

 total � total_1 � total_2 � 2.72 � 1.66 � 4.38 inches

 To fi nd the day on which the maximum precipitation occurred, fi rst fi nd the
maximum in the table, and then determine which row and which column it is in.

 Working through a hand example allows you to formulate the steps
required to solve the problem in MATLAB ® .

4. Develop a MATLAB ® Solution
 First we’ll need to save the data fi le into MATLAB ® as a matrix. Because the fi le
is an Excel spreadsheet, the easiest approach is to use the Import Wizard. Double-
click on the fi le in the current folder window to launch the Import Wizard.

 Once the Import Wizard has completed execution, the variable name
Sheet1 will appear in the workspace window. (See Figure 3.8 ; your version
may name the variable Weather_data or Sheet1 .)

 Because not every month has 31 days, there are a number of entries for
nonexistent days. The value -99999 was inserted into those fi elds. You can dou-
ble-click the variable name, data , in the workspace window, to edit this matrix
and change the “phantom” values to 0 (see Figure 3.9).

 Now write the script M-fi le to solve the problem:

clc
%Example 3.3 - Weather Data
%In this example we will find the total precipitation
%for each month, and for the entire year, using a data file

 3.5 Data Analysis Functions 91

 Figure 3.8
 MATLAB ® Import Wizard.

 Figure 3.9
 MATLAB ® array editor. You can edit the array in this window and change all of the “phantom
values” from � 99999 to 0.

%We will also find the month and day on which the
%precipitation was the maximum
weather_data=data;
%Use the transpose operator to change rows to columns
weather_data = weather_data';
%Find the sum of each column, which is the sum for each %month

92 Chapter 3 Built-In MATLAB ® Functions

monthly_total=sum(weather_data)/100
%Find the annual total
yearly_total = sum(monthly_total)
%Find the annual maximum and the day on which it occurs
[maximum_precip,month]=max(max(weather_data))
%Find the annual maximum and the month in which it occurs
[maximum_precip,day]=max(max(weather_data'))

 Notice that the code did not start with our usual clear , clc commands,
because that would clear the workspace, effectively deleting the data variable.
Next we rename data to weather_data .

 Next, the matrix weather_data is transposed, so that the data for each
month are in a column instead of a row. That allows us to use the sum com-
mand to add up all the precipitation values for the month.

 Now we can add up all the monthly totals to get the total for the year. An
alternative syntax is

 yearly_total � sum(sum(weather_data))

 Finding the maximum daily precipitation is easy; what makes this example hard is
determining the day and month on which the maximum occurred. The command

 [maximum_precip, month] � max(max(weather_data))

 is easier to understand if we break it up into two commands.
 First,

 [a,b] � max(weather_data)

 returns a matrix of maxima for each column, which in this case is the maximum
for each month. This value is assigned to the variable name a . The variable b
becomes a matrix of index numbers that represent the row in each column at
which the maximum occurred. The result, then, is

a =
 Columns 1 through 9

272 135 78 260 115 240 157 158 138
 Columns 10 through 12

156 255 97
b =

 Columns 1 through 9
 3 18 27 1 6 25 12 24 28

 Columns 10 through 12
 5 26 14

 Now when we execute the max command the second time, we determine
the maximum precipitation for the entire data set, which is the maximum
value in matrix a . Also, from matrix a , we find the index number for that
maximum:

[c,d]=max(a)
c =

 272
d =

 1

 3.5 Data Analysis Functions 93

 These results tell us that the maximum precipitation occurred in column 1 of
the a matrix, which means that it occurred in the fi rst month.

 Similarly, transposing the weather_data matrix (i.e., obtaining
 weather_data') and fi nding the maximum twice allows us to fi nd the day of
the month on which the maximum occurred.

 There are several things you should notice about the MATLAB ® screen
shown in Figure 3.10 . In the workspace window, both data and weather_
data are listed. The variable data is a 12 � 31 matrix, whereas weather_
data is a 31 � 12 matrix. All of the variables created when the M-fi le was
executed are now available to the command window. This makes it easy to per-
form additional calculations in the command window after the M-fi le has com-
pleted running. For example, notice that we forgot to change the
maximum_precip value to inches from hundredths of an inch. Adding the
command

 maximum_precip � maximun_precip/100

 would correct that oversight. Notice also that the Weather_Data.xls fi le is still in
the current folder. Finally, notice that the command history window refl ects
only commands issued from the command window; it does not show commands
executed from an M-fi le.

 5. Test the Solution
 Open the Weather_Data.xls fi le, and confi rm that the maximum precipitation
occurred on January 3. Once you’ve confi rmed that your M-fi le program works,
you can use it to analyze other data. The National Weather Service maintains
similar records for all of its recording stations.

 Figure 3.10
 Results from the precipitation calculations.

94 Chapter 3 Built-In MATLAB ® Functions

 3.5.6 Variance and Standard Deviation

 The standard deviation and variance are measures of how much elements in a data
set vary with respect to each other. Every student knows that the average score on a
test is important, but you also need to know the high and low scores to get an idea
of how well you did. Test scores, like many kinds of data that are important in engi-
neering, are often distributed in a “bell”-shaped curve. In a normal (Gaussian) dis-
tribution of a large amount of data, approximately 68% of the data falls within one
standard deviation (sigma) of the mean (one sigma2. If you extend the range
to a two-sigma variation (two sigma2, approximately 95% of the data should fall
inside these bounds, and if you go out to three sigma, over 99% of the data should
fall in this range (Figure 3.11). Usually, measures such as the standard deviation
and variance are meaningful only with large data sets.

 STANDARD DEVIATION
 A measure of the spread of
values in a data set

 VARIANCE
 The standard deviation
squared

34.13%34.13%

3 2 1 0
Standard Deviations

1 2 3

13.59%13.59%

02.15%02.15%

 Figure 3.11
 Normal distribution.

 PRACTICE EXERCISES 3.7

 Consider the following matrix:

 x � ≥4 90 85 75
2 55 65 75
3 78 82 79
1 84 92 93

¥

 1. Use the size function to determine the number of rows and columns
in this matrix.

 2. Use the sort function to sort each column in ascending order.
 3. Use the sort function to sort each column in descending order.
 4. Use the sortrows function to sort the matrix so that the fi rst column

is in ascending order, but each row still retains its original data. Your
matrix should look like this:

 x � ≥1 84 92 93
2 55 65 75
3 78 82 79
4 90 85 75

¥
 5. Use the sortrows function to sort the matrix from Exercise 4 in

descending order, based on the third column.

 Consider the data graphed in Figure 3.12 . Both sets of data have the same aver-
age (mean) value of 50. However, it is easy to see that the fi rst data set has more
variation than the second.

 3.5 Data Analysis Functions 95

 The mathematical defi nition of variance is

 variance � s2 �
a
N

k�1
(xk � m)2

N � 1
 In this equation, the symbol m represents the mean of the values xk in the data set.
Thus, the term xk � m is simply the difference between the actual value and the
average value. The terms are squared and added together:

a
N

k�1
(xk � m)2

 Finally, we divide the summation term by the number of values in the data set (N),
minus 1.

 The standard deviation 1s2, which is used more often than the variance, is the
square root of the variance.

 The MATLAB ® function used to fi nd the standard deviation is std . When we applied
this function on the large data set shown in Figure 3.12 , we obtained the following output:

std(scores1)
ans =

20.3653
std(scores2)
ans =

9.8753

0 200 400 600 800 1000
0

20

40

60

80

100
Test Scores

Student Number

Sc
or

e

0 20 40 60 80 100
0

20

40

60

80

100

120
Distribution of Test Scores

Score

0 20 40 60 80 100
Score

of

 s
tu

de
nt

s

0 200 400 600 800 1000
0

20

40

60

80

100

Student Number

Sc
or

e

0

20

40

60

80

100

120

of

 s
tu

de
nt

s

Average = 50

Average = 50

Average = 50

Average = 50

 Figure 3.12
 Test scores from two different tests.

96 Chapter 3 Built-In MATLAB ® Functions

 In other words, approximately 68% of the data in the fi rst data set fall between
the average, 50, and 	 20.3653. Similarly 68% of the data in the second data set
fall between the same average, 50, and 	 9.8753.

 The variance is found in a similar manner with the var function:

var(scores1)
ans =

414.7454
var(scores2)
ans =

97.5209

 The syntax for calculating both standard deviation and variance is shown in
 Table 3.12 .

 Table 3.12 Statistical Functions

 std(x) Computes the standard deviation of the values in a vector x.
For example, if x � 31 5 34 , the standard deviation is 2.
However, standard deviations are not usually calculated
for small samples of data.

 x�[1, 5, 3];
std(x)
ans �
 2

 Returns a row vector containing the standard deviation
calculated for each column of a matrix x. For example, if

 x � c1 5 3
2 4 6

d the standard deviation in column 1

is 0.7071, the standard deviation in column 2 is 0.7071,
and standard deviation in column 3 is 2.1213.

 x�[1, 5, 3; 2, 4, 6];
std(x)
ans �
0.7071 0.7071
2.1213

 Again, standard deviations are not usually calculated for
small samples of data.

 var(x) Calculates the variance of the data in x. For example,
if x � 31 5 34 , the variance is 4. However, variance is not
usually calculated for small samples of data. Notice that
the standard deviation in this example is the square root
of the variance.

 var(x)
ans �
4

 Consider the following matrix:

 x � ≥4 90 85 75
2 55 65 75
3 78 82 79
1 84 92 93

¥

 1. Find the standard deviation for each column.
 2. Find the variance for each column.
 3. Calculate the square root of the variance you found for each column.
 4. How do the results from Exercise 3 compare against the standard

deviation you found in Exercise 1?

 PRACTICE EXERCISES 3.8

 3.5 Data Analysis Functions 97

 CLIMATOLOGIC DATA
 Climatologists examine weather data over long periods of time, trying to fi nd a pat-
tern. Weather data have been kept reliably in the United States since the 1850s;
however, most reporting stations have been in place only since the 1930s and 1940s
(Figure 3.13). Climatologists perform statistical calculations on the data they col-
lect. Although the data in Weather_Data.xls represent just one location for 1 year,
we can use them to practice statistical calculations. Find the mean daily precipita-
tion for each month and the mean daily precipitation for the year, and then fi nd
the standard deviation for each month and for the year.

 1. State the Problem
 Find the mean daily precipitation for each month and for the year, on the basis

of the data in Weather_Data.xls. Also, fi nd the standard deviation of the data
during each month and during the entire year.

 2. Describe the Input and Output
 Input Use the Weather_Data.xls fi le as input to the problem.

 Output Find
 The mean daily precipitation for each month.
 The mean daily precipitation for the year.
 The standard deviation of the daily precipitation data for each month.
 The standard deviation of the daily precipitation data for the year.

 3. Develop a Hand Example
 Use just the data for the fi rst 4 days of the month:

 January average � (0 � 0 � 272 � 0)/4 � 68 hundredths
of an inch of precipitation, or 0.68 inch.

 The standard deviation is found from the following equation:

 s � Sa
N

k�1
(xk � m)2

N � 1

 Using just the fi rst 4 days of January, fi rst calculate the sum of the squares of the
difference between the mean and the actual value:

 10 � 6822 � 10 � 6822 � 1272 � 6822 � 10 � 6822 � 55,488
 Divide by the number of data points minus 1:

 55,488> 14 � 12 � 18,496
 Finally, take the square root, to give 136 hundredths of an inch of precipitation,
or 1.36 inches.

 EXAMPLE 3.4

 Figure 3.13
 A hurricane over
Florida. (Courtesy of
NASA/Jet Propulsion
Laboratory.)

(continued)

98 Chapter 3 Built-In MATLAB ® Functions

4. Develop a MATLAB ® Solution
 First we need to load the Weather_Data.xls fi le and edit out the -99999 entries.

Although we could do that as described in Example 3.3 , there is an easier way:
The data from Example 3.3 could be saved to a fi le, so that they are available to
use later. If we want to save the entire workspace, just type

save <filename>

 where filename is a user-defi ned fi le name. If you just want to save one varia-
ble, type

save <filename> <variable_name>

 which saves a single variable or a list of variables to a fi le. All we need to save is
the variable weather_data , so the following command is suffi cient:

 save weather_data weather_data

 This command saves the matrix weather_data into the weather_data.mat

fi le. Check the current folder window to make sure that weather_data.mat has
been stored (Figure 3.14).

 Now the M-fi le we create to solve this example can load the data automatically:

clear, clc
% Example 3.4 Climatological Data
% In this example, we find the mean daily
% precipitation for each month
% and the mean daily precipitation for the year
% We also find the standard deviation of the data
%
% Changing the format to bank often makes the output

 Figure 3.14
 The current folder records the name of the saved fi le.

 3.5 Data Analysis Functions 99

% easier to read
format bank
% By saving the variable weather_data from the last example, it is
% available to use in this problem
load weather_data
Average_daily_precip_monthly = mean(weather_data)
Average_daily_precip_yearly = mean(weather_data(:))
% Another way to find the average yearly precipitation
Average_daily_precip_yearly = mean(mean(weather_data))
% Now calculate the standard deviation
Monthly_Stdeviation = std(weather_data)
Yearly_Stdeviation = std(weather_data(:))

 The results, shown in the command window, are

Average_daily_precip_monthly =
 Columns 1 through 3
 27.35 16.61 12.42
 Columns 4 through 6
 15.29 10.35 20.42
 Columns 7 through 9
 10.23 8.97 8.03
 Columns 10 through 12
 18.26 15.10 9.23
Average_daily_precip_yearly =
 14.35
Average_daily_precip_yearly =
 14.35
Monthly_Stdeviation =
 Columns 1 through 3
 63.78 35.06 20.40
 Columns 4 through 6
 48.98 26.65 50.46
 Columns 7 through 9
 30.63 30.77 27.03
 Columns 10 through 12
 42.08 53.34 21.01
Yearly_Stdeviation =
 39.62

 The mean daily precipitation for the year was calculated in two equivalent ways.
The mean of each month was found, and then the mean (average) of the monthly
values was found. This works out to be the same as taking the mean of all the data
at once. Some new syntax was introduced in this example. The command

weather_data(:)

 converts the two-dimensional matrix weather_data into a one-dimensional
matrix, thus making it possible to fi nd the mean in one step.

 The situation is different for the standard deviation of daily precipitation
for the year. Here, we need to perform just one calculation:

std(weather_data(:))

(continued)

100 Chapter 3 Built-In MATLAB ® Functions

 Otherwise you would fi nd the standard deviation of the standard devia-
tion—not what you want at all.

5. Test the Solution
 First, check the results to make sure they make sense. For example, the fi rst time
we executed the M-fi le, the weather_data matrix still contained -99999 val-
ues. That resulted in mean values less than 1. Since it isn’t possible to have nega-
tive rainfall, checking the data for reasonability alerted us to the problem.
Finally, although calculating the mean daily rainfall for one month by hand
would serve as an excellent check, it would be tedious. You can use MATLAB ®

to help you by calculating the mean without using a predefi ned function. The
command window is a convenient place to perform these calculations:

load weather_data

sum(weather_data(:,1)) %Find the sum of all the rows in
%column one of matrix weather_data

ans =
 848.00
ans/31
ans =
 27.35

 Compare these results with those for January (month 1).

 HINT
 Use the colon operator to change a two-dimensional matrix into a single column:

A = X(:)

 3.6 RANDOM NUMBERS

 Random numbers are often used in engineering calculations to simulate measured
data. Measured data rarely behave exactly as predicted by mathematical models, so
we can add small values of random numbers to our predictions to make a model
behave more like a real system. Random numbers are also used to model games of
chance. Two different types of random numbers can be generated in MATLAB ® :
uniform random numbers and Gaussian random numbers (often called a normal
distribution).

 3.6.1 Uniform Random Numbers

 Uniform random numbers are generated with the rand function. These numbers
are evenly distributed between 0 and 1. (Consult the help function for more details.)
 Table 3.13 lists several MATLAB ® commands for generating random numbers.

 We can create a set of random numbers over other ranges by modifying the
numbers created by the rand function. For example, to create a set of 100 evenly
distributed numbers between 0 and 5, fi rst create a set over the default range with
the command

r = rand(100,1);

 This results in a 100 � 1 matrix of values. Now we just need to multiply by 5 to
expand the range to 0 to 5:

r = r * 5;

 3.6 Random Numbers 101

 Table 3.13 Random-Number Generators

 rand(n) Returns an n � n matrix. Each value in the matrix is a random
number between 0 and 1.

 rand(2)
ans �

 0.9501 0.6068
 0.2311 0.4860

 rand(m,n) Returns an m � n matrix. Each value in the matrix is a random
number between 0 and 1.

 rand(3,2)
ans �

 0.8913 0.0185
 0.7621 0.8214
 0.4565 0.4447

 randn(n) Returns an n � n matrix. Each value in the matrix is a Gaussian
(or normal) random number with a mean of 0 and a variance of 1.

 randn(2)
ans �

 �0.4326 0.1253
 �1.6656 0.2877

 randn(m,n) Returns an m � n matrix. Each value in the matrix is a Gaussian
(or normal) random number with a mean of 0 and a variance of 1.

 randn(3,2)
ans �

 �1.1465 �0.0376
 1.1909 0.3273
 1.1892 0.1746

 If we want to change the range to 5 to 10, we can add 5 to every value in the array:

r = r + 5;

 The result will be random numbers varying from 5 to 10. We can generalize these
results with the equation

 x � 1max � min2 # random_number_set � min

 3.6.2 Gaussian Random Numbers

 Gaussian random numbers have the normal distribution shown in Figure 3.11 .
There is no absolute upper or lower bound to a data set of this type; we are just less
and less likely to fi nd data, the farther away from the mean we get. Gaussian ran-
dom-number sets are described by specifying their average and the standard devia-
tion of the data set.

 MATLAB ® generates Gaussian values with a mean of 0 and a variance of 1.0,
using the randn function. For example,

randn(3)

 returns a 3 � 3 matrix

ans =
-0.4326 0.2877 1.1892
-1.6656 -1.1465 -0.0376
0.1253 1.1909 0.3273

 If we need a data set with a different average or a different standard deviation,
we start with the default set of random numbers and then modify it. Since the
default standard deviation is 1, we must multiply by the required standard deviation
for the new data set. Since the default mean is 0, we’ll need to add the new mean:

 x � standard_deviation # random_data_set � mean

102 Chapter 3 Built-In MATLAB ® Functions

 For example, to create a sequence of 500 Gaussian random variables with a stand-
ard deviation of 2.5 and a mean of 3, type

x = randn(1,500)*2.5 + 3;

 Notice that both rand and randn can accept either one or two input values. If only
one is specifi ed the result is a square matrix. If two values are specifi ed they repre-
sent the number of rows and the number of columns in the resulting matrix.

 PRACTICE EXERCISES 3.9

 1. Create a 3 � 3 matrix of evenly distributed random numbers.
 2. Create a 3 � 3 matrix of normally distributed random numbers.
 3. Create a 100 � 5 matrix of evenly distributed random numbers.
 Be sure to suppress the output.
 4. Find the maximum, the standard deviation, the variance, and the

mean for each column in the matrix that you created in Exercise 3.
 5. Create a 100 � 5 matrix of normally distributed random numbers. Be

sure to suppress the output.
 6. Find the maximum, the standard deviation, the variance, and the

mean for each column in the matrix you created in Exercise 5.
 7. Explain why your results for Exercises 4 and 6 are different.

 NOISE
 Random numbers can be used to simulate the noise we hear as static on the radio.
By adding this noise to data fi les that store music, we can study the effect of static on
recordings.

 MATLAB ® has the ability to play music fi les by means of the sound function.
To demonstrate this function, it also has a built-in music fi le with a short segment of
Handel’s Messiah. In this example, we will use the randn function to create noise,
and then we’ll add the noise to the music clip.

 Music is stored in MATLAB ® as an array with values from -1 to 1. To convert
this array into music, the sound function requires a sample frequency. The han-
del.mat fi le contains both an array representing the music and the value of the

 EXAMPLE 3.5

 Figure 3.15
 Utah Symphony
Orchestra.

 3.6 Random Numbers 103

sample frequency. To hear the Messiah, you must fi rst load the fi le, using the
command

load handel

 Notice that two new variables— y and Fs —were added to the workspace win-
dow when the handel fi le was loaded. To play the clip, type

sound(y, Fs)

 Experiment with different values of Fs to hear the effect of different sample
frequencies on the music. (Clearly, the sound must be engaged on your computer,
or you won’t be able to hear the playback.)

 1. State the Problem
 Add a noise component to the recording of Handel’s Messiah included with

MATLAB ® .
 2. Describe the Input and Output

 Input MATLAB ® data fi le of Handel’s Messiah, stored as the built-in fi le handel

 Output An array representing the Messiah, with static added
 A graph of the fi rst 200 elements of the data fi le

 3. Develop a Hand Example
 Since the data in the music fi le vary between -1 and �1, we should add noise

values of a smaller order of magnitude. First we’ll try values centered on 0 and
with a standard deviation of 0.1.

 4. Develop a MATLAB ® Solution

%Example 3.5
%Noise
load handel %Load the music data file
sound(y,Fs) %Play the music data file
pause %Pause to listen to the music
% Be sure to hit enter to continue after playing the music
% Add random noise
noise=randn(length(y),1)*0.10;
sound(y+noise,Fs)

 This program allows you to play the recording of the Messiah, both with and
without the added noise. You can adjust the multiplier on the noise line to
observe the effect of changing the magnitude of the added static. For example:

noise=randn(length(y),1)*0.20

 5. Test the Solution
 In addition to playing back the music both with and without the added noise,

we could plot the results. Because the fi le is quite large (73,113 elements), we’ll
just plot the fi rst 200 points:

% Plot the first 200 data points in each file
t=1:length(y);
noisy = y + noise;
plot(t(1,1:200),y(1:200,1),t(1,1:200),noisy(1:200,1),':')
title('Handel"s Messiah')
xlabel('Element Number in Music Array')
ylabel('Frequency')

(continued)

104 Chapter 3 Built-In MATLAB ® Functions

 These commands tell MATLAB ® to plot the index number of the data on the
x-axis and the value stored in the music arrays on the y-axis. Plotting is intro-
duced in more detail in a later chapter.

 In Figure 3.16 , the solid line represents the original data, and the dotted
line the data to which we’ve added noise. As expected, the noisy data has a big-
ger range and doesn’t always follow the same pattern as the original.

0 20 40 60 80 100 120 140 160 180 200
0.4

0.3

0.2

0.1

0

0.1

0.2

0.3
Handel's Messiah

Element Number in Music Array

Fr
eq

ue
nc

y

 Figure 3.16
 Handel’s Messiah. The
solid line represents the
original data, and the
dotted line is the data
to which we’ve added
noise.

 3.7 COMPLEX NUMBERS

 MATLAB ® includes several functions used primarily with complex numbers.
Complex numbers consist of two parts: a real and an imaginary component. For
example,

 5 � 3i

 is a complex number. The real component is 5, and the imaginary component is 3.
Complex numbers can be entered into MATLAB ® in two ways: as an addition prob-
lem, such as

A = 5 + 3i or A = 5+3*i

 or with the complex function, as in

A = complex(5,3)

 which returns

A =
5.0000 + 3.0000i

 COMPLEX NUMBER
 A number with both real
and imaginary components

 3.7 Complex Numbers 105

 As is standard in MATLAB ® , the input to the complex function can be either
two scalars or two arrays of values. Thus, if x and y are defi ned as

x = 1:3;
y = [-1,5,12];

 then the complex function can be used to defi ne an array of complex numbers as
follows:

complex(x,y)
ans =

1.0000 - 1.0000i 2.0000 + 5.0000i 3.0000 +12.0000i

 The real and imag functions can be used to separate the real and imaginary
components of complex numbers. For example, for A = 5 + 3*i , we have

real(A)
ans =

5
imag(A)
ans =

3

 The isreal function can be used to determine whether a variable is storing a
complex number. It returns a 1 if the variable is real and a 0 if it is complex. Since A
is a complex number, we get

isreal(A)
ans =

0

 Thus, the isreal function is false and returns a value of 0.
 The complex conjugate of a complex number consists of the same real compo-

nent, but an imaginary component of the opposite sign. The conj function returns
the complex conjugate:

conj(A)
ans =

5.0000 - 3.0000i

 The transpose operator also returns the complex conjugate of an array, in addi-
tion to converting rows to columns and columns to rows. Thus, we have

A'
ans =

5.0000 - 3.0000i

 Of course, in this example A is a scalar. We can create a complex array B by
using A and performing both addition and multiplication operations:

B = [A, A+1, A*3]
B =

5.0000 + 3.0000i 6.0000 + 3.0000i 15.0000 + 9.0000i

106 Chapter 3 Built-In MATLAB ® Functions

 The transpose of B is

B'
ans =

5.0000 - 3.0000i
6.0000 - 3.0000i
15.0000 - 9.0000i

 Complex numbers are often thought of as describing a position on an x–y
plane. The real part of the number corresponds to the x-value, and the imaginary
component corresponds to the y-value, as shown in Figure 3.17a . Another way to
think about this point is to describe it with polar coordinates—that is, with a radius
and an angle (Figure 3.17b).

 MATLAB ® includes functions to convert complex numbers from Cartesian to
polar form.

 When the absolute-value function is used with a complex number, it calculates
the radius, using the Pythagorean theorem:

abs(A)
ans =

5.8310

 radius � 2(real component)2 � (imaginary component)2

 Since, in this example, the real component is 5, and the imaginary component is 3,

 radius � 252 � 32 � 5.8310

 We could also calculate the radius in MATLAB ® , using the real and imag
functions described earlier:

sqrt(real(A).^2 + imag(A).^2)
ans =

5.8310

 Similarly, the angle is found with the angle function:

angle(A)
ans =

0.5404

Complex number plotted on x–y coordinates

Im
ag

in
ar

y
co

m
po

ne
nt

2 3 4 5 6 7 8
0

1

2

3

4

5

6

0

1

2

3

4

5

6

Complex number plotted on x–y coordinates)b()a(

Real component

2 3 4 5 6 7 8

Real component

Im
ag

in
ar

y
co

m
po

ne
nt

Real

component

Imaginary
component

u

Radius

 Figure 3.17
 (a) Complex number
represented in a Cartesian
coordinate system. (b) A
complex number can also
be described with polar
coordinates.

 POLAR COORDINATES
 A technique for describing
a location using an angle
and a distance

 3.7 Complex Numbers 107

 The result is expressed in radians. Both functions, abs and angle , will accept sca-
lars or arrays as input. Recall that B is a 1 � 3 array of complex numbers:

B =
5.0000 + 3.0000i 6.0000 + 3.0000i 15.0000 + 9.0000i

 The abs function returns the radius if the number is represented in polar
 coordinates:

abs(B)
ans =

5.8310 6.7082 17.4929

 The angle from the horizontal can be found with the angle function:

angle(B)
ans =

0.5404 0.4636 0.5404

 The MATLAB ® functions commonly used with complex numbers are summa-
rized in Table 3.14 .

 Table 3.14 Functions Used with Complex Numbers

 abs(x) Computes the absolute value of a complex number, using the
Pythagorean theorem. This is equivalent to the radius if the
complex number is represented in polar coordinates.

 x�3+4i;
abs(x)
ans �
 5

 For example, if x � 3 � 4i, the absolute value is 232 � 42 � 5
 angle(x) Computes the angle from the horizontal in radians when a

complex number is represented in polar coordinates.
 x�3�4i;
angle(x)
ans �
 0.9273

 complex(x,y) Generates a complex number with a real component x
and an imaginary component y.

 x�3;
y�4;

 complex(x,y)
ans �
 3.0000 +
 4.0000i

 real(x) Extracts the real component from a complex number. x�3�4i;
 real(x)

ans �
 3

 imag(x) Extracts the imaginary component from a complex number. x�3�4i;
 imag(x)

ans �
 4

 isreal(x) Determines whether the values in an array are real. If they are
real, the function returns a 1; if they are complex, it returns a 0.

 x�3�4i;
isreal(x)
ans �
 0

 conj(x) Generates the complex conjugate of a complex number. x�3�4i;
 conj(x)

ans �
 3.0000 -
 4.0000i

108 Chapter 3 Built-In MATLAB ® Functions

 3.8 COMPUTATIONAL LIMITATIONS

 The variables stored in a computer can assume a wide range of values. On the
majority of computers, the range extends from about 10�308 to 10308, which should
be enough to accommodate most computations. MATLAB ® includes functions to
identify the largest real numbers and the largest integers the program can process
(Table 3.15).

 The value of realmax corresponds roughly to 21024, since computers actually
perform their calculations in binary (base-2) arithmetic. Of course, it is possible to
formulate a problem in which the result of an expression is larger or smaller than the
permitted maximum. For example, suppose that we execute the following commands:

x = 2.5e200;
y = 1.0e200;
z = x*y

 PRACTICE EXERCISES 3.10

 1. Create the following complex numbers:
 a. A � 1 � i
 b. B � 2 � 3i
 c. C � 8 � 2i

 2. Create a vector D of complex numbers whose real components are 2, 4,
and 6 and whose imaginary components are -3, 8, and -16.

 3. Find the magnitude (absolute value) of each of the vectors you created
in Exercises 1 and 2.

 4. Find the angle from the horizontal of each of the complex numbers
you created in Exercises 1 and 2.

 5. Find the complex conjugate of vector D .
 6. Use the transpose operator to fi nd the complex conjugate of vector D .
 7. Multiply A by its complex conjugate, and then take the square root of

your answer. How does this value compare against the magnitude
(absolute value) of A?

 KEY IDEA
 There is a limit to how
small or how large a
number can be handled by
computer programs

 Table 3.15 Computational Limits

 realmax Returns the largest possible fl oating-point number used in
MATLAB ® .

 realmax
ans =
 1.7977e+308

 realmin Returns the smallest possible fl oating-point number used in
MATLAB ® .

 realmin
ans =
 2.2251e-308

 intmax Returns the largest possible integer number used in
MATLAB ® .

 intmax
ans =
 2147483647

 intmin Returns the smallest possible integer number used in
MATLAB ® .

 intmin
ans =
 –2147483648

 3.9 Special Values and Miscellaneous Functions 109

 OVERFLOW
 A calculational result that is
too large for the computer
program to handle

 UNDERFLOW
 A calculational result that is
too small for the computer
program to distinguish from
zero

 MATLAB ® responds with

z =
Inf

 because the answer (2.5e400) is outside the allowable range. This error is called
exponent overfl ow, because the exponent of the result of an arithmetic operation is
too large to store in the computer’s memory.

 Exponent underfl ow is a similar error, caused by the exponent of the result of
an arithmetic operation being too small to store in the computer’s memory. Using
the same allowable range, we obtain an exponent underfl ow with the following
commands:

x = 2.5e-200;
y = 1.0e200
z = x/y

 Together, these commands return

z = 0

 The result of an exponent underfl ow is zero.
 We also know that division by zero is an invalid operation. If an expression

results in a division by zero, the result of the division is infi nity:

z = y/0
z =

Inf

 MATLAB ® may print a warning telling you that division by zero is not possible.
 In performing calculations with very large or very small numbers, it may be pos-

sible to reorder the calculations to avoid an underfl ow or an overfl ow. Suppose, for
example, that you would like to perform the following string of multiplications:

 12.5 � 102002 � 12 � 102002 � 11 � 10�1002
 The answer is 5 � 10300, within the bounds allowed by MATLAB ® . However, con-
sider what happens when we enter the problem into MATLAB ® :

2.5e200*2e200*1e-100
ans =

Inf

 Because MATLAB ® executes the problem from left to right, the fi rst multiplica-
tion yields a value outside the allowable range 15 � 104002, resulting in an answer
of infi nity. However, by rearranging the problem to

2.5e200*1e-100*2e200
ans =
5.0000e+300

 we avoid the overfl ow and fi nd the correct answer.

 3.9 SPECIAL VALUES AND MISCELLANEOUS FUNCTIONS

 Most, but not all, functions require an input argument. Although used as if
they were scalar constants, the functions listed in Table 3.16 do not require any
input.

 KEY IDEA
 Careful planning can help
you avoid calculational
overfl ow or underfl ow

110 Chapter 3 Built-In MATLAB ® Functions

 Table 3.16 Special Functions

 pi Mathematical constant p. pi
 ans =

 3.1416
 I Imaginary number. i
 ans =

 0 + 1.0000i
 J Imaginary number. j
 ans =

 0 + 1.0000i
 Inf Infi nity, which often occurs during a calculational overfl ow or when a

number is divided by zero.
 5/0
Warning: Divide by zero.
ans =

 Inf

 NaN Not a number. 0/0
 Occurs when a calculation is undefi ned. Warning: Divide by zero.
 ans =

 NaN
inf/inf

 ans =
 NaN

 clock Current time. clock
 Returns a six-member array [year month day hour minute second].

When the clock function was called on July 19, 2008, at 5:19 p.m.
and 30.0 seconds, MATLAB ® returned the output shown at the right.

 ans =
 1.0e+003 *
2.0080 0.0070 0.0190
 0.0170 0.0190 0.0300

 The fi x and clock functions together result in a format that is easier to read. fi x(clock)
 The fi x function rounds toward zero. A similar result could be obtained by

setting format bank .
 ans =
 2008 7 19

 17 19 30
 date Current date. date
 Similar to the clock function. However, it returns the date in a “string format.” ans =

 19-Jul-2008

 eps The distance between 1 and the next-larger double-precision
fl oating-point number.

 eps
ans =
 2.2204e-016

 MATLAB ® allows you to redefi ne these special values as variable names; how-
ever, doing so can have unexpected consequences. For example, the following
MATLAB ® code is allowed, even though it is not wise:

pi = 12.8;

 From this point on, whenever the variable pi is called, the new value will be used.
Similarly, you can redefi ne any function as a variable name, such as

sin = 10;

 To restore sin to its job as a trigonometric function (or to restore the default
value of pi), you must clear the workspace with

clear

 or you may clear each variable independently with

clear sin
clear pi

 Summary 111

 Now check to see the result by issuing the command for p.

pi

 This command returns

pi =
 3.1416

 HINT
 The function i is the most common of these functions to be unintentionally
renamed by MATLAB ® users.

 The NaN function stands for “not a number.” It is returned when a user
attempts a calculation where the result is undefi ned—for example 0/0. It can also
be useful as a placeholder in an array.

 PRACTICE EXERCISES 3.11

 1. Use the clock function to add the time and date to your work sheet.
 2. Use the date function to add the date to your work sheet.
 3. Convert the following calculations to MATLAB ® code and explain

your results:
 a. 322! (Remember that, to a mathematician, the symbol ! means

factorial.)
 b. 5 * 10500
 c. 1>5 * 10500
 d. 0/0

 SUMMARY

 In this chapter, we explored a number of predefi ned MATLAB ® functions, includ-
ing the following:

 • General mathematical functions, such as
 ❍ exponential functions
 ❍ logarithmic functions
 ❍ roots

 • Rounding functions
 • Functions used in discrete mathematics, such as

 ❍ factoring functions
 ❍ prime-number functions

 • Trigonometric functions, including
 ❍ standard trigonometric functions
 ❍ inverse trigonometric functions
 ❍ hyperbolic trigonometric functions
 ❍ trigonometric functions that use degrees instead of radians

 • Data analysis functions, such as
 ❍ maxima and minima
 ❍ averages (mean and median)

112 Chapter 3 Built-In MATLAB ® Functions

 ❍ sums and products
 ❍ sorting
 ❍ standard deviation and variance

 • Random-number generation for both
 ❍ uniform distributions
 ❍ Gaussian (normal) distributions

 • Functions used with complex numbers

 We explored the computational limits inherent in MATLAB ® and introduced spe-
cial values, such as pi , that are built into the program.

 MATLAB ® SUMMARY

 The following MATLAB ® summary lists and briefl y describes all of the special char-
acters, commands, and functions that were defi ned in this chapter:

 Special Characters and Functions

 eps smallest difference recognized
 i imaginary number
 clock returns the time
 date returns the date
 Inf infi nity
 intmax returns the largest possible integer number used in MATLAB ®
 intmin returns the smallest possible integer number used in MATLAB ®
j imaginary number
 NaN not a number
 pi mathematical constant p
 realmax returns the largest possible fl oating-point number used in MATLAB ®
 realmin returns the smallest possible fl oating-point number used in MATLAB ®

 Commands and Functions

 abs computes the absolute value of a real number or the magnitude of a complex
number

 angle computes the angle when complex numbers are represented in polar
coordinates

 asin computes the inverse sine (arcsine)
 asind computes the inverse sine and reports the result in degrees
 ceil rounds to the nearest integer toward positive infi nity
 complex creates a complex number
 conj creates the complex conjugate of a complex number
 cos computes the cosine
 cumprod computes a cumulative product of the values in an array
 cumsum computes a cumulative sum of the values in an array
 erf calculates the error function
 exp computes the value of ex
 factor fi nds the prime factors
 factorial calculates the factorial
 fi x rounds to the nearest integer toward zero
 fl oor rounds to the nearest integer toward minus infi nity
 gcd fi nds the greatest common denominator
 help opens the help function
 helpwin opens the windowed help function

 Summary 113

 Commands and Functions

 imag extracts the imaginary component of a complex number
 isprime determines whether a value is prime
 isreal determines whether a value is real or complex
 lcm fi nds the least common multiple
 length determines the largest dimension of an array
 log computes the natural logarithm or the logarithm to the base e 1loge2
 log10 computes the common logarithm or the logarithm to the base 10 1log102
 log2 computes the logarithm to the base 2 1log22
 max fi nds the maximum value in an array and determines which element stores the

maximum value
 mean computes the average of the elements in an array
 median fi nds the median of the elements in an array
 min fi nds the minimum value in an array and determines which element stores the

minimum value
 mode fi nds the most common number in an array
 nchoosek fi nds the number of possible combinations when a subgroup of k values is

chosen from a group of n values.
 nthroot fi nd the real nth root of the input matrix
 numel determines the total number of elements in an array
 primes fi nds the prime numbers less than the input value
 prod multiplies the values in an array
 rand calculates evenly distributed random numbers
 randn calculates normally distributed (Gaussian) random numbers
 rats converts the input to a rational representation (i.e., a fraction)
 real extracts the real component of a complex number
 rem calculates the remainder in a division problem
 round rounds to the nearest integer
 sign determines the sign (positive or negative)
 sin computes the sine, using radians as input
 sind computes the sine, using angles in degrees as input
 sinh computes the hyperbolic sine
 size determines the number of rows and columns in an array
 sort sorts the elements of a vector
 sortrows sorts the rows of a vector on the basis of the values in the fi rst column
 sound plays back music fi les
 sqrt calculates the square root of a number
 std determines the standard deviation
 sum sums the values in an array
 tan computes the tangent, using radians as input
 var computes the variance

 argument
 average
 complex numbers
 discrete mathematics
 function
 function input
 Gaussian random

variation
 mean
 median
 nesting
 normal random variation
 overfl ow
 rational numbers

 real numbers
 seed
 standard deviation
 underfl ow
 uniform random
number
 variance

 KEY TERMS

114 Chapter 3 Built-In MATLAB ® Functions

 Elementary Math Functions

 3.1 Find the cube root of -5, both by using the nthroot function and by rais-
ing -5 to the 1/3 power. Explain the difference in your answers. Prove that
both results are indeed correct answers by cubing them and showing that
they equal -5.

 3.2 MATLAB ® contains functions to calculate the natural logarithm (log), the
logarithm to the base 10 (log10), and the logarithm to the base 2 (log2).
However, if you want to fi nd a logarithm to another base—for example,
base b—you’ll have to do the math yourself with the formula

 logb1x2 �
loge1x2
 loge1b2

 What is the logb of 10 when b is defi ned from 1 to 10 in increments of 1?
 3.3 Populations tend to expand exponentially, that is,

 P � P0ert

 where

 P = current population
 P0 = original population
 r = continuous growth rate, expressed as a fraction
 t = time.
 If you originally have 100 rabbits that breed at a continuous growth rate of 90%
 1r � 0.92 per year, fi nd how many rabbits you will have at the end of 10 years.

 3.4 Chemical reaction rates are proportional to a rate constant k that changes
with temperature according to the Arrhenius equation

 k � k0e
�Q>RT

 For a certain reaction,

 Q � 8000 cal>mol

 R � 1.987 cal>mol K

 k0 � 1200 min�1

 Find the values of k for temperatures from 100 K to 500 K, in 50� increments.
Create a table of your results.

 3.5 Consider the air-conditioning requirements of the large home shown in
 Figure P3.5 .

 The interior of the house is warmed by waste heat from lighting and
electrical appliances, by heat leaking in from the outdoors, and by heat
generated by the people in the home. An air-conditioner must be able to
remove all this thermal energy in order to keep the inside temperature
from rising. Suppose there are 20 light bulbs emitting 100 J/s of energy
each and four appliances emitting 500 J/s each. Suppose also that heat
leaks in from the outside at a rate of 3000 J/s.

 (a) How much heat must the air-conditioner be able to remove from the
home per second?

 PROBLEMS

 Problems 115

 (b) One particular air-conditioning unit can handle 2000 J/s. How many of
these units are needed to keep the home at a constant temperature?

 3.6. (a) If you have four people, how many different ways can you arrange them
in a line?

 (b) If you have 10 different tiles, how many different ways can you arrange
them?

 3.7. (a) If you have 12 people, how many different committees of two people
each can you create? Remember that a committee of Bob and Alice is
the same as a committee of Alice and Bob.

 (b) How many different soccer teams of 11 players can you form from a
class of 30 students? (Combinations—order does not matter).

 (c) Since each player on a soccer team is assigned a particular role, order
does matter. Recalculate the possible number of different soccer teams
that can be formed when order is taken into account.

 3.8 There are 52 different cards in a deck. How many different hands of 5 cards
each are possible? Remember, every hand can be arranged 120 (5!) differ-
ent ways.

 3.9 Very large prime numbers are used in cryptography. How many prime num-
bers are there between 10,000 and 20,000? (These aren’t big enough primes
to be useful in ciphers.) (Hint: Use the primes function and the length
command.)

 Trigonometric Functions

 3.10 Sometimes it is convenient to have a table of sine, cosine, and tangent val-
ues instead of using a calculator. Create a table of all three of these trigono-
metric functions for angles from 0 to 2p, with a spacing of 0.1 radian. Your
table should contain a column for the angle and then for the sine, cosine,
and tangent.

 3.11 The displacement of the oscillating spring shown in Figure P3.11 can be
described by

 x � A cos1vt2

heat from the
surroundings

heat from
lightbulbs

heat from
appliances

heat removed
with the air
conditioner

 Figure P3.5
 Air conditioning must
remove heat from a number
of sources.

116 Chapter 3 Built-In MATLAB ® Functions

 where
 x = displacement at time t
 A = maximum displacement
 v = angular frequency, which depends on the spring constant and the

mass attached to the spring
 t = time.
 Find the displacement x for times from 0 to 10 seconds when the maximum
displacement A is 4 cm, and the angular frequency is 0.6 radian/s. Present
your results in a table of displacement and time values.

 3.12 The acceleration of the spring described in the preceding exercise is

 a � -Av2 cos1vt2
 Find the acceleration for times from 0 to 10 seconds, using the constant
values from the preceding problem. Create a table that includes the time,
the displacement from corresponding values in the previous exercise, and
the acceleration.

 3.13 You can use trigonometry to fi nd the height of a building as shown in Figure
 P3.13 . Suppose you measure the angle between the line of sight and the
horizontal line connecting the measuring point and the building. You can
calculate the height of the building with the following formulas:

 tan1u2 � h>d

 h � d tan1u2
 Assume that the distance to the building along the ground is 120 m and the
angle measured along the line of sight is 30� 	3�. Find the maximum and
minimum heights the building can be.

 3.14 Consider the building from the previous exercise.

 (a) If it is 200 feet tall and you are 20 feet away, at what angle from the
ground will you have to tilt your head to see the top of the building?
(Assume that your head is even with the ground.)

 (b) How far is it from your head to the top of the building?

A

A

 Figure P3.11
 An oscillating spring.

height h

distance d

angle u

 Figure P3.13
 You can determine the
height of a building with
trigonometry.

 Problems 117

 Data Analysis Functions

 3.15 Consider the following table of data representing temperature readings in
a reactor:

 Thermocouple 1 Thermocouple 2 Thermocouple 3

 84.3 90.0 86.7
 86.4 89.5 87.6
 85.2 88.6 88.3
 87.1 88.9 85.3
 83.5 88.9 80.3
 84.8 90.4 82.4
 85.0 89.3 83.4
 85.3 89.5 85.4
 85.3 88.9 86.3
 85.2 89.1 85.3
 82.3 89.5 89.0
 84.7 89.4 87.3
 83.6 89.8 87.2

 Your instructor may provide you with a fi le named thermocouple.dat, or
you may need to enter the data yourself.
 Use MATLAB ® to fi nd

 (a) The maximum temperature measured by each thermocouple.
 (b) The minimum temperature measured by each thermocouple.

 3.16 The range of an object shot at an angle u with respect to the x-axis and an
initial velocity v0 (Figure P3.16) is given by

Range �
v2

0

g
sin12u2

 for 0 … u … p>2 and neglecting air resistance. Use g � 9.81 m>s2 and an
initial velocity v0 of 100 m/s. Show that the maximum range is obtained at
approximately u � p>4 by computing the range in increments of p>100
between 0 … u … p>2. You won’t be able to fi nd the exact angle that results
in the maximum range, because your calculations are at evenly spaced angles
of p>100 radian.

 3.17 The vector

 G�[68, 83, 61, 70, 75, 82, 57, 5, 76, 85, 62, 71, 96, 78, 76, 68, 72, 75, 83, 93]

 represents the distribution of fi nal grades in a dynamics course. Compute
the mean, median, mode, and standard deviation of G. Which better
represents the “most typical grade,” the mean, median, or mode? Why? Use
MATLAB ® to determine the number of grades in the array (don’t just count
them) and to sort them into ascending order.

 3.18 Generate 10,000 Gaussian random numbers with a mean of 80 and stand-
ard deviation of 23.5. (You’ll want to suppress the output so that you don’t
overwhelm the command window with data.) Use the mean function to
confi rm that your array actually has a mean of 80. Use the std function to
confi rm that your standard deviation is actually 23.5.

 3.19 Use the date function to add the current date to your homework.

Range

u

 Figure P3.16
 The range depends on the
launch angle and the launch
velocity.

118 Chapter 3 Built-In MATLAB ® Functions

 Random Numbers

 3.20 Many games require the player to roll two dice. The number on each die
can vary from 1 to 6.

 (a) Use the rand function in combination with a rounding function to cre-
ate a simulation of one roll of one die.

 (b) Use your results from part (a) to create a simulation of the value rolled
with a second die.

 (c) Add your two results to create a value representing the total rolled dur-
ing each turn.

 (d) Use your program to determine the values rolled in a favorite board
game, or use the game shown in Figure P3.20 .

 3.21 Suppose you are designing a container to ship sensitive medical materials
between hospitals. The container needs to keep the contents within a speci-
fi ed temperature range. You have created a model predicting how the con-
tainer responds to the exterior temperature, and you now need to run a
simulation.

 (a) Create a normal distribution (Gaussian distribution) of temperatures
with a mean of 70°F and a standard deviation of 2°, corresponding to a
2-hour duration. You’ll need a temperature for each time value from 0
to 120 minutes. (That’s 121 values.)

Summer Job

Structures

Summer Job

Numerical
Methods

Senior
Project

Materials
Science

etercnoCranimeSsciteniK

Graduate

Trouble with
lab partners—
go back 3
spaces

More
Thermo

Fluids Heat
Transfer

Summer JobTrouble with
your love
life—go back
2 spaces

English Chemistry Fail Calculus
—start over

Calculus
Start
Freshman
Year

Start
Sophomore
Year

qEffiDscitatSomrehTscisyhP Tech
Writing

Tuition goes
up—go back
3 spaces

MATLAB
Programming

Intro to
Engineering

Design

 Figure P3.20
 The college game.

 Problems 119

 (b) Plot the data on an x–y plot. Don’t worry about labels. Recall that the
MATLAB ® function for plotting is plot(x,y).

 (c) Find the maximum temperature, the minimum temperature, and the
times at which they occur.

 Complex Numbers

 3.22 Consider the circuit shown in Figure P3.22 , which includes the following:
 • A sinusoidally varying voltage source, V .
 • An inductor, with an inductance, L .
 • A capacitor, with a capacitance, C .
 • A resistor, with a resistance, R .

 We can fi nd the current, I, in the circuit by using Ohm’s law (generalized
for alternating currents),

 V � IZT

 where Z T is the total impedance in the circuit. (Impedance is the AC
corollary to resistance.)

 Assume that the impedance for each component is as follows:

 ZL � 0 � 5j ohms

 ZC � 0 � 15j ohms

 R � ZR � 5 � 0j ohms

 ZT � ZC � ZL � R

 and that the applied voltage is

 V � 10 � 0j volts

 (Electrical engineers usually use j instead of i for imaginary numbers.)
 Find the current, I , in the circuit. You should expect a complex number

as a result. Enter the complex values of impedance into your calculations
using the complex function.

 3.23 Impedance is related to the inductance, L , and the capacitance, C , by the
following equations

 ZC �
1
vCj

 ZL �
1
vLj

 For a circuit similar to the one shown in Figure P3.22 assume the following:

L C

R

V

I

 Figure P3.22
 A simple circuit illustrating
a sinusoidally varying
voltage source, V.

120 Chapter 3 Built-In MATLAB ® Functions

 C � 1
F (microfarads)

 L � 200 mH (millihenries)

 R � 5 ohms

 f � 15 kHz (kilohertz)

 v � 2pf

 V � 10 volts

 (a) Find the impedance for the capacitor (ZC) and for the inductor (ZL).
 (b) Find the total impedance

ZT � ZC � ZL � R

 (c) Find the current by solving Ohm’s law for I .

V � IZT

 (d) Electrical engineers often describe complex parameters using polar
coordinates, that is, the parameter has both an angle and a magnitude.
(Imagine plotting a point on the complex plane, where the x-axis repre-
sents the real part of the number, and the y-axis represents the imagi-
nary part of the number.) Use the abs function to fi nd the magnitude
of the current found in part c, and use the angle function to fi nd the
corresponding angle.

4

 4.1 MANIPULATING MATRICES

 As you solve more and more complicated problems with MATLAB ® , you’ll fi nd that
you will need to combine small matrices into larger matrices, extract information from
large matrices, create very large matrices, and use matrices with special properties.

 4.1.1 Defi ning Matrices

 In MATLAB ® , you can defi ne a matrix by typing in a list of numbers enclosed in
square brackets. You can separate the numbers by spaces or by commas, at your discre-
tion. (You can even combine the two techniques in the same matrix defi nition.) To
indicate a new row, you can use a semicolon. For example,

 A = [3.5];
 B = [1.5, 3.1]; or B = [1.5 3.1];
 C = [-1, 0, 0; 1, 1, 0; 0, 0, 2];

 You can also defi ne a matrix by listing each row on a separate line, as in the following
set of MATLAB ® commands:

 C = [-1, 0, 0;
 1, 1, 0;
 1, -1, 0;
 0, 0, 2]

 After reading this chapter, you
should be able to:
 • Manipulate matrices
 • Extract data from

matrices

 • Solve problems with two
matrix variables of
 different sizes

 • Create and use special
matrices

 Objectives

 Manipulating
MATLAB ®
Matrices

 C H A P T E R

122 Chapter 4 Manipulating MATLAB ® Matrices

 You don’t even need to enter the semicolon to indicate a new row. MATLAB ® interprets

C = [-1, 0, 0
1, 1, 0
1, -1, 0
0, 0, 2]

 as a 4 � 3 matrix. You could also enter a column matrix in this manner:

A = [
1
2
3]

 If there are too many numbers in a row to fi t on one line, you can continue the
statement on the next line, but a comma and an ellipsis (…) are required at the
end of the line, indicating that the row is to be continued. You can also use the ellip-
sis to continue other long assignment statements in MATLAB ® .

 If we want to defi ne F with 10 values, we can use either of the following
 statements:

F = [1, 52, 64, 197, 42, -42, 55, 82, 22, 109]; or
F = [1, 52, 64, 197, 42, -42, ...

55, 82, 22, 109];

 MATLAB ® also allows you to defi ne a matrix in terms of another matrix that
has already been defi ned. For example, the statements

B = [1.5, 3.1];
S = [3.0, B]

 return

S =
3.0 1.5 3.1

 Similarly,

T = [1, 2, 3; S]

 returns

T =
1 2 3
3 1.5 3.1

 We can change values in a matrix, or include additional values, by using an index
number to specify a particular element. This process is called indexing into an

array . Thus, the command

S(2) = -1.0;

 changes the second value in the matrix S from 1.5 to –1. If we type the matrix name

S

 into the command window, then MATLAB ® returns

S =
3.0 -1.0 3.1

 ELLIPSIS
 A set of three periods used
to indicate that a row is
continued on the next line

 INDEX
 A number used to identify
elements in an array

4.1 Manipulating Matrices 123

 We can also extend a matrix by defining new elements. If we execute the
command

S(4) = 5.5;

 we extend the matrix S to four elements instead of three. If we defi ne element

S(8) = 9.5;

 matrix S will have eight values, and the values of S(5) , S(6) , and S(7) will be set
to 0. Thus,

S

 returns

S =
3.0 -1.0 3.1 5.5 0 0 0 9.5

 4.1.2 Using the Colon Operator

 The colon operator is very powerful in defi ning new matrices and modifying exist-
ing ones. First, we can use it to defi ne an evenly spaced matrix. For example,

H = 1:8

 returns

H =
1 2 3 4 5 6 7 8

 The default spacing is 1. However, when colons are used to separate three num-
bers, the middle value becomes the spacing. Thus,

time = 0.0 : 0.5 : 2.0

 returns

time =
0 0.5000 1.0000 1.5000 2.0000

 The colon operator can also be used to extract data from matrices, a feature
that is very useful in data analysis. When a colon is used in a matrix reference in
place of a specifi c index number, the colon represents the entire row or column.

 Suppose we defi ne M as

M = [1 2 3 4 5;
2 3 4 5 6;
3 4 5 6 7];

 We can extract column 1 from matrix M with the command

x = M(:, 1)

 which returns

x =
1
2
3

124 Chapter 4 Manipulating MATLAB ® Matrices

 We read this syntax as “all the rows in column 1.” We can extract any of the columns
in a similar manner. For instance,

y = M(:, 4)

 returns

y =
4
5
6

 and can be interpreted as “all the rows in column 4.” Similarly, to extract a row,

z = M(1,:)

 returns

z =
1 2 3 4 5

 and is read as “row 1, all the columns.”
 We don’t have to extract an entire row or an entire column. The colon operator

can also be used to mean “from row to row” or “from column to column.” To extract
the two bottom rows of the matrix M , type

w = M(2:3,:)

 which returns

w =
2 3 4 5 6
3 4 5 6 7

 and reads “rows 2 to 3, all the columns.” Similarly, to extract just the four numbers
in the lower right-hand corner of matrix M ,

w = M(2:3, 4:5)

 returns

w =
5 6
6 7

 and reads “rows 2 to 3 in columns 4 to 5.”
 In MATLAB ® , it is valid to have a matrix that is empty. For example, each of the

following statements will generate an empty matrix:

a = [];
b = 4:-1:5;

 Finally, using the matrix name with a single colon, such as

M(:)

 transforms the matrix into one long column.

 4.1 Manipulating Matrices 125

M =
1
2
3
2
3
4
3
4 M
5 M =
4 1 2 3 4 5
5 2 3 4 5 6
6 3 4 5 6 7
5 M(2, 3)
6 ans =
7 4

 The matrix was formed by fi rst listing column 1, then adding column 2
onto the end, tacking on column 3, and so on. Actually, the computer
does not store two-dimensional arrays in a two-dimensional pattern.
Rather, it “thinks” of a matrix as one long list, just like the matrix M at the
left. There are two ways you can extract a single value from an array: by
using a single index number or by using the row, column notation. To
fi nd the value in row 2, column 3, use the following commands:

 Alternatively, you can use a single index number. The value in row 2, column 3 of
matrix M is element number 8. (Count down column 1, then down column 2, and
finally down column 3 to the correct element.) The associated MATLAB ®
 command is

M(8)
ans = 4

 KEY IDEA
 You can identify an element
using either a single
number, or indices
representing the row and
column

 HINT
 You can use the word “end” to identify the fi nal row or column in a matrix,
even if you don’t know how big it is. For example,

M(1,end)

 returns

M(1,end)
ans =

5

 and

M(end, end)

 returns

ans =
7

 as does

M(end)
ans =

7

126 Chapter 4 Manipulating MATLAB ® Matrices

 PRACTICE EXERCISES 4.1

 Create MATLAB ® variables to represent the following matrices, and use
them in the exercises that follow:

 a � 312 17 3 64 b � £5 8 3
1 2 3
2 4 6

§ c � £22
17
4
§

1. Assign to the variable x1 the value in the second column of matrix a .
This is sometimes represented in mathematics textbooks as element
 a 1,2 and could be expressed as x1 = a1,2 .

 2. Assign to the variable x2 the third column of matrix b .
3. Assign to the variable x3 the third row of matrix b .
4. Assign to the variable x4 the values in matrix b along the diagonal

(i.e., elements b 1,1 , b 2,2 , and b 3,3).
5. Assign to the variable x5 the fi rst three values in matrix a as the fi rst

row and all the values in matrix b as the second through the fourth row.
 6. Assign to the variable x6 the values in matrix c as the fi rst column, the

values in matrix b as columns 2, 3, and 4, and the values in matrix a as
the last row.

 7. Assign to the variable x7 the value of element 8 in matrix b , using the
single-index-number identifi cation scheme.

 8. Convert matrix b to a column vector named x8 .

 USING TEMPERATURE DATA
 The data collected by the National Weather Service are extensive but are not always
organized in exactly the way we would like (Figure 4.1). Take, for example, the sum-
mary of the 1999 Asheville, North Carolina, Climatological Data. We’ll use these
data to practice manipulating matrices—both extracting elements and recombin-
ing elements to form new matrices.

 EXAMPLE 4.1

 Figure 4.1
 Temperature data collected
from a weather satellite
were used to create this
composite false-color
image. (Courtesy of
NASA/Jet Propulsion
Laboratory.)

 4.1 Manipulating Matrices 127

 The numeric information has been extracted from the table and is in an Excel
fi le called Asheville_1999.xls (Appendix D, available online). Use MATLAB ® to
confi rm that the reported values on the annual row are correct for the mean maxi-
mum temperature and the mean minimum temperature, as well as for the annual
high temperature and the annual low temperature. Combine these four columns of
data into a new matrix called temp_data .

 1. State the Problem
 Calculate the annual mean maximum temperature, the annual mean mini-

mum temperature, the highest temperature reached during the year, and the
lowest temperature reached during the year for 1999 in Asheville, North
Carolina.

 2. Describe the Input and Output
 Input Import a matrix from the Excel fi le Asheville_1999.xls .

 Output Find the following four values: annual mean maximum temperature
 annual mean minimum temperature
 highest temperature
 lowest temperature

 Create a matrix composed of the mean maximum temperature values, the
mean minimum temperature values, the highest monthly temperatures, and
the lowest monthly temperatures. Do not include the annual data.

3. Develop a Hand Example
 Using a calculator, add the values in column 2 of the table and divide by 12.
4. Develop a MATLAB ® Solution
 First import the data from Excel, then save them in the current directory as

Asheville_1999 . Save the variable Asheville_1999 as the fi le Asheville_1999.mat .
This makes it available to be loaded into the workspace from our M-fi le program:

% Example 4.1
% In this example, we extract data from a large matrix and
% use the data analysis functions to find the mean high
% and mean low temperatures for the year and to find the
% high temperature and the low temperature for the year
%
clear, clc
% load the data matrix from a file
load asheville_1999
% extract the mean high temperatures from the large matrix
mean_max = asheville_1999(1:12,2);
% extract the mean low temperatures from the large matrix
mean_min = asheville_1999(1:12,3);
% Calculate the annual means
annual_mean_max = mean(mean_max)
annual_mean_min = mean(mean_min)
% extract the high and low temperatures from the large
% matrix
high_temp = asheville_1999(1:12,8);
low_temp = asheville_1999(1:12,10);
% Find the max and min temperature for the year

(continued)

128 Chapter 4 Manipulating MATLAB ® Matrices

max_high = max(high_temp)
min_low = min(low_temp)
% Create a new matrix with just the temperature
% information
new_table =[mean_max, mean_min, high_temp, low_temp]

 The results are displayed in the command window:

annual_mean_max =
68.0500

annual_mean_min =
46.3250

max_high =
96

min_low =
9

new_table =
51.4000 31.5000 78.0000 9.0000
52.6000 32.1000 66.0000 16.0000
52.7000 32.5000 76.0000 22.0000
70.1000 48.2000 83.0000 34.0000
75.0000 51.5000 83.0000 40.0000
80.2000 60.9000 90.0000 50.0000
85.7000 64.9000 96.0000 56.0000
86.4000 63.0000 94.0000 54.0000
79.1000 54.6000 91.0000 39.0000
67.6000 45.5000 78.0000 28.0000
62.2000 40.7000 76.0000 26.0000
53.6000 30.5000 69.0000 15.0000

5. Test the Solution
 Compare the results against the bottom line of the table from the Asheville,

North Carolina, Climatological Survey. It is important to confi rm that the results
are accurate before you start to use any computer program to process data.

 4.2 PROBLEMS WITH TWO VARIABLES

 All of the calculations we have done thus far have used only one variable. Of course,
most physical phenomena can vary with many different factors. In this section, we
consider how to perform the same calculations when the variables are represented
by vectors.

 Consider the following MATLAB ® statements:

x = 3;
y = 5;
A = x * y

 Since x and y are scalars, it’s an easy calculation: x · y = 15, or

A =
15

 Now, let’s see what happens if x is a matrix and y is still a scalar:

 4.2 Problems with Two Variables 129

x = 1:5;

 returns fi ve values of x . Because y is still a scalar with only one value (5),

A = x * y

 returns

A =
5 10 15 20 25

 This is still a review. But what happens if y is now a vector? Then

y = 1:3;
A = x * y

 returns an error statement:

??? Error using = => *
Inner matrix dimensions must agree.

 This error statement reminds us that the asterisk is the operator for matrix mul-
tiplication, which is not what we want. We want the dot-asterisk operator (.*), which
will perform an element-by-element multiplication. However, the two vectors, x and y ,
will need to be the same length for this to work. Thus,

y = linspace(1,3,5)

 creates a new vector y with fi ve evenly spaced elements:

y =
1.0000 1.5000 2.0000 2.5000 3.0000

A = x .* y
A =

1 3 6 10 15

 However, although this solution works, the result is probably not what you really
want. You can think of the results as the diagonal on a matrix (Table 4.1).

 What if we want to know the result for element 3 of vector x and element 5 of
vector y ? This approach obviously doesn’t give us all the possible answers. We want a
two-dimensional matrix of answers that corresponds to all the combinations of x and y .
In order for the answer A , to be a two-dimensional matrix, the input vectors must be
two-dimensional matrices. MATLAB ® has a built-in function called meshgrid that
will help us accomplish this—and x and y don’t even have to be the same size.

 First, let’s change y back to a three-element vector:

 KEY IDEA
 When formulating
problems with two
variables, the matrix
dimensions must agree

 Table 4.1 Results of an Element-by-Element Calculation

 x

 1 2 3 4 5

 1.0 1

 1.5 3

 Y 2.0 6

 2.5 10

 3.0 ? 15

130 Chapter 4 Manipulating MATLAB ® Matrices

y = 1:3;

 Then, we’ll use meshgrid to create a new two-dimensional version of both x and y
that we’ll call new_x and new_y :

[new_x, new_y]=meshgrid(x,y)

 The meshgrid command takes the two input vectors and creates two two-
dimensional matrices. Each of the resulting matrices has the same number of rows
and columns. The number of columns is determined by the number of elements in
the x vector, and the number of rows is determined by the number of elements in
the y vector. This operation is called mapping the vectors into a two-dimensional array :

new_x =
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

new_y =
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3

 Notice that all the rows in new_x are the same and all the columns in new_y are
the same. Now, it’s possible to multiply new_x by new_y and get the two-dimensional
grid of results we really want:

A = new_x.*new_y
A =

1 2 3 4 5
2 4 6 8 10
3 6 9 12 15

 KEY IDEA
 Use the meshgrid function
to map two one-
dimensional variables into
two-dimensional variables
of equal size

 PRACTICE EXERCISES 4.2

 Using Meshgrid
 1. The area of a rectangle (Figure 4.2) is length times width (area =

length × width). Find the areas of rectangles with lengths of 1, 3, and 5 cm
and with widths of 2, 4, 6, and 8 cm. (You should have 12 answers.)

 2. The volume of a circular cylinder is, volume = πr 2 h . Find the volume of
cylindrical containers with radii from 0 to 12 m and heights from 10 to 20 m.
Increment the radius dimension by 3 m and the height by 2 m as you
span the two ranges.

Height, h

Radius, r

Width, w

Length, l

 Figure 4.2
 Dimensions of a rectangle
and a circular cylinder.

 4.2 Problems with Two Variables 131

Height of the
mountain

Radius of the
earth, RRadius

of the
earth

Radius plus the height
of the mountain, R h

Distance to the
horizon, d

Distance to
the horizon

 DISTANCE TO THE HORIZON
 You’ve probably experienced standing on the top of a hill or a mountain and feeling like
you can see forever. How far can you really see? It depends on the height of the moun-
tain and the radius of the earth, as shown in Figure 4.3 . The distance to the horizon is
quite different on the moon than on the earth, because the radius is different for each.

 Using the Pythagorean theorem, we see that

 R

2 � d

2 � (R � h)2

 and solving for d yields, d �2h2 � 2Rh .
 From this last expression, fi nd the distance to the horizon on the earth and on

the moon, for mountains from 0 to 8000 m. (Mount Everest is 8850 m tall.) The
radius of the earth is 6378 km and the radius of the moon is 1737 km.

 1. State the Problem
 Find the distance to the horizon from the top of a mountain on the moon and

on the earth.
 2. Describe the Input and Output

 Input

 Radius of the moon 1737 km
 Radius of the earth 6378 km
 Height of the mountains 0 to 8000 m

 Output

 Distance to the horizon, in kilometers.

3. Develop a Hand Example

 d �2h2 � 2Rh

 Using the radius of the earth and an 8000-m mountain yields

 d � 2(8 km)2 � 2 � 6378 km � 8 km � 319 km

4. Develop a MATLAB ® Solution

%Example 4.2
%Find the distance to the horizon
%Define the height of the mountains

 EXAMPLE 4.2

 Figure 4.3
 Distance to the horizon.

(continued)

132 Chapter 4 Manipulating MATLAB ® Matrices

%in meters
clear, clc
format bank
%Define the height vector
height=0:1000:8000;
%Convert meters to km
height=height/1000;
%Define the radii of the moon and earth
radius = [1737 6378];
%Map the radii and heights onto a 2D grid
[Radius,Height]=meshgrid(radius,height);
%Calculate the distance to the horizon
distance=sqrt(Height.^2 + 2*Height.*Radius)

 Executing the preceding M-fi le returns a table of the distances to the horizon
on both the moon and the earth:

distance =
0 0

58.95 112.95
83.38 159.74
102.13 195.65
117.95 225.92
131.89 252.60
144.50 276.72
156.10 298.90
166.90 319.55

 5. Test the Solution
 Compare the MATLAB ® solution with the hand solution. The distance to the

horizon from near the top of Mount Everest (8000 m) is over 300 km and
matches the value calculated in MATLAB ® .

 FREE FALL
 The general equation for the distance that a freely falling body has traveled (neglect-
ing air friction) is

 d �
1
2

gt2

 where

d = distance
g = acceleration due to gravity
t = time.

 When a satellite orbits a planet, it is in free fall. Many people believe that when
the space shuttle enters orbit, it leaves gravity behind; gravity, though, is what keeps
the shuttle in orbit. The shuttle (or any satellite) is actually falling toward the earth

 EXAMPLE 4.3

 4.2 Problems with Two Variables 133

(Figure 4.4). If it is going fast enough horizontally, it stays in orbit; if it’s going too
slowly, it hits the ground.

 The value of the constant g , the acceleration due to gravity, depends on the
mass of the planet. On different planets, g has different values (Table 4.2).

 Find how far an object would fall at times from 0 to 100 seconds on each planet
in our solar system and on our moon.

1. State the Problem
 Find the distance traveled by a freely falling object on planets with different

gravities.
2. Describe the Input and Output

 Input Value of g , the acceleration due to gravity, on each of the planets and
the moon

 Time = 0 to 100 s
 Output Distances calculated for each planet and the moon.

3. Develop a Hand Example

 d � 1>2 gt2, so on Mercury at 100 seconds:

 d � 1>2 � 3.7 m>s2 � 1002 s2

 d � 18,500 m

 Figure 4.4
 The space shuttle is
constantly falling toward
the earth. (Courtesy of
NASA/Jet Propulsion
Laboratory.)

 Table 4.2 Acceleration Due to Gravity in Our Solar System

 Mercury g = 3.7 m/s 2

 Venus g = 8.87 m/s 2

 Earth g = 9.8 m/s 2

 Moon g = 1.6 m/s 2

 Mars g = 3.7 m/s 2

 Jupiter g = 23.12 m/s 2

 Saturn g = 8.96 m/s 2

 Uranus g = 8.69 m/s 2

 Neptune g = 11.0 m/s 2

 Pluto g = .58 m/s 2

(continued)

134 Chapter 4 Manipulating MATLAB ® Matrices

4. Develop a MATLAB ® Solution

%Example 4.3
%Free fall
clear, clc
%Try the problem first with only two planets, and a coarse
% grid
format bank
%Define constants for acceleration due to gravity on
%Mercury and Venus
acceleration_due_to_gravity = [3.7, 8.87];
time=0:10:100; %Define time vector
%Map acceleration_due_to_gravity and time into 2D matrices
[g,t]=meshgrid(acceleration_due_to_gravity, time);
%Calculate the distances
distance=1/2*g.*t.^2

 Executing the preceding M-fi le returns the following values of distance traveled
on Mercury and on Venus.

distance =
0 0

185.00 443.50
740.00 1774.00
1665.00 3991.50
2960.00 7096.00
4625.00 11087.50
6660.00 15966.00
9065.00 21731.50
11840.00 28384.00
14985.00 35923.50
18500.00 44350.00

 5. Test the Solution
 Compare the MATLAB ® solution with the hand solution. We can see that the

distance traveled on Mercury at 100 seconds is 18,500 m, which corresponds to
the hand calculation.

 The M-fi le included the calculations for just the fi rst two planets and was
performed fi rst to work out any programming diffi culties. Once we’ve con-
fi rmed that the program works, it is easy to redo with the data for all the planets:

%Redo the problem with all the data
clear, clc
format bank
%Define constants
acceleration_due_to_gravity = [3.7, 8.87, 9.8, 1.6, 3.7,
23.12 8.96, 8.69, 11.0, 0.58];
time=0:10:100;
%Map acceleration_due_to_gravity and time into 2D matrices
[g,t]=meshgrid(acceleration_due_to_gravity,time);
%Calculate the distances
d=1/2*g.*t.^2

 4.3 Special Matrices 135

 There are several important things to notice about the results shown in Figure 4.5 .
First, look at the workspace window— acceleration_due_to_gravity is a
1 × 10 matrix (one value for each of the planets and the moon), and time is a
1 × 11 matrix (11 values of time). However, both g and t are 11 × 10 matrices—
the result of the meshgrid operation. The results shown in the command win-
dow were formatted with the format bank command to make the output easier
to read; otherwise there would have been a common scale factor.

 Figure 4.5
 Results of the distance
calculations for an object
falling on each of the
planets.

 HINT
 As you create a MATLAB ® program in the editing window, you may want to
comment out those parts of the code which you know work and then uncom-
ment them later. Although you can do this by adding one % at a time to each
line, it’s easier to select text from the menu bar. Just highlight the part of the
code you want to comment out, and then choose comment from the text
drop-down menu. To delete the comments, highlight and select uncomment
from the text drop-down menu (text : uncomment). You can also access
this menu by right-clicking in the edit window.

 4.3 SPECIAL MATRICES

 MATLAB ® contains a group of functions that generate special matrices; we present
some of these functions in Table 4.3 .

136 Chapter 4 Manipulating MATLAB ® Matrices

 Table 4.3 Functions to Create and Manipulate Matrices

 zeros(m) Creates an m × m matrix of zeros. zeros(3)
 ans =
 0 0 0
 0 0 0
 0 0 0
 zeros(m,n) Creates an m × n matrix of zeros. zeros(2,3)
 ans =
 0 0 0
 0 0 0
 ones(m) Creates an m × m matrix of ones. ones(3)
 ans =
 1 1 1
 1 1 1
 1 1 1
 ones(m,n) Creates an m × n matrix of ones. ones(2,3)
 ans =
 1 1 1
 1 1 1
 diag(A) Extracts the diagonal of a

two-dimensional matrix A.
 A=[1 2 3; 3 4 5; 1 2 3];
 diag(A)

 ans =
 1
 4
 3
 For any vector A , creates a square

matrix with A as the diagonal.
Check the help function for other
ways the diag function can be used.

 A=[1 2 3];
 diag(A)
 ans =

 1 0 0
 0 2 0
 0 0 3
 fl iplr Flips a matrix into its mirror image,

from right to left.
 A=[1 0 0; 0 2 0; 0 0 3];
fl iplr(A)

 ans =
 0 0 1
 0 2 0
 3 0 0
 fl ipud Flips a matrix vertically. fl ipud(A)
 ans =
 0 0 3
 0 2 0
 1 0 0
 magic(m) Creates an m × m “magic” matrix. magic(3)
 ans =
 8 1 6
 3 5 7
 4 9 2

 4.3.1 Matrix of Zeros

 It is sometimes useful to create a matrix of all zeros. When the zeros function is
used with a single scalar input argument, a square matrix is generated:

A = zeros(3)
A =

0 0 0
0 0 0
0 0 0

 4.3 Special Matrices 137

 If we use two scalar arguments, the fi rst value specifi es the number of rows and the
second the number of columns:

B = zeros(3,2)
B =

0 0
0 0
0 0

 4.3.2 Matrix of Ones

 The ones function is similar to the zeros function, but creates a matrix of ones:

A = ones(3)
A =

1 1 1
1 1 1
1 1 1

 As with the zeros function, if we use two inputs, we can control the number of
rows and columns:

B = ones(3,2)
B =

1 1
1 1
1 1

 The zeros and ones functions are useful for creating matrices with “placeholder”
values that will be fi lled in later. For example, if you wanted a vector of fi ve num-
bers, all of which were equal to π, you might fi rst create a vector of ones:

a = ones(1,5)

 This gives

a =
1 1 1 1 1

 Then, multiply by π.

b = a*pi

 The result is

b =

3.1416 3.1416 3.1416 3.1416 3.1416

 The same result could be obtained by adding π to a matrix of zeros. For example,

a = zeros(1,5);
b = a+pi

 gives

b =
3.1416 3.1416 3.1416 3.1416 3.1416

 A placeholder matrix is especially useful in MATLAB ® programs with a loop struc-
ture, because it can reduce the time required to execute the loop.

 KEY IDEA
 Use a matrix of zeros or
ones as placeholders for
future calculations.

138 Chapter 4 Manipulating MATLAB ® Matrices

 4.3.3 Diagonal Matrices

 We can use the diag function to extract the diagonal from a matrix. For example,
if we defi ne a square matrix

A = [1 2 3; 3 4 5; 1 2 3];

 then using the function

diag(A)

 extracts the main diagonal and gives the following results:

ans =
1.00
4.00
3.00

 Other diagonals can be extracted by defi ning a second input, k , to diag . Positive
values of k specify diagonals in the upper right-hand corner of the matrix, and
negative values specify diagonals in the lower left-hand corner (see Figure 4.6).

 Thus, the command

diag(A,1)

 returns

ans =
2
5

 If, instead of using a two-dimensional matrix as input to the diag function, we use
a vector such as

B = [1 2 3];

 then, MATLAB ® uses the vector for the values along the diagonal of a new matrix
and fi lls in the remaining elements with zeros:

diag(B)
ans =

1 0 0
0 2 0
0 0 3

 By specifying a second parameter, we can move the diagonal to any place in the
matrix:

diag(B,1)
ans =

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 4.3.4 Magic Matrices

 MATLAB ® includes a matrix function called magic that generates a matrix with
unusual properties. At the present time, there does not seem to be any practical use

k 1

k 1 1 2 3

1 2 3

3 4 5 A

 Figure 4.6
 Each diagonal in a matrix
can be described by means
of the parameter k.

 4.3 Special Matrices 139

for magic matrices—except that they are interesting. In a magic matrix, the sums of
the columns are the same, as are the sums of the rows. An example is

A = magic(4)
A =

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

sum(A)
ans =

34 34 34 34

 To fi nd the sums of the rows, we need to transpose the matrix:

sum(A')
ans =

34 34 34 34

 Not only are the sums of all the columns and rows the same, but the sums of the
diagonals are the same. The diagonal from left to right is

diag(A)
ans =

16
11
6
1

 The sum of the diagonal is the same number as the sums of the rows and columns:

sum(diag(A))
ans =

34

 Finally, to fi nd the diagonal from lower left to upper right, we fi rst have to “fl ip” the
matrix and then fi nd the sum of the diagonal:

fliplr(A)
ans =

13 3 2 16
8 10 11 5
12 6 7 9
1 15 14 4

diag(ans)
ans =

13
10
7
4

sum(ans)
ans =

34

140 Chapter 4 Manipulating MATLAB ® Matrices

 Figure 4.7 shows one of the earliest documented examples of a magic square—
Albrecht Dürer’s woodcut “Melancholia,” created in 1514. Scholars believe the
square was a reference to alchemical concepts popular at the time. The date 1514 is
included in the two middle squares of the bottom row (see Figure 4.8).

 Magic squares have fascinated both professional and amateur mathematicians
for centuries. For example, Benjamin Franklin experimented with magic
squares. You can create magic squares of any size greater than 2 × 2 in MATLAB ® .
MATLAB ® ’s solution is not the only one; other magic squares are possible.

 Figure 4.7
 “Melancholia” by Albrecht
Dürer, 1514. (Courtesy of
the Library of Congress.)

 Figure 4.8
 Albrecht Dürer included the
date of the woodcut (1514)
in the magic square.
(Courtesy of the Library of
Congress.)

 Summary 141

 PRACTICE EXERCISES 4.3

 1. Create a 3 × 3 matrix of zeros.
 2. Create a 3 × 4 matrix of zeros.
 3. Create a 3 × 3 matrix of ones.
 4. Create a 5 × 3 matrix of ones.
 5. Create a 4 × 6 matrix in which all the elements have a value of pi.
 6. Use the diag function to create a matrix whose diagonal has values of

1, 2, 3.
 7. Create a 10 × 10 magic matrix.

 a. Extract the diagonal from this matrix.
 b. Extract the diagonal that runs from lower left to upper right from

this matrix.
 c. Confi rm that the sums of the rows, columns, and diagonals are all

the same.

 SUMMARY

 This chapter concentrated on manipulating matrices, a capability that allows the
user to create complicated matrices by combining smaller ones. It also lets you
extract portions of an existing matrix. The colon operator is especially useful for
these operations. The colon operator should be interpreted as “all of the rows” or
“all of the columns” when used in place of a row or column designation. It should
be interpreted as “from _ to _” when it is used between row or column numbers. For
example,

A(:,2:3)

 should be interpreted as “all the rows in matrix A , and all the columns from 2 to 3.”
When used alone as the sole index, as in A (:), it creates a matrix that is a single col-
umn from a two-dimensional representation. The computer actually stores all array
information as a list, making both single-index notation and row-column notation
useful alternatives for specifying the location of a value in a matrix.

 The meshgrid function is extremely useful, since it can be used to map vec-
tors into two-dimensional matrices, making it possible to perform array calculations
with vectors of unequal size.

 MATLAB ® contains a number of functions that make it easy to create special
matrices:

 • zeros , which is used to create a matrix composed entirely of zeros
 • ones , which is used to create a matrix composed entirely of ones
 • diag , which can be used to extract the diagonal from a matrix or, if the input is a

vector, to create a square matrix
 • magic , which can be used to create a matrix with the unusual property that all the

rows and columns add up to the same value, as do the diagonals.

 In addition, a number of functions were included that allow the user to “fl ip” the
matrix either from left to right or from top to bottom.

142 Chapter 4 Manipulating MATLAB ® Matrices

 MATLAB ® SUMMARY

 The following MATLAB ® summary lists and briefl y describes all of the special char-
acters, commands, and functions that were defi ned in this chapter.

 Special Characters

 : colon operator

 ... ellipsis, indicating continuation on the next line

 [] empty matrix

 Commands and Functions

 meshgrid maps vectors into a two-dimensional array

 zeros creates a matrix of zeros

 ones creates a matrix of ones

 diag extracts the diagonal from a matrix

 fl iplr fl ips a matrix into its mirror image, from left to right

 fl ipud fl ips a matrix vertically

 magic creates a “magic” matrix

 elements
 index numbers

 magic matrices
 mapping

 subscripts

 KEY TERMS

 Manipulating Matrices

 4.1 Create the following matrices, and use them in the exercises that follow:

 a � £15 3 22
3 8 5
14 3 82

§ b � £15
6
§ c � 312 18 5 24

 (a) Create a matrix called d from the third column of matrix a .
 (b) Combine matrix b and matrix d to create matrix e , a two-dimensional

matrix with three rows and two columns.
 (c) Combine matrix b and matrix d to create matrix f , a one-dimensional

matrix with six rows and one column.
 (d) Create a matrix g from matrix a and the fi rst three elements of matrix c ,

with four rows and three columns.
 (e) Create a matrix h with the fi rst element equal to a 1,3 , the second ele-

ment equal to c 1,2 , and the third element equal to b 2,1 .

 PROBLEMS

 Problems 143

 4.2 Load the fi le thermo_scores.dat provided by your instructor, or enter the matrix
at the top of page 137 and name it thermo_scores . (Enter only the numbers.)

 (a) Extract the scores and student number for student 5 into a row vector
named student_5 .

 (b) Extract the scores for Test 1 into a column vector named test_1 .
 (c) Find the standard deviation and variance for each test.
 (d) Assuming that each test was worth 100 points, fi nd each student’s fi nal

total score and fi nal percentage. (Be careful not to add in the student
number.)

 (e) Create a table that includes the fi nal percentages and the scores from
the original table.

 Student No. Test 1 Test 2 Test 3

 1 68 45 92
 2 83 54 93
 3 61 67 91
 4 70 66 92
 5 75 68 96
 6 82 67 90
 7 57 65 89
 8 5 69 89
 9 76 62 97
 10 85 52 94
 11 62 34 87
 12 71 45 85
 13 96 56 45
 14 78 65 87
 15 76 43 97
 16 68 76 95
 17 72 65 89
 18 75 67 88
 19 83 68 91
 20 93 90 92

 (f) Sort the matrix on the basis of the fi nal percentage, from high to low
(in descending order), keeping the data in each row together. (You may
need to consult the help function to determine the proper syntax.)

 4.3 Consider the following table:

 Time Thermocouple 1 Thermocouple 2 Thermocouple 3
 (h) °F °F °F

 0 84.3 90.0 86.7
 2 86.4 89.5 87.6
 4 85.2 88.6 88.3
 6 87.1 88.9 85.3
 8 83.5 88.9 80.3

 10 84.8 90.4 82.4
 12 85.0 89.3 83.4
 14 85.3 89.5 85.4
 16 85.3 88.9 86.3
 18 85.2 89.1 85.3
 20 82.3 89.5 89.0
 22 84.7 89.4 87.3
 24 83.6 89.8 87.2

144 Chapter 4 Manipulating MATLAB ® Matrices

 (a) Create a column vector named times going from 0 to 24 in 2-hour
 increments.

 (b) Your instructor may provide you with the thermocouple temperatures
in a fi le called thermocouple.dat , or you may need to create a matrix
named thermocouple yourself by typing in the data.

 (c) Combine the times vector you created in part (a) with the data from
 thermocouple to create a matrix corresponding to the table in this
problem.

 (d) Recall that both the max and min functions can return not only the
maximum values in a column, but also the element number where
those values occur. Use this capability to determine the values of times
at which the maxima and minima occur in each column.

 4.4 Suppose that a fi le named sensor.dat contains information collected from a
set of sensors. Your instructor may provide you with this fi le, or you may
need to enter it by hand from the following data:

 Time (s) Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5

 0.0000 70.6432 68.3470 72.3469 67.6751 73.1764
 1.0000 73.2823 65.7819 65.4822 71.8548 66.9929
 2.0000 64.1609 72.4888 70.1794 73.6414 72.7559
 3.0000 67.6970 77.4425 66.8623 80.5608 64.5008
 4.0000 68.6878 67.2676 72.6770 63.2135 70.4300
 5.0000 63.9342 65.7662 2.7644 64.8869 59.9772
 6.0000 63.4028 68.7683 68.9815 75.1892 67.5346
 7.0000 74.6561 73.3151 59.7284 68.0510 72.3102
 8.0000 70.0562 65.7290 70.6628 63.0937 68.3950
 9.0000 66.7743 63.9934 77.9647 71.5777 76.1828
 10.0000 74.0286 69.4007 75.0921 77.7662 66.8436
 11.0000 71.1581 69.6735 62.0980 73.5395 58.3739
 12.0000 65.0512 72.4265 69.6067 79.7869 63.8418
 13.0000 76.6979 67.0225 66.5917 72.5227 75.2782
 14.0000 71.4475 69.2517 64.8772 79.3226 69.4339
 15.0000 77.3946 67.8262 63.8282 68.3009 71.8961
 16.0000 75.6901 69.6033 71.4440 64.3011 74.7210
 17.0000 66.5793 77.6758 67.8535 68.9444 59.3979
 18.0000 63.5403 66.9676 70.2790 75.9512 66.7766
 19.0000 69.6354 63.2632 68.1606 64.4190 66.4785

 Each row contains a set of sensor readings, with the fi rst row containing
values collected at 0 seconds, the second row containing values collected at
1.0 seconds, and so on.

 (a) Read the data fi le and print the number of sensors and the number of
seconds of data contained in the fi le. (Hint : Use the size function—
don’t just count the two numbers.)

 (b) Find both the maximum value and the minimum value recorded on
each sensor. Use MATLAB ® to determine at what times they occurred.

 (c) Find the mean and standard deviation for each sensor and for all the
data values collected. Remember, column 1 does not contain sensor
data; it contains time data.

 Problems 145

 4.5 The American National Oceanic and Atmospheric Administration (NOAA)
measures the intensity of a hurricane season with the accumulated cyclone
energy (ACE) index. The ACE for a season is the sum of the ACE for each
tropical storm with winds exceeding 35 knots (65 km/h). The maximum
sustained winds (measured in knots) in the storm are measured or approxi-
mated every six hours. The values are squared and summed over the dura-
tion of the storm. The total is divided by 10,000, to make the parameter
easier to use.

 ACE �
�v2

max

104

 This parameter is related to the energy of the storm, since kinetic energy is
proportional to velocity squared. However, it does not take into account the size
of the storm, which would be necessary for a true total energy estimate. Reliable

 Atlantic Basin Hurricane Seasons, 1950–2010

 Year

 ACE Index # Tropical
Storms

 # Hurricanes
Cat. 1–5

 # Major
Hurricanes
Cat. 3–5

 1950 243 13 11 8
 1951 137 10 8 5
 1952 87 7 6 3
 1953 104 14 6 4
 1954 113 11 8 2
 1955 199 12 9 6
 1956 54 8 4 2
 1957 84 8 3 2
 1958 121 10 7 5
 1959 77 11 7 2
 1960 88 7 4 2
 1961 205 11 8 7
 1962 36 5 3 1
 1963 118 9 7 2
 1964 170 12 6 6
 1965 84 6 4 1
 1966 145 11 7 3
 1967 122 8 6 1
 1968 35 7 4 0
 1969 158 17 12 5
 1970 34 10 5 2
 1971 97 13 6 1
 1972 28 4 3 0
 1973 43 7 4 1
 1974 61 7 4 2
 1975 73 8 6 3
 1976 81 8 6 2
 1977 25 6 5 1
 1978 62 11 5 2
 1979 91 8 5 2
 1980 147 11 9 2
 1981 93 11 7 3
 1982 29 5 2 1
 1983 17 4 3 1
 1984 71 12 5 1

(continued)

146 Chapter 4 Manipulating MATLAB ® Matrices

storm data have been collected in the Atlantic Ocean since 1950, and are
included here. This data may also be available to you from your instructor as an
EXCEL worksheet, ace.xlsx, and was extracted from the Accumulated Cyclone
Energy article in Wikipedia. (http://en.wikipedia.org/wiki/Accumulated_
cyclone_energy). It was collected by the National Oceanic and Atmospheric
Administration (http://www.aoml.noaa.gov/hrd/tcfaq/E11.html).

 (a) Import the data into MATLAB ® , and name the array ace_data .
 (b) Extract the data from each column, into individual arrays. You should

have arrays named
 • years
 • ace
 • tropical_storms
 • hurricanes
 • major_hurricanes

 (c) Use the max function to determine which year had the highest
 • ACE value
 • Number of tropical storms
 • Number of hurricanes
 • Number of major hurricanes

(d) Determine the mean and the median values for each column in the
array, except for the year.

 (e) Use the sortrows function to rearrange the ace_data array based on
the ACE value, sorted from high to low.

 Year

 ACE Index # Tropical
Storms

 # Hurricanes
Cat. 1–5

 # Major
Hurricanes
Cat. 3–5

 1985 88 11 7 3
 1986 36 6 4 0
 1987 34 7 3 1
 1988 103 12 5 3
 1989 135 11 7 2
 1990 91 14 8 1
 1991 34 8 4 2
 1992 75 6 4 1
 1993 39 8 4 1
 1994 32 7 3 0
 1995 228 19 11 5
 1996 166 13 9 6
 1997 40 7 3 1
 1998 182 14 10 3
 1999 177 12 8 5
 2000 116 14 8 3
 2001 106 15 9 4
 2002 65 12 4 2
 2003 175 16 7 3
 2004 225 14 9 6
 2005 248 28 15 7
 2006 79 10 5 2
 2007 72 15 6 2
 2008 145 16 8 5
 2009 51 9 3 2
 2010 165 19 12 5

http://www.aoml.noaa.gov/hrd/tcfaq/E11.html
http://en.wikipedia.org/wiki/Accumulated_cyclone_energy
http://en.wikipedia.org/wiki/Accumulated_cyclone_energy

 Problems 147

 The data presented in this problem is updated regularly. Similar data is
available for the eastern Pacifi c and central Pacifi c oceans.

 Problems with Two Variables

 4.6 The area of a triangle is, area = ½ base × height (see Figure P4.6). Find the
area of a group of triangles whose base varies from 0 to 10 m and whose
height varies from 2 to 6 m. Choose an appropriate spacing for your calcu-
lational variables. Your answer should be a two-dimensional matrix.

 4.7 A barometer (see Figure P4.7) is used to measure atmospheric pressure and
is fi lled with a high-density fl uid. In the past, mercury was used, but because
of its toxic properties it has been replaced with a variety of other fl uids. The
pressure, P , measured by a barometer is the height of the fl uid column, h ,
times the density of the liquid, r , times the acceleration due to gravity, g , or

 P �hrg

 This equation could be solved for the height:

 h �
P
rg

 Find the height to which the liquid column will rise for pressures from 0 to
100 kPa for two different barometers. Assume that the fi rst uses mercury,
with a density of 13.56 g/cm 3 (13,560 kg/m 3) and the second uses water,
with a density of 1.0 g/cm 3 (1000 kg/m 3). The acceleration due to gravity is
9.81 m/s 2 . Before you start calculating, be sure to check the units in this
calculation. The metric measurement of pressure is a pascal (Pa), equal to
l kg/m s 2 . A kPa is 1000 times as big as a Pa. Your answer should be a two-
dimensional matrix.

 4.8 The ideal gas law, Pv = RT , describes the behavior of many gases. When
solved for v (the specifi c volume, m 3 /kg), the equation can be written

 v �
RT
P

 Find the specifi c volume for air, for temperatures from 100 to 1000 K and for
pressures from 100 kPa to 1000 kPa. The value of R for air is 0.2870 kJ/(kg K).
In this formulation of the ideal gas law, R is different for every gas. There
are other formulations in which R is a constant, and the molecular weight
of the gas must be included in the calculation. You’ll learn more about this
equation in chemistry classes and thermodynamics classes. Your answer
should be a two-dimensional matrix.

 Special Matrices

 4.9 Create a matrix of zeros the same size as each of the matrices a, b, and c
from Problem 4.1. (Use the size function to help you accomplish this task.)

 4.10 Create a 6 × 6 magic matrix.

 (a) What is the sum of each of the rows?
 (b) What is the sum of each of the columns?
 (c) What is the sum of each of the diagonals?

 4.11 Extract a 3 × 3 matrix from the upper left-hand corner of the magic matrix
you created in Problem 4.9. Is this also a magic matrix?

height h

base b

 Figure P4.6
 The area of a triangle.

height h

 Figure P4.7
 Barometer.

148 Chapter 4 Manipulating MATLAB ® Matrices

 4.12 Create a 5 × 5 magic matrix named a .

 (a) Is a times a constant such as 2 also a magic matrix?
 (b) If you square each element of a , is the new matrix a magic matrix?
 (c) If you add a constant to each element, is the new matrix a magic matrix?
 (d) Create a 10 × 10 matrix out of the following components (see Figure P4.12):

 • The matrix a
 • 2 times the matrix a
 • A matrix formed by squaring each element of a
 • 2 plus the matrix a

 Is your result a magic matrix? Does the order in which you arrange the com-
ponents affect your answer?

 4.13 Albrecht Durer’s magic square (Figure 4.8) is not exactly the same as the
4 × 4 magic square created with the command

 magic(4)

 (a) Recreate Durer’s magic square in MATLAB® by rearranging the columns.
 (b) Prove that the sum of all the rows, columns, and diagonals is the same.

a 2*a

a^2 a 2

 Figure P4.12
 Create a matrix out of other
matrices.

5

 INTRODUCTION

 Large tables of data are diffi cult to interpret. Engineers use graphing techniques to
make the information easier to understand. With a graph, it is easy to identify trends,
pick out highs and lows, and isolate data points that may be measurement or calcula-
tion errors. Graphs can also be used as a quick check to determine whether a com-
puter solution is yielding expected results.

 5.1 TWO-DIMENSIONAL PLOTS

 The most useful plot for engineers is the x–y plot. A set of ordered pairs is used to
identify points on a two-dimensional graph; the points are then connected by straight
lines. The values of x and y may be measured or calculated. Generally, the independ-
ent variable is given the name x and is plotted on the x -axis, and the dependent vari-
able is given the name y and is plotted on the y -axis.

 5.1.1 Basic Plotting

 Simple x–y Plots
 Once vectors of x -values and y -values have been defi ned, MATLAB ® makes it easy
to create plots. Suppose a set of time versus distance data were obtained through
measurement.

 After reading this chapter, you
should be able to:
 • Create and label two-

dimensional plots
 • Adjust the appearance of

your plots

 • Divide the plotting window
into subplots

 • Create three-dimensional
plots

 • Use the interactive
MATLAB ® plotting tools

 Objectives

 Plotting

 C H A P T E R

150 Chapter 5 Plotting

 We can store the time values in a vector called x (the user can defi ne any con-
venient name) and the distance values in a vector called y :

x = [0:2:18];
y = [0, 0.33, 4.13, 6.29, 6.85, 11.19, 13.19, 13.96, 16.33,

18.17];

 To plot these points, use the plot command, with x and y as arguments:

plot(x,y)

 Time, s Distance, ft

 0 0
 2 0.33
 4 4.13
 6 6.29
 8 6.85
 10 11.19
 12 13.19
 14 13.96
 16 16.33
 18 18.17

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

18

20Figure 5.1
Simple plot of time versus
distance created in
MATLAB®.

 A graphics window automatically opens, which MATLAB ® calls Figure 1. The
resulting plot is shown in Figure 5.1 . (Slight variations in scaling of the plot may
occur, depending on the size of the graphics window.)

 Titles, Labels, and Grids
 Good engineering practice requires that we include axis labels and a title in our
plot. The following commands add a title, x - and y -axis labels, and a background
grid:

plot(x,y)
xlabel('Time, sec')
ylabel('Distance, ft')
grid on

 KEY IDEA
 Always include units on
axis labels

5.1 Two-Dimensional Plots 151

 These commands generate the plot in Figure 5.2 . As with any MATLAB ® com-
mands, they could also be combined onto one or two lines, separated by commas:

plot(x,y) , title('Laboratory Experiment 1')
xlabel('Time, sec'), ylabel('Distance, ft'), grid

 As you type the preceding commands into MATLAB ® , notice that the text color
changes to red when you enter a single quote ('). This alerts you that you are start-
ing a string. The color changes to purple when you type the fi nal single quote ('),
indicating that you have completed the string. Paying attention to these visual aids
will help you avoid coding mistakes. MATLAB ® 6 used different color cues, but the
idea is the same.

 If you are working in the command window, the graphics window will open on
top of the other windows (see Figure 5.3). To continue working, either click in the
command window or minimize the graphics window. You can also resize the graph-
ics window to whatever size is convenient for you or add it to the MATLAB ® desktop
by selecting the docking arrow underneath the exit icon in the upper right-hand
corner of the fi gure window.

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

18

20
Laboratory Experiment 1

Time, s

D
is

ta
nc

e,
 ft

Figure 5.2
Adding a grid, a title, and
labels makes a plot easier
to interpret.

 STRING
 A list of characters
enclosed by single quotes

 HINT
 Once you click in the command window, the fi gure window is hidden behind
the current window. To see the changes to your fi gure, you will need to select
the fi gure from the Windows task bar at the bottom of the screen, or open the
Window menu from the main MATLAB ® desktop and select the window of
interest.

152 Chapter 5 Plotting

Docking
Arrow

Figure 5.3
The graphics window
opens on top of the
command window. You
can resize it to a
convenient shape, or dock
it with the MATLAB®
desktop.

 HINT
 You must create a graph before you add the title and labels. If you specify the
title and labels fi rst, they are erased when the plot command executes.

 HINT
 Because a single quote is used to end the string used in xlabel , ylabel ,
and title commands, MATLAB ® interprets an apostrophe (as in the word
 it’s) as the end of the string. Entering the single quote twice, as in
 xlabel('Holly"s Data') , will allow you to use apostrophes in your text.
(Don’t use a double quote, which is a different character.)

 Creating Multiple Plots
 If you are working in an M-fi le when you request a plot, and then you continue with
more computations, MATLAB ® will generate and display the graphics window and
then return immediately to execute the rest of the commands in the program. If
you request a second plot, the graph you created will be overwritten. There are two
possible solutions to this problem: Use the pause command to temporarily halt the
execution of your M-fi le program so that you can examine the fi gure, or create a
second fi gure, using the figure function.

 The pause command stops the program execution until any key is pressed. If
you want to pause for a specifi ed number of seconds, use the pause(n) command,
which will cause execution to pause for n seconds before continuing.

5.1 Two-Dimensional Plots 153

 The figure command allows you to open a new fi gure window. The next time
you request a plot, it will be displayed in this new window. For example,

figure(2)

 opens a window named “Figure 2,” which then becomes the window used for subse-
quent plotting. Executing figure without an input parameter causes a new window
to open, numbered consecutively one up from the current window. For example, if
the current fi gure window is named “Figure 2,” executing figure will cause “Figure
3” to open. The commands used to create a simple plot are summarized in Table 5.1 .

 Plots with More than One Line
 A plot with more than one line can be created in several ways. By default, the execution
of a second plot statement will erase the fi rst plot. However, you can layer plots on top
of one another by using the hold on command. Execute the following statements to
create a plot with both functions plotted on the same graph, as shown in Figure 5.4 :

x = 0:pi/100:2*pi;
y1 = cos(x*4);
plot(x,y1)

 Table 5.1 Basic Plotting Functions

 plot Creates an x–y plot plot(x,y)
 title Adds a title to a plot title('My Graph')
 xlabel Adds a label to the x -axis xlabel('Independent

Variable')

 ylabel Adds a label to the y -axis ylabel('Dependent Variable')
 grid Adds a grid to the graph grid
 grid on
 grid off
 pause Pauses the execution of the program,

allowing the user to view the graph
 pause

 fi gure Determines which fi gure will be used
for the current plot

 fi gure
fi gure(2)

 hold Freezes the current plot, so that an
additional plot can be overlaid

 hold on
hold off

0 1 2 3 4 5 6 7
1

0.5

0

0.5

1Figure 5.4
The hold on command
can be used to layer plots
onto the same fi gure.

154 Chapter 5 Plotting

y2 = sin(x);
hold on;
plot(x, y2)

 Semicolons are optional on both the plot statement and the hold on state-
ment. MATLAB ® will continue to layer the plots until the hold off command is
executed:

hold off

 Another way to create a graph with multiple lines is to request both lines in a single
 plot command. MATLAB ® interprets the input to plot as alternating x and y vec-
tors, as in

plot(X1, Y1, X2, Y2)

 where the variables X1 , Y1 form an ordered set of values to be plotted and X2 , Y2
form a second ordered set of values. Using the data from the previous example,

plot(x, y1, x, y2)

 produces the same graph as Figure 5.4 , with one exception: The two lines are differ-
ent colors. MATLAB ® uses a default plotting color (blue) for the fi rst line drawn in
a plot command. In the hold on approach, each line is drawn in a separate plot
command and thus is the same color. By requesting two lines in a single command,
such as plot(x,y1,x,y2) , the second line defaults to green, allowing the user to
distinguish between the two plots.

 If the plot function is called with a single matrix argument, MATLAB ® draws
a separate line for each column of the matrix. The x -axis is labeled with the row
index vector, 1: k , where k is the number of rows in the matrix. This produces an
evenly spaced plot, sometimes called a line plot. If plot is called with two argu-
ments, one a vector and the other a matrix, MATLAB ® successively plots a line for
each row in the matrix. For example, we can combine y1 and y2 into a single
matrix and plot against x :

Y = [y1; y2];
plot(x,Y)

 This creates the same plot as Figure 5.4 , with each line a different color.
 Here’s another more complicated example:

X = 0:pi/100:2*pi;
Y1 = cos(X)*2;
Y2 = cos(X)*3;
Y3 = cos(X)*4;
Y4 = cos(X)*5;
Z = [Y1; Y2; Y3; Y4];
plot(X, Y1, X, Y2, X, Y3, X, Y4)

 This code produces the same result (Figure 5.5) as

plot(X, Z)

 A function of two variables, the peaks function produces sample data that are
useful for demonstrating certain graphing functions. (The data are created by scal-
ing and translating Gaussian distributions.) Calling peaks with a single argument n

 KEY IDEA
 The most common plot used
in engineering is the x–y
scatter plot

5.1 Two-Dimensional Plots 155

will create an n � n matrix. We can use peaks to demonstrate the power of using a
matrix argument in the plot function. The command

plot(peaks(100))

 results in the impressive graph in Figure 5.6 . The input to the plot function created
by peaks is a 100 � 100 matrix. Notice that the x -axis goes from 1 to 100, the index
numbers of the data. You undoubtedly can’t tell, but there are 100 lines drawn to
create this graph—one for each column.

 Plots of Complex Arrays
 If the input to the plot command is a single array of complex numbers, MATLAB ®
plots the real component on the x -axis and the imaginary component on the y -axis.
For example, if

A = [0+0i,1+2i, 2+5i, 3+4i]

 then

plot(A)
title('Plot of a Single Complex Array')
xlabel('Real Component')
ylabel('Imaginary Component')

 returns the graph shown in Figure 5.7a .

0 1 2 3 4 5 6 7
5

0

5Figure 5.5
Multiple plots on the same
graph.

0 20 40 60 80 100
10

5

0

5

10Figure 5.6
The peaks function,
plotted with a single
argument in the plot
command.

156 Chapter 5 Plotting

 If we attempt to use two arrays of complex numbers in the plot function, the
imaginary components are ignored. The real portion of the fi rst array is used for
the x -values, and the real portion of the second array is used for the y -values. To
illustrate, fi rst create another array called B by taking the sine of the complex
array A :

B = sin(A)

 returns

B =

0 3.1658 + 1.9596i 67.4789 -30.8794i 3.8537 -27.0168i

 and

plot(A,B)
title('Plot of Two Complex Arrays')
xlabel('Real Component of the X array')
ylabel('Real Component of the Y array')

 gives us an error statement.

Warning: Imaginary parts of complex X and/or Y arguments
ignored.

 The data are still plotted, as shown in Figure 5.7 b.

 5.1.2 Line, Color, and Mark Style

 You can change the appearance of your plots by selecting user-defi ned line styles
and line colors and by choosing to show the data points on the graph with user-
specifi ed mark styles. The command

help plot

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

0.5

1.5

2.5

3.5

4.5

tnenopmoClaeR

Plot of a Single Complex Array

Im
ag

in
ar

y
C

om
po

ne
nt

)a(

0 0.5 1 1.5

yarraXehtfotnenopmoClaeR

R
ea

l C
om

po
ne

nt
 o

f t
he

 Y
 a

rr
ay

Plot of Two Complex Arrays)b(

2 2.5 3
0

10

20

30

40

50

60

70

Figure 5.7
(a) Complex numbers are plotted with the real component on the x-axis and the imaginary component on the y-axis when a single array is
used as input. (b) When two complex arrays are used in the plot function, the imaginary components are ignored.

5.1 Two-Dimensional Plots 157

 returns a list of the available options. You can select solid (the default), dashed, dot-
ted, and dash-dot line styles, and you can choose to show the points. The choices
among marks include plus signs, stars, circles, and x-marks, among others. There
are seven different color choices. (See Table 5.2 for a complete list.)

 The following commands illustrate the use of line, color, and mark styles:

x = [1:10];
y = [58.5, 63.8, 64.2, 67.3, 71.5, 88.3, 90.1, 90.6,

89.5,90.4];
plot(x,y,':ok')

 The resulting plot (Figure 5.8a) consists of a dashed line, together with data
points marked with circles. The line, the points, and the circles are drawn in black.

 Table 5.2 Line, Mark, and Color Options

 Line Type Indicator Point Type Indicator Color Indicator

 solid - point . blue b

 dotted : circle o green g

 dash-dot -. x-mark x red r

 dashed - - plus � cyan c

 star * magenta m

 square s yellow y

 diamond d black k

 triangle down v white w

 triangle up ̂

 triangle left 6

 triangle right 7

 pentagram p

 hexagram h

1 2 3 4 5 6 7 8 9 10
55

60

65

70

75

80

85

90

95

)a(

 1 2 3 4 5 6 7 8 9 10
20

40

60

80

100

120

140

160

180

200

)b(

Figure 5.8
(a) Adjusting the line, mark, and color style. (b) Multiple plots with varying line styles and point styles.

158 Chapter 5 Plotting

The indicators were listed inside a string, denoted with single quotes. The order in
which they are entered is arbitrary and does not affect the output.

 To specify line, mark, and color styles for multiple lines, add a string containing
the choices after each pair of data points. If the string is not included, the defaults
are used. For example,

plot(x,y,':ok',x,y*2,'--xr',x,y/2,'-b')

 results in the graph shown in Figure 5.8b .
 The plot command offers additional options to control the way the plot

appears. For example, the line width can be controlled. Plots intended for over-
head presentations may look better with thicker lines. Use the help function to
learn more about controlling the appearance of the plot, or use the interactive
controls described in Section 5.5.

 5.1.3 Axis Scaling and Annotating Plots

 MATLAB ® automatically selects appropriate x -axis and y -axis scaling. Sometimes, it is
useful for the user to be able to control the scaling. Control is accomplished with the
 axis function, shown in Table 5.3 . Executing the axis function without any input

axis

 freezes the scaling of the plot. If you use the hold on command to add a second
line to your graph, the scaling cannot change. To return control of the scaling to
MATLAB ® , simply re-execute the axis function.

 The axis function also accepts input defi ning the x -axis and y -axis scaling. The
argument is a single matrix, with four values representing:

 • The minimum x value shown on the x -axis
 • The maximum x value shown on the x -axis
 • The minimum y value shown on the y -axis
 • The maximum y value shown on the y -axis

 Thus, the command

axis([-2, 3, 0, 10])

 fi xes the plot axes to x from �2 to �3 and y from 0 to 10.

 Table 5.3 Axis Scaling and Annotating Plots

 axis When the axis function is used without inputs, it freezes the
axis at the current confi guration. Executing the function a
second time returns axis control to MATLAB ® .

 axis(v) The input to the axis command must be a four-element vector
that specifi es the minimum and maximum values for both the
 x - and y -axes—for example, [xmin, xmax,ymin,ymax].

 axis equal Forces the scaling on the x - and y -axis to be the same .

 legend('string1', 'string 2', etc) Allows you to add a legend to your graph. The legend shows
a sample of the line and lists the string you have specifi ed.

 text(x_coordinate,y_coordinate,
'string')

 Allows you to add a text box to the graph. The box is
placed at the specifi ed x- and y- coordinates and contains
the string value specifi ed.

 gtext('string') Similar to text. The box is placed at a location determined
interactively by the user by clicking in the fi gure window.

5.1 Two-Dimensional Plots 159

 It is often useful to create plots where the scaling is the same on the x- and
 y -axis. This is accomplished with the command

axis equal

 MATLAB ® offers several additional functions, also listed in Table 5.3 , that allow
you to annotate your plots. The legend function requires the user to specify a leg-
end in the form of a string for each line plotted, and displays it in the upper right-
hand corner of the plot. The text function allows you to add a text box to your
plot, which is useful for describing features on the graph. It requires the user to
specify the location of the lower left-hand corner of the box in the plot window as
the fi rst two input fi elds, with a string specifying the contents of the text box in the
third input fi eld. The use of both legend and text is demonstrated in the follow-
ing code, which modifi es the graph from Figure 5.8b .

legend('line 1', 'line 2', 'line3')
text(1,100,'Label plots with the text command')

 We added a title, x and y labels, and adjusted the axis with the following commands:

xlabel('My x label'), ylabel('My y label')
title('Example graph for Chapter 5'
axis([0,11,0,200])

 The results are shown in Figure 5.9 .

0 1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

120

140

160

180

200

My x label

M
y

y
la

be
l

Sample graph for Chapter 5

Label plots with the text command

line 1
line 2
line 3

Figure 5.9
Final version of the sample
graph, annotated with a
legend, a text box, a title,
x and y labels, and a
modifi ed axis.

 HINT
 You can use Greek letters in your titles and labels by putting a backslash (\)
before the name of the letter. For example,

title('\alpha \beta \gamma')

160 Chapter 5 Plotting

 creates the plot title

 abg

 To create a superscript, use a caret. Thus,

title('x ^2')

 gives

 x2

 To create a subscript, use an underscore.

title('x_5')

 gives

 x5

 If your expression requires a group of characters as either a subscript or a
superscript, enclose them in curly braces. For example,

title('k^{-1}')

 which returns

k-1

 Finally, to create a title with more than one line of text, you’ll need to use a cell
array. You can learn more about cell arrays in a later chapter, but the syntax is:

title({'First line of text'; 'Second line of text'})

 MATLAB ® has the ability to create other more complicated mathematical
expressions for use as titles, axis labels, and other text strings, using the TeX
markup language. To learn more, consult the help feature. (Search on “text
properties.”)

 PRACTICE EXERCISES 5.1

 1. Plot x versus y for y � sin1x2. Let x vary from 0 to 2p in increments
of 0.1p.

 2. Add a title and labels to your plot.
 3. Plot x versus y1 and y2 for y1 � sin1x2 and y2 � cos1x2. Let x vary from

0 to 2p in increments of 0.1p. Add a title and labels to your plot.
 4. Re-create the plot from Exercise 3, but make the sin (x) line dashed and

red. Make the cos(x) line green and dotted.
 5. Add a legend to the graph in Exercise 4.
 6. Adjust the axes so that the x -axis goes from �1 to 2p � 1 and the y -axis

from �1.5 to �1.5.
 7. Create a new vector, a � cos1x2. Let x vary from 0 to 2p in increments

of 0.1p. Plot just a without specifying the x values (plot(a)) and
observe the result. Compare this result with the graph produced by
plotting x versus a .

5.1 Two-Dimensional Plots 161

 USING THE CLAUSIUS–CLAPEYRON EQUATION
 The Clausius–Clapeyron equation can be used to fi nd the saturation vapor pressure
of water in the atmosphere, for different temperatures. The saturation water vapor
pressure is useful to meteorologists because it can be used to calculate relative
humidity, an important component of weather prediction, when the actual partial
pressure of water in the air is known.

 The following table presents the results of calculating the saturation vapor pres-
sure of water in the atmosphere for various air temperatures with the use of the
Clausius–Clapeyron equation:

 Air Temperature, °F Saturation Vapor Pressure, mbar

 �60.0000 0.0698

 �50.0000 0.1252

 �40.0000 0.2184

 �30.0000 0.3714

 �20.0000 0.6163

 �10.0000 1.0000

 0 1.5888

 10.0000 2.4749

 20.0000 3.7847

 30.0000 5.6880

 40.0000 8.4102

 50.0000 12.2458

 60.0000 17.5747

 70.0000 24.8807

 80.0000 34.7729

 90.0000 48.0098

 100.0000 65.5257

 110.0000 88.4608

 120.0000 118.1931

 Let us present these results graphically as well.
 The Clausius–Clapeyron equation is

 ln 1P 0>6.112 � a �Hv

Rair
b*a 1

273
�

1
T
b

 where

P 0 � saturation vapor pressure for water, in mbar, at temperature T
�Hv � latent heat of vaporization for water, 2.453 � 106 J>kg
Rair � gas constant for moist air, 461 J/kg
T � temperature in kelvins.

1. State the Problem
 Find the saturation vapor pressure at temperatures from �60�F to 120°F, using

the Clausius–Clapeyron equation.

 EXAMPLE 5.1

(continued)

162 Chapter 5 Plotting

2. Describe the Input and Output

Input

 �Hv � 2.453 � 106 J>kg

 Rair � 461 J>kg

 T � -60�F to 120�F

 Since the number of temperature values was not specifi ed, we’ll choose to
recalculate every 10°F.

Output

 Table of temperature versus saturation vapor pressures
 Graph of temperature versus saturation vapor pressures

3. Develop a Hand Example
 Change the temperatures from degree Fahrenheit to kelvin:

 Tk �
1Tf � 459.62

1.8

 Solve the Clausius–Clapeyron equation for the saturation vapor pressure 1P 02:
 ln a P 0

6.11
b � a �Hv

Rair
b � a 1

273
�

1
T
b

 P0 � 6.11*exp a a �Hv

Rair
b � a 1

273
�

1
T
b b

 Notice that the expression for the saturation vapor pressure, P 0, is an exponential
equation. We would thus expect the graph to have the shape shown in Figure 5.10 .

 4. Develop a MATLAB ® Solution

%Example 5.1
%Using the Clausius–Clapeyron equation, find the
%saturation vapor pressure for water at different
%temperatures
%
TF=[-60:10:120]; %Define temp matrix in F
TK=(TF + 459.6)/1.8; %Convert temp to K
Delta_H=2.45e6; %Define latent heat of
R_air = 461; %vaporization
 %Define ideal gas constant
 %for air

%
%Calculate the vapor pressures
Vapor_Pressure=6.11*exp((Delta_H/R_air)*(1/273 - 1./TK));
%Display the results in a table
 my_results = [TF',Vapor_Pressure']

%
%Create an x-y plot
plot(TF,Vapor_Pressure)
title('Clausius–Clapeyron Behavior')

Temperature

P
re

ss
ur

e

Figure 5.10
A sketch of the predicted
equation behavior.

5.1 Two-Dimensional Plots 163

xlabel('Temperature, F')
ylabel('Saturation Vapor Pressure, mbar')

 The resulting table is

my_results =

-60.0000 0.0698
-50.0000 0.1252
-40.0000 0.2184
-30.0000 0.3714
-20.0000 0.6163
-10.0000 1.0000

0 1.5888
10.0000 2.4749
20.0000 3.7847
30.0000 5.6880
40.0000 8.4102
50.0000 12.2458
60.0000 17.5747
70.0000 24.8807
80.0000 34.7729
90.0000 48.0098
100.0000 65.5257
110.0000 88.4608
120.0000 118.1931

 A fi gure window opens to display the graphical results, shown in Figure 5.11 .

60 40 20 0 20 40 60 80 100 120
0

20

40

60

80

100

120
Clausius–Clapeyron behavior

Temperature, F

Sa
tu

ra
ti

on
 v

ap
or

 p
re

ss
ur

e,
 m

ba
r

Figure 5.11
A plot of the Clausius–
Clapeyron equation.

164 Chapter 5 Plotting

5. Test the Solution
 The plot follows the expected trend. It is almost always easier to determine

whether computational results make sense if a graph is produced. Tabular data
are extremely diffi cult to interpret.

 BALLISTICS
 The range of an object (see Figure 5.12) shot at an angle u with respect to the x -axis
and an initial velocity v0 is given by

 R1u2 �
v2

g
 sin12u2 for 0 … u …

p

2
1neglecting air resistance2

 Use g � 9.9 m / s2 and an initial velocity of 100 m/s. Show that the maximum
range is obtained at u � p>4 by computing and plotting the range for values of
 u from

 0 … u …
p

2

 in increments of 0.05.
 Repeat your calculations with an initial velocity of 50 m/s, and plot both sets of

results on a single graph.

 1. State the Problem
 Calculate the range as a function of the launch angle.
 2. Describe the Input and Output

 Input

 g � 9.9 m / s2
 u � 0 to p / 2, incremented by 0.05
 v0 � 50 m / s and 100 m / s

 EXAMPLE 5.2

Figure 5.12
The range is zero, if the cannon is perfectly vertical or perfectly horizontal.

5.1 Two-Dimensional Plots 165

(continued)

Output

 Range R
 Present the results as a plot.

3. Develop a Hand Example
 If the cannon is pointed straight up, we know that the range is zero, and if the

cannon is horizontal, the range is also zero (see Figure 5.12).
 This means that the range must increase with the cannon angle up to some

maximum and then decrease. A sample calculation at 45˚ 1p>4 radians2 shows
that

 R1u2 �
v2

g
 sin12u2

 Rap
4
b �

1002

9.9
sina2p

4
b � 1010 m when the initial velocity is 100 m > s

4. Develop a MATLAB ® Solution

%Example 5.2
%The program calculates the range of a ballistic projectile
%
%Define the constants
 g = 9.9;
 v1 = 50;
 v2 = 100;
%Define the angle vector
 angle = 0:0.05:pi/2;
%Calculate the range
 R1 = v1^2/g*sin(2*angle);
 R2 = v2^2/g*sin(2*angle);
%Plot the results

plot(angle,R1,angle,R2,':')
title('Cannon Range')
xlabel('Cannon Angle')
ylabel('Range, meters')
legend('Initial Velocity=50 m/s', 'Initial Velocity=100 m/s')

 Notice that in the plot command, we requested MATLAB ® to print the sec-
ond set of data as a dashed line. A title, labels, and a legend were also added.
The results are plotted in Figure 5.13 .

 5. Test the Solution
 Compare the MATLAB ® results with those from the hand example. Both graphs

start and end at zero. The maximum range for an initial velocity of 100 m/s is
approximately 1000 m, which corresponds well to the calculated value of 1010 m.
Notice that both solutions peak at the same angle, approximately 0.8 radian.
The numerical value for p>4 is 0.785 radian, confirming the hypothesis
 presented in the problem statement that the maximum range is achieved by
pointing the cannon at an angle of p>4 radians (45˚).

166 Chapter 5 Plotting

 A function similar to text is gtext , which allows the user to interactively place
a text box in an existing plot. The gtext function requires a single input, the
string to be displayed.

gtext('This string will display on the graph')

 Once executed, a crosshair appears on the graph. The user positions the cross-
hair to the appropriate position. The text is added to the graph when any key on
the keyboard is depressed, or a mouse button is selected.

 5.2 SUBPLOTS

 The subplot command allows you to subdivide the graphing window into a grid
of m rows and n columns. The function

subplot(m,n,p)

 splits the fi gure into an m � n matrix. The variable p identifi es the portion of the
window where the next plot will be drawn. For example, if the command

subplot(2,2,1)

 is used, the window is divided into two rows and two columns, and the plot is drawn
in the upper left-hand window (Figure 5.14).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

200

400

600

800

1000

1200
Cannon Range

Cannon Angle

R
an

ge
, m

et
er

s

Initial Velocity 50 m/s
Initial Velocity 100 m/s

Figure 5.13
The predicted range
of a projectile.

 HINT

 To clear a fi gure, use the clf command. To close the active fi gure window, use
the close command, and to close all open fi gure windows use close all .

p 1 p 2

p 3 p 4

 Figure 5.14
 Subplots are used to
subdivide the fi gure
window into an m � n
matrix.

5.2 Subplots 167

 The windows are numbered from left to right, top to bottom. Similarly, the follow-
ing commands split the graph window into a top plot and a bottom plot:

x = 0:pi/20:2*pi;
subplot(2,1,1)
plot(x,sin(x))
subplot(2,1,2)
plot(x,sin(2*x)

 The fi rst graph is drawn in the top window, since p � 1. Then the subplot com-
mand is used again to draw the next graph in the bottom window. Figure 5.15 shows
both graphs.

 Titles are added above each subwindow as the graphs are drawn, as are x - and
 y -axis labels and any annotation desired. The use of the subplot command is illus-
trated in several of the sections that follow.

0 1 2 3 4 5 6 7
1

0.5

0

0.5

1

0 1 2 3 4 5 6 7
1

0.5

0

0.5

1

Figure 5.15
The subplot command
allows the user to create
multiple graphs in the
same fi gure window.

 PRACTICE EXERCISES 5.2

 1. Subdivide a fi gure window into two rows and one column.
 2. In the top window, plot y � tan1x2 for �1.5 … x … 1.5. Use an incre-

ment of 0.1.
 3. Add a title and axis labels to your graph.
 4. In the bottom window, plot y � sinh1x2 for the same range.
 5. Add a title and labels to your graph.
 6. Try the preceding exercises again, but divide the fi gure window verti-

cally instead of horizontally.

168 Chapter 5 Plotting

 5.3 OTHER TYPES OF TWO-DIMENSIONAL PLOTS

 Although simple x–y plots are the most common type of engineering plot, there are
many other ways to represent data. Depending on the situation, these techniques
may be more appropriate than an x–y plot.

 5.3.1 Polar Plots

 MATLAB ® provides plotting capability with polar coordinates:

polar(theta, r)

 generates a polar plot of angle theta (in radians) and radial distance r .
 For example, the code

x = 0:pi/100:pi;
y = sin(x);
polar(x,y)

 generates the plot in Figure 5.16 . A title was added in the usual way:

title('The sine function plotted in polar coordinates is a
circle.')

0.2

0.4

0.6

0.8

1

30

210

60

240

90

270

120

300

150

330

180 0

The sine function plotted in polar coordinates is a circle.Figure 5.16
A polar plot of the sine
function.

 PRACTICE EXERCISES 5.3

 1. Defi ne an array called theta , from
0 to 2p, in steps of 0.01p.

 Defi ne an array of distances
 r � 5*cos14*theta2.

 Make a polar plot of theta versus r .
 1

 2

 3

 4

 5

30

210

60

240

90

270

120

300

150

330

180 0

5.3 Other Types of Two-Dimensional Plots 169

 3. Create a new fi gure.
 Use the theta array from the

preceding exercises.
 Assign r � 5 � 5*sin1theta2 and

create a new polar plot.
 2

 4

 6

 8

 10

30

210

60

240

90

270

120

300

150

330

180 0

 1

 2

 3

 4

 5

30

210

60

240

90

270

120

300

150

330

180 0

 4. Create a new fi gure.
 Use the theta array from the

preceding exercises.
 Assign r � sqrt15^2*cos(2*theta))

and create a new polar plot.

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

 5. Create a new fi gure.
 Defi ne a theta array such that
 theta � pi>2:4>5*pi:4.5pi;
 Create a six-member array of

ones called r .
 Create a new polar plot of

 theta versus r .

 1

 2

 3

 4

 5

30

210

60

240

90

270

120

300

150

330

180 0

 2. Use the hold on command to freeze
the graph.

 Assign r � 4*cos16*theta2 and plot.
Add a title .

170 Chapter 5 Plotting

 5.3.2 Logarithmic Plots

 For most plots that we generate, the x - and y -axes are divided into equally spaced
intervals; these plots are called linear or rectangular plots. Occasionally, however, we
may want to use a logarithmic scale on one or both of the axes. A logarithmic scale
(to the base 10) is convenient when a variable ranges over many orders of magni-
tude, because the wide range of values can be graphed without compressing the
smaller values. Logarithmic plots are also useful for representing data that vary
exponentially. Appendix B discusses in more detail when to use the various types of
logarithmic scaling.

 The MATLAB ® commands for generating linear and logarithmic plots of the
vectors x and y are listed in Table 5.4 .

 Remember that the logarithm of a negative number or of zero does not exist. If
your data include these values, MATLAB ® will issue a warning message and will not
plot the points in question. However, it will generate a plot based on the remaining
points.

 Each command for logarithmic plotting can be executed with one argument, as
we saw in plot(y) for a linear plot. In these cases, the plots are generated with the
values of the indices of the vector y used as x values.

 As an example, plots of y � 5x2 were created using all four scaling approaches,
as shown in Figure 5.17 . The linear (rectangular) plot, semilog plot along the x -axis,
semilog plot along the y -axis, and log–log plot are all shown on one fi gure, plotted
with the subplot function in the following code:

x = 0:0.5:50;
y = 5*x.^2;
subplot(2,2,1)
plot(x,y)

title('Polynomial - linear/linear')
ylabel('y'), grid

subplot(2,2,2)
semilogx(x,y)

title('Polynomial - log/linear')
ylabel('y'), grid

subplot(2,2,3)
semilogy(x,y)

title('Polynomial - linear/log')
xlabel('x'), ylabel('y'), grid

subplot(2,2,4)
loglog(x,y)

title('Polynomial - log/log')
xlabel('x'), ylabel('y'), grid

 KEY IDEA
 Logarithmic plots are
especially useful if the data
vary exponentially

 Table 5.4 Rectangular and Logarithmic Plots

 plot(x,y) Generates a linear plot of the vectors x and y
 semilogx(x,y) Generates a plot of the values of x and y , using a logarithmic scale

for x and a linear scale for y

 semilogy(x,y) Generates a plot of the values of x and y , using a linear scale for x
and a logarithmic scale for y

 loglog(x,y) Generates a plot of the vectors x and y , using a logarithmic scale
for both x and y

5.3 Other Types of Two-Dimensional Plots 171

 The indenting is intended to make the code easier to read—MATLAB ® ignores
white space. As a matter of style, notice that only the bottom two subplots have
x -axis labels.

0 10 20 30 40 50
0

2000

4000

6000

8000

10000

12000

14000
Polynomial – linear/linear

y

10 1 100 101 102

10 1 100 101 102

0

2000

4000

6000

8000

10000

12000

14000
Polynomial – log/linear

y

0 10 20 30 40 50
100

101

102

103

104

105
Polynomial – linear/log

x

y

100

101

102

103

104

105

y

Polynomial – log/log

x

Figure 5.17
Linear and logarithmic plots, displayed using the subplot function.

 KEY IDEA
 Since MATLAB ® ignores
white space, use it to make
your code more readable

 RATES OF DIFFUSION
 Metals are often treated to make them stronger and therefore wear longer. One
problem with making a strong piece of metal is that it becomes diffi cult to form it
into a desired shape. A strategy that gets around this problem is to form a soft metal
into the shape you desire and then harden the surface. This makes the metal wear
well without making it brittle.

 A common hardening process is called carburizing . The metal part is exposed to
carbon, which diffuses into the part, making it harder. This is a very slow process if

 EXAMPLE 5.3

(continued)

172 Chapter 5 Plotting

performed at low temperatures, but it can be accelerated by heating the part. The
diffusivity is a measure of how fast diffusion occurs and can be modeled as

 D � D0 expa � Q

RT
b

 where
 D � diffusivity, cm2

 / s
 D0 � diffusion coeffi cient, cm2

 / s
 Q � activation energy, J/mol, 8.314 J/mol K
 R � ideal gas constant, J/mol K
 T � temperature, K.

 As iron is heated, it changes structure and its diffusion characteristics change. The
values of D0 and Q are shown in the following table for carbon diffusing through
each of iron’s structures:

 Type of Metal D0 (cm2/s) Q (J/mol K)

 alpha Fe (BCC) 0.0062 80,000

 gamma Fe (FCC) 0.23 148,000

 Create a plot of diffusivity versus inverse temperature (1/ T), using the data pro-
vided. Try the rectangular, semilog, and log–log plots to see which you think might
represent the results best. Let the temperature vary from room temperature (25°C)
to 1200°C.

 1. State the Problem
 Calculate the diffusivity of carbon in iron.
 2. Describe the Input and Output

 Input

 For C in alpha iron, D0 � 0.0062 cm2
 > s and Q � 80,000 J > mol K

 For C in gamma iron, D0 � 0.23 cm2
 > s and Q � 148,000 J > mol K

 R � 8.314 J > mol K
 T varies from 25°C to 1200°C

 Output

 Calculate the diffusivity and plot it.
 3. Develop a Hand Example

 The diffusivity is given by

 D � D0 expa-Q

RT
b

 At room temperature, the diffusivity for carbon in alpha iron is

 D � 0.0062 expa � 80,000
8.314 � 125 � 2732 b

 D � 5.9 � 10�17

 (Notice that the temperature had to be changed from Celsius to Kelvin.)

5.3 Other Types of Two-Dimensional Plots 173

4. Develop a MATLAB ® Solution

% Example 5.3
% Calculate the diffusivity of carbon in iron

clear, clc
% Define the constants

D0alpha = 0.0062;
D0gamma = 0.23;
Qalpha = 80000;
Qgamma = 148000;
R = 8.314;
T = 25:5:1200;

% Change T from C to K
T = T+273;

% Calculate the diffusivity
Dalpha = D0alpha*exp(-Qalpha./(R*T));
Dgamma = D0gamma*exp(-Qgamma./(R*T));

% Plot the results
subplot(2,2,1)
plot(1./T,Dalpha, 1./T,Dgamma)
title('Diffusivity of C in Fe')
xlabel('Inverse Temperature, K^{-1}'),
ylabel('Diffusivity, cm^2/s')
grid on

subplot(2,2,2)
semilogx(1./T,Dalpha, 1./T,Dgamma)
title('Diffusivity of C in Fe')
xlabel('Inverse Temperature, K^{-1}'),
ylabel('Diffusivity, cm^2/s')
grid on

subplot(2,2,3)
semilogy(1./T,Dalpha, 1./T,Dgamma)
title('Diffusivity of C in Fe')
xlabel('Inverse Temperature, K^{-1}'),
ylabel('Diffusivity, cm^2/s')
grid on

subplot(2,2,4)
loglog(1./T,Dalpha, 1./T,Dgamma)
title('Diffusivity of C in Fe')
xlabel('Inverse Temperature, K^{-1}'),
ylabel('Diffusivity, cm^2/s')
grid on

 Subplots were used in Figure 5.18 , so that all four variations of the plot are in the
same fi gure. Notice that x -labels were added only to the bottom two graphs, to
reduce clutter, and that a legend was added only to the fi rst plot. The semilogy
plot resulted in straight lines and allows a user to read values off the graph easily
over a wide range of both temperatures and diffusivities. This is the plotting
scheme usually used in textbooks and handbooks to present diffusivity values.

(continued)

174 Chapter 5 Plotting

5. Test the Solution
 Compare the MATLAB ® results with those from the hand example.
 We calculated the diffusivity to be

 5.9 � 10�17 cm2
 > s at 25�C

 for carbon in alpha iron. To check our answer, we’ll need to change 25°C to
kelvins and take the inverse:

1125 � 2732 � 3.36 � 10�3

From the semilogy graph (lower left-hand corner), we can see that the diffusiv-
ity for alpha iron is approximately 10�17.

.0005 .001 .0015 .002 .0025 .003 .0035

.0005 .001 .0015 .002 .0025 .003 .0035

0

0.2

0.4

0.6

0.8

1
 10 5 Diffusivity of C in Fe

Inverse Temperature, K 1

D
if

fu
si

vi
ty

, c
m

2 /s

10 4 10 3 10 2
0

0.2

0.4

0.6

0.8

1
 10 5 Diffusivity of C in Fe

10 4 10 3 10 2

Inverse Temperature, K 1

10 30

10 25

10 20

10 15

10 10

10 5

10 30

10 25

10 20

10 15

10 10

10 5

D
if

fu
si

vi
ty

, c
m

2 /s

data 1

data 2

 Figure 5.18
 Diffusivity data plotted on different scales. The data follows a straight line when the log 10 of the diffusivity is plotted on the y -axis versus
the inverse temperature on the x -axis.

5.3 Other Types of Two-Dimensional Plots 175

 PRACTICE EXERCISE 5.4

 Create appropriate x and y arrays to use in plotting each of the expressions
that follow. Use the subplot command to divide your fi gures into four
sections, and create each of these four graphs for each expression:

 • Rectangular
 • Semilogx
 • Semilogy
 • Loglog

 1. y � 5x � 3
 2. y � 3x2
 3. y � 12e1x�22
 4. y � 1 > x

 Physical data usually are plotted so that they fall on a straight line. Which of
the preceding types of plot results in a straight line for each problem?

 5.3.3 Bar Graphs and Pie Charts

 Bar graphs, histograms, and pie charts are popular forms for reporting data. Some
of the commonly used MATLAB ® functions for creating bar graphs and pie charts
are listed in Table 5.5 .

 Examples of some of these graphs are shown in Figure 5.19 . The graphs make
use of the subplot function to allow four plots in the same fi gure window:

clear, clc
x = [1,2,5,4,8];
y = [x;1:5];
subplot(2,2,1)
bar(x),title('A bar graph of vector x')

subplot(2,2,2)
bar(y),title('A bar graph of matrix y')

subplot(2,2,3)
bar3(y),title('A three-dimensional bar graph')

subplot(2,2,4)
pie(x),title('A pie chart of x')

 Table 5.5 Bar Graphs and Pie Charts

 bar(x) When x is a vector, bar generates a vertical bar graph. When x is a two-
dimensional matrix, bar groups the data by row.

 barh(x) When x is a vector, barh generates a horizontal bar graph. When x is a
two-dimensional matrix, barh groups the data by row.

 bar3(x) Generates a three-dimensional bar chart

 bar3h(x) Generates a three-dimensional horizontal bar chart

 pie(x) Generates a pie chart. Each element in the matrix is represented as a slice of the pie.

 pie3(x) Generates a three-dimensional pie chart. Each element in the matrix is represented as
a slice of the pie.

 hist(x) Generates a histogram

176 Chapter 5 Plotting

 5.3.4 Histograms

 A histogram is a special type of graph that is particularly useful for the statistical
analysis of data. It is a plot showing the distribution of a set of values. In MATLAB ® ,
the histogram computes the number of values falling into 10 bins (categories) that
are equally spaced between the minimum and maximum values. For example, if we
defi ne a matrix x as the set of grades from the Introduction to Engineering fi nal,
the scores could be represented in a histogram, shown in Figure 5.20 and gener-
ated with the following code:

x = [100,95,74,87,22,78,34,35,93,88,86,42,55,48];
hist(x)

1 2 3 4 5
0

2

4

6

8
A bar graph of vector x

1 2
0

2

4

6

8
A bar graph of matrix y

1
2

3
4

5
1

2

0

5

10

A three-dimensional bar graph

5%
10%

25%

20%

40%

A pie chart of x

Figure 5.19
Sample bar graphs and pie
charts. The subplot
function was used to divide
the window into quadrants.

 KEY IDEA
 Histograms are useful in
statistical analysis

20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3
Intro to Engineering FinalFigure 5.20

A histogram of grade data.

5.3 Other Types of Two-Dimensional Plots 177

 The default number of bins is 10, but if we have a large data set, we may want to
divide the data up into more bins. For example, to create a histogram with 25 bins,
the command would be

hist(x, 25)

 If you set the hist function equal to a variable, as in

A = hist(x)

 the data used in the plot are stored in A :

A =
1 2 1 1 1 0 1 1 3 3

 WEIGHT DISTRIBUTIONS
 The average 18-year-old American male weighs 152 pounds. A group of 100 young
men were weighed and the data stored in a fi le called weight.dat . Create a graph to
represent the data.

1. State the Problem
 Use the data fi le to create a line graph and a histogram. Which is a better rep-

resentation of the data?
2. Describe the Input and Output

 Input weight.dat , an ASCII data fi le that contains weight data

 Output A line plot of the data
 A histogram of the data

 3. Develop a Hand Example
 Since this is a sample of actual weights, we would expect the data to approxi-

mate a normal random distribution (a Gaussian distribution). The histogram
should be bell shaped.

 4. Develop a MATLAB ® Solution
 The following code generates the plots shown in Figure 5.21 :

% Example 5.4
% Using Weight Data
%
load weight.dat
% Create the line plot of weight data
subplot(1,2,1)
plot(weight)
title('Weight of Freshman Class Men')
xlabel('Student Number')
ylabel('Weight, lb')
grid on
% Create the histogram of the data
subplot(1,2,2)
hist(weight)

 EXAMPLE 5.4

(continued)

178 Chapter 5 Plotting

xlabel('Weight, lb')
ylabel('Number of students')
title('Weight of Freshman Class Men')

 5. Test the Solution
 The graphs match our expectations. The weight appears to average about

150 lb and varies in what looks like a normal distribution. We can use MATLAB ®

to fi nd the average and the standard deviation of the data, as well as the maximum
and minimum weights in the data set. The MATLAB ® code

average_weight = mean(weight)
standard_deviation = std(weight)
maximum_weight = max(weight)
minimum_weight = min(weight)

 returns

average_weight =
151.1500

standard_deviation =
32.9411

maximum_weight =
228

minimum_weight =
74

0 50 100
50

100

150

200

250
Weight of Freshman Class Men

Student Number

W
ei

gh
t,

lb

50 100 150 200 250
0

5

10

15

20

25

Weight, lb

N
um

be
r

of
 s

tu
de

nt
s

Weight of Freshman Class Men

Figure 5.21
Histograms and line plots are two different ways to visualize numeric information.

 5.3.5 X–Y Graphs with Two Y-Axes

 Sometimes, it is useful to overlay two x – y plots onto the same fi gure. However, if
the orders of magnitude of the y -values are quite different, it may be diffi cult to
see how the data behave. Consider, for example, a graph of sin(x) and ex drawn

5.3 Other Types of Two-Dimensional Plots 179

on the same fi gure. The results, obtained with the following code, are shown in
 Figure 5.22 :

x = 0:pi/20:2*pi;
y1 = sin(x);
y2 = exp(x);
subplot(2,1,1)
plot(x,y1,x,y2)

 The plot of sin(x) looks like it runs straight along the line x � 0, because of the scale.
The plotyy function allows us to create a graph with two y -axes, the one on the left for
the fi rst set of ordered pairs and the one on the right for the second set of ordered pairs:

subplot(2,1,2)
plotyy(x,y1,x,y2)

 Titles and labels were added in the usual way. The y -axis was not labeled,
because the results are dimensionless.

 The plotyy function can create a number of different types of plots by adding a
string with the name of the plot type after the second set of ordered pairs. In Figure 5.23 ,
the plots were created with the following code and have a logarithmically scaled axis:

subplot(2,1,1)
plotyy(x,y1,x,y2, 'semilogy')
subplot(2,1,2)
plotyy(x,y1,x,y2,'semilogx')

 For other problems you may need to add y -axis labels. The left-hand y -axis is
easy—just add the label in the usual way

ylabel('Left y-axis label')

0 2 4 6 8
200

0

200

400

600
Single Y-Axes Scaled

1

0

1
Two Y-Axes Scaled

Angle

0 2 4 6 8
0

500

1000

Figure 5.22
MATLAB® allows the y-axis
to be scaled differently on
the left-hand and right-hand
sides of the fi gure. In the
top graph, both lines were
drawn using the same
scaling. In the bottom
graph, the sine curve was
drawn using the scaling on
the left axis, while the
exponential curve was
drawn using the scaling on
the right axis.

180 Chapter 5 Plotting

 The right-hand y -axis label is trickier. You can add it using MATLAB ® ’s interac-
tive controls, described in a later section, or you can use handle graphics. This
involves giving the plot a name, and then using the name to switch to the second
axis set (which corresponds to the y -axis on the right-hand side of the fi gure). Here
is the code

a = plotyy(x,y1,x,y2)
ylabel(a(2),'Right y-axis label')

10 20

10 10

100

Semilog plot on the y-axis

1

0

1
Semilog plot on the x-axis

0 2 4 6 8
100

101

102

103

100
0

500

1000

Figure 5.23
The plotyy function can
generate several types of
graphs, including semilogx,
semilogy, and loglog.

 PERIODIC PROPERTIES OF THE ELEMENTS
 The properties of elements in the same row or column in the periodic table usually
display a recognizable trend as we move across a row or down a column. For exam-
ple, the melting point usually goes down as we move down a column, because the
atoms are farther apart and the bonds between the atoms are therefore weaker.
Similarly, the radius of the atoms goes up as we move down a column, because there
are more electrons in each atom and correspondingly bigger orbitals. It is instruc-
tive to plot these trends against atomic weight on the same graph.

 1. State the Problem
 Plot the melting point and the atomic radius of the Group I elements against

the atomic weight, and comment on the trends you observe.

 EXAMPLE 5.5

5.3 Other Types of Two-Dimensional Plots 181

2. Describe the Input and Output

Input The atomic weights, melting points, and atomic radii of the Group I
elements are listed in Table 5.6 .

Output Plot with both melting point and atomic radius on the same graph.

3. Develop a Hand Example
 We would expect the graph to look something like the sketch shown in Figure 5.24 .
4. Develop a MATLAB ® Solution
 The following code produces the plot shown in Figure 5.25 :

% Example 5.5
clear, clc
% Define the variables
atomic_number = [3, 11, 19, 37, 55];
melting_point = [181, 98, 63, 34, 28.4];
atomic_radius = [0.152, 0.186, 0.227, 0.2480, 0.2650];
% Create the plot with two lines on the same scale
subplot(1,2,1)
plot(atomic_number,melting_point,atomic_number,atomic_radius)
title('Periodic Properties')

 Table 5.6 Group I Elements and Selected Physical Properties

 Element Atomic Number Melting Point, °C Atomic Radius, pm

 Lithium 3 181 0.1520

 Sodium 11 98 0.1860

 Potassium 19 63 0.2270

 Rubidium 37 34 0.2480

 Cesium 55 28.4 0.2650

Radius

Melting
point

Figure 5.24
Sketch of the predicted data
behavior.

Figure 5.25
In the left-hand fi gure, the
two sets of values were
plotted using the same
scale. Using two y-axes
allows us to plot data with
different units on the same
graph, as shown in the
right-hand fi gure.

(continued)

182 Chapter 5 Plotting

xlabel('Atomic Number')
ylabel('Properties')
% Create the second plot with two different y scales
subplot(1,2,2)
h=plotyy(atomic_number,melting_point,atomic_number,atomic_
radius)
title('Periodic Properties')
xlabel('Atomic Number')
ylabel('Melting Point, C')
ylabel(h(2),'Atomic Radius, picometers')

 On the second graph, which has two different y scales, we used the plotyy
function instead of the plot function. This forced the addition of a second
scale, on the right-hand side of the plot. We needed it because atomic radius
and melting point have different units and the values for each have different
magnitudes. Notice that in the fi rst plot it is almost impossible to see the atomic-
radius line; it is on top of the x -axis because the numbers are so small.

5. Test the Solution
 Compare the MATLAB ® results with those from the hand example. The trend

matches our prediction. Clearly, the graph with two y -axes is the superior repre-
sentation, because we can see the property trends.

 5.3.6 Function Plots

 The fplot function allows you to plot a function without defi ning arrays of corre-
sponding x - and y -values. For example,

fplot('sin(x)',[-2*pi,2*pi])

 creates a plot (Figure 5.26) of x versus sin(x) for x -values from �2p to 2p. MATLAB ®

automatically calculates the spacing of x -values to create a smooth curve. Notice
that the fi rst argument in the fplot function is a string containing the function
and the second argument is an array. For more complicated functions that may be
inconvenient to enter as a string, you may defi ne an anonymous function and enter
the function handle. Anonymous functions and function handles are described in a
later chapter devoted to functions.

6 4 2 0 2 64
1

0.5

0

0.5

1
Function Plot of sin(x)Figure 5.26

Function plots do not
require the user to defi ne
arrays of ordered pairs.

5.4 Three-Dimensional Plotting 183

 5.4 THREE-DIMENSIONAL PLOTTING

 MATLAB ® offers a variety of three-dimensional plotting commands, several of
which are listed in Table 5.7 .

 5.4.1 Three-Dimensional Line Plot

 The plot3 function is similar to the plot function, except that it accepts data in
three dimensions. Instead of just providing x and y vectors, the user must also pro-
vide a z vector. These ordered triples are then plotted in three-space and connected
with straight lines. For example,

clear, clc
x = linspace(0,10*pi,1000);
y = cos(x);
z = sin(x);
plot3(x,y,z)
grid
xlabel('angle'), ylabel('cos(x)') zlabel('sin(x)') title('A
Spring')

 PRACTICE EXERCISE 5.5

 Create a plot of the functions that follow, using fplot . You’ll need to select
an appropriate range for each plot. Don’t forget to title and label your
graphs.

 1. f1t2 � 5t2
 2. f1t2 � 5 sin21t2 � t cos21t2
 3. f1t2 � tet
 4. f1t2 � ln1t2 � sin1t2

 HINT
 The correct MATLAB ® syntax for the mathematical expression sin21t2 is
 sin(t).^2 .

 Table 5.7 Three-Dimensional Plots

 plot3(x,y,z) Creates a three-dimensional line plot

 comet3(x,y,z) Generates an animated version of plot3

 mesh(z) or mesh(x,y,z) Creates a meshed surface plot

 surf(z) or surf(x,y,z) Creates a surface plot; similar to the mesh function

 shading interp Interpolates between the colors used to illustrate surface plots

 shading fl at Colors each grid section with a solid color

 colormap(map_name) Allows the user to select the color pattern used on surface plots

 contour(z) or contour(x,y,z) Generates a contour plot

 surfc(z) or surfc(x,y,z) Creates a combined surface plot and contour plot

 pcolor(z) or pcolor(x,y,z) Creates a pseudo color plot

184 Chapter 5 Plotting

 The title, labels, and grid are added to the graph in Figure 5.27 in the usual
way, with the addition of zlabel for the z -axis.

 The coordinate system used with plot3 is oriented using the right-handed
coordinate system familiar to engineers.

0

20

40

1

0

1
1

0.5

0

0.5

1

angle

A Spring

cos(x)

si
n(

x)

Figure 5.27
A three-dimensional plot of
a spring. MATLAB® uses a
coordinate system
consistent with the
right-hand rule.

 KEY IDEA
 The axes used for
three-dimensional plotting
correspond to the
right-hand rule

 HINT
 Just for fun, re-create the plot shown in Figure 5.27 , but this time with the
 comet3 function:

comet3(x,y,z)

 This plotting function “draws” the graph in an animation sequence. If your
animation runs too quickly, add more data points. For two-dimensional line
graphs, use the comet function.

 5.4.2 Surface Plots

 Surface plots allow us to represent data as a surface. We will be experimenting with
two types of surface plots: mesh plots and surf plots.

 Mesh Plots
 There are several ways to use mesh plots. They can be used to good effect with a
single two-dimensional m � n matrix. In this application, the value in the matrix
represents the z- value in the plot. The x- and y- values are based on the matrix
dimensions. Take, for example, the following very simple matrix:

z = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10;
2, 4, 6, 8, 10, 12, 14, 16, 18, 20;
3, 4, 5, 6, 7, 8, 9, 10, 11, 12];

5.4 Three-Dimensional Plotting 185

 The code

mesh(z)
xlabel('x-axis')
ylabel('y-axis')
zlabel('z-axis')

 generates the graph in Figure 5.28 .
 The graph is a “mesh” created by connecting the points defi ned in z into a

rectilinear grid. Notice that the x -axis goes from 0 to 10 and y goes from 1 to 3.
The matrix index numbers were used for the axis values. For example, note that
 z1,5 —the value of z in row 1, column 5—is equal to 5. This element is circled in
 Figure 5.28 .

 The mesh function can also be used with three arguments: mesh(x,y,z) . In
this case, x is a list of x -coordinates, y is a list of y -coordinates, and z is a list of
 z -coordinates.

x = linspace(1,50,10)
y = linspace(500,1000,3)
z = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10;

2, 4, 6, 8, 10, 12, 14, 16, 18, 20;
3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

 The x vector must have the same number of elements as the number of col-
umns in the z vector and the y vector must have the same number of elements as
the number of rows in the z vector. The command

mesh(x,y,z)

 creates the plot in Figure 5.29a . Notice that the x -axis varies from 0 to 50, with data
plotted from 1 to 50. Compare this scaling with that in Figure 5.28 , which used the
 z matrix index numbers for the x- and y -axes.

 Surf Plots
 Surf plots are similar to mesh plots, but surf creates a three-dimensional colored
surface instead of a mesh. The colors vary with the value of z .

 The surf command takes the same input as mesh : either a single input—
for example, surf(z) , in which case it uses the row and column indices as x - and

0

5

10

Element 1,5

1

2

3
0

5

10

15

20

x-axis
y-axis

z-
ax

is

Figure 5.28
Simple mesh created with a
single two-dimensional
matrix.

186 Chapter 5 Plotting

 y -coordinates—or three matrices. Figure 5.29 b was generated with the same
commands as those used to generate Figure 5.29 a, except that surf replaced
 mesh .

 The shading scheme for surface plots is controlled with the shading command.
The default, shown in Figure 5.29 b, is “faceted.” Interpolated shading can create
interesting effects. The plot shown in Figure 5.29 c was created by adding

shading interp

 to the previous list of commands. Flat shading without the grid is generated when

shading flat

 is used, as shown in Figure 5.29d .
 The color scheme used in surface plots can be controlled with the colormap

function. For example,

colormap(gray)

 forces a grayscale representation for surface plots. This may be appropriate if you’ll
be making black-and-white copies of your plots. Other available colormaps are

autumn bone hot
spring colorcube hsv
summer cool pink
winter copper prism
jet (default) flag white

(a) Mesh Plot

20

z-
ax

is

y-axis x-axis

10

0

0

50
1000

800
600

20

z-
ax

is

y-axis x-axis

10

0

0

50
1000

800
600

20

z-
ax

is

y-axis x-axis

10

0

0

50
1000

800
600

20

z-
ax

is
y-axis x-axis

10

0

0

50
1000

800
600

(b) Surface Plot

(c) Contour Plot (d) Combination Surface and Contour Plot

Figure 5.29
Mesh and surf plots are
created with three input
arguments.

 KEY IDEA
 The colormap function
controls the colors used on
surface plots

5.4 Three-Dimensional Plotting 187

 Use the help command to see a description of the various options:

help colormap

 Another Example
 A more complicated surface can be created by calculating the values of Z :

x= [-2:0.2:2];
y= [-2:0.2:2];
[X,Y] = meshgrid(x,y);
Z = X.*exp(-X.^2 - Y.^2);

 In the preceding code, the meshgrid function is used to create the two-dimen-
sional matrices X and Y from the one-dimensional vectors x and y . The values in Z
are then calculated. The following code plots the calculated values:

subplot(2,2,1)
mesh(X,Y,Z)
title('Mesh Plot'), xlabel('x-axis'), ylabel('y-axis'),
zlabel('z-axis')

subplot(2,2,2)

surf(X,Y,Z)
title('Surface Plot'), xlabel('x-axis'), ylabel('y-axis'),
zlabel('z-axis')

 Either the x , y vectors or the X , Y matrices can be used to defi ne the x - and
 y -axes. Figure 5.30a is a mesh plot of the given function, and Figure 5.30 b is a surf
plot of the same function.

0.5

0.5

2 2

0

2
2

0
y-axis

z-
ax

is
x-axis

(a) Mesh Plot

0

0.5

0.5

2 2

0

2
2

0
y-axis

z-
ax

is

x-axis

(b) Surface Plot

0

2

1

1

2
12 0

0

2

y-
ax

is

x-axis

(c) Contour Plot

1

0.5

0.5

2 2

0

2
2

0

y-axis x-axis

(d) Combination Surface and Contour Plot

0

Figure 5.30
Surface and contour plots
are different ways of
visualizing the same data.

188 Chapter 5 Plotting

 Contour Plots
 Contour plots are two-dimensional representations of three-dimensional sur-
faces, much like the familiar contour maps used by many hikers. The contour
command was used to create Figure 5.30 c, and the surfc command was used to
create Figure 5.30d :

subplot(2,2,3)
contour(X,Y,Z)

xlabel('x-axis'), ylabel('y-axis'), title('Contour Plot')
subplot(2,2,4)
surfc(X,Y,Z)
xlabel('x-axis'), ylabel('y-axis')
title('Combination Surface and Contour Plot')

 Pseudo Color Plots
 Pseudo color plots are similar to contour plots, except that instead of lines outlin-
ing a specifi c contour, a two-dimensional shaded map is generated over a grid.
MATLAB ® includes a sample function called peaks that generates the x , y , and z
matrices of an interesting surface that looks like a mountain range:

[x,y,z] = peaks;

 With the following code, we can use this surface to demonstrate the use of
pseudo color plots, shown in Figure 5.31 :

subplot(2,2,1)
pcolor(x,y,z)

 The grid is deleted when interpolated shading is used:

subplot(2,2,2)
pcolor(x,y,z)
shading interp

 You can add contours to the image by overlaying a contour plot:

subplot(2,2,3)
pcolor(x,y,z)
shading interp
hold on
contour(x,y,z,20,'k')

 The number 20 specifi es that 20 contour lines are drawn, and the 'k' indi-
cates that the lines should be black. If we hadn’t specifi ed black lines, they would

 HINT
 If a single vector is used in the meshgrid function, the program interprets it as

[X,Y] = meshgrid(x,x)

 You could also use the vector defi nition as input to meshgrid :

[X,Y] = meshgrid(-2:0.2:2)

 Both of these lines of code would produce the same result as the commands
listed in the example.

5.5 Editing Plots from the Menu Bar 189

have been the same color as the pseudo color plot and would have disappeared into
the image. Finally, a simple contour plot was added to the fi gure for comparison:

subplot(2,2,4)
contour(x,y,z)

 Additional options for using all the three-dimensional plotting functions are
included in the help window.

 5.5 EDITING PLOTS FROM THE MENU BAR

 In addition to controlling the way your plots look by using MATLAB ® commands,
you can edit a plot once you’ve created it. The plot in Figure 5.32 was created with
the sphere command, which is one of several sample functions, like peaks , used
to demonstrate plotting.

sphere

 In the fi gure, the Insert menu has been selected. Notice that you can insert
labels, titles, legends, text boxes, and so on, all by using this menu. The Tools menu
allows you to change the way the plot looks, by zooming in or out, changing the
aspect ratio, etc. The fi gure toolbar, underneath the menu toolbar, offers icons that
allow you to do the same thing.

 The plot in Figure 5.32 doesn’t really look like a sphere; it’s also missing labels
and a title, and the meaning of the colors may not be clear. We edited this plot by
fi rst adjusting the shape:

 • Select Edit: Axes Properties from the menu toolbar.
 • From the Property Editor—Axes window , select More Properties : Data

Aspect Ratio Mode .
 • Set the mode to manual (see Figure 5.33).

3

3

2

2

2

2 20

(a) Pseudo Color Plot

(c) Overlaid Pseudo Color and Contour (d) Contour Plot

1

1

0

3

3

2

2

2 20

(b) Interpolated Shading

1

1

0

2

2 20

0

2

2

2 20

0

Figure 5.31
A variety of contour plots is
available in MATLAB®.

 KEY IDEA
 When you interactively edit
a plot, your changes will
be lost if you rerun the
program

190 Chapter 5 Plotting

Figure 5.32
MATLAB® offers interactive
tools, such as the insert
tool, that allow the user to
adjust the appearance of
graphs.

Figure 5.33
MATLAB® allows you to
edit plots by using
commands from the
toolbar.

5.6 Creating Plots from the Workspace Window 191

 Similarly, labels, a title, and a color bar were added (Figure 5.34) using the
Property Editor. They could also have been added by using the Insert menu option
on the menu bar. Editing your plot in this manner is more interactive and allows
you to fi ne-tune the plot’s appearance. The only problem with editing a fi gure
interactively is that if you run your MATLAB ® program again, you will lose all of
your improvements.

1
0.5

0
0.5

1

1

0.5

0

0.5

1
1

0.5

0

0.5

1

x-axis

Plot of a Sphere

y-axis

z-
ax

is

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1
Figure 5.34
Edited plot of a sphere.

 HINT
 You can force a plot to space the data equally on all the axes by using the
 axis equal command. This approach has the advantage that you can pro-
gram axis equal into an M-fi le and retain your improvements.

 5.6 CREATING PLOTS FROM THE WORKSPACE WINDOW

 A great feature of MATLAB ® 7 is its ability to create plots interactively from the
workspace window. In this window, select a variable, then select the drop-down
menu on the plotting icon (shown in Figure 5.35). MATLAB ® will list the plot-
ting options it “thinks” are reasonable for the data stored in your variable.
Simply select the appropriate option, and your plot is created in the current
 figure window . If you don’t like any of the suggested types of plot, choose More

plots from the drop-down menu, and a new window will open with the complete
list of available plotting options for you to choose from. This is especially useful,
because it may suggest options that had not occurred to you. For example,
 Figure 5.35 shows a scatter plot of the x and y matrices highlighted in the fi gure.
The matrices were created by loading the seamount data set, which is built into
MATLAB ® .

192 Chapter 5 Plotting

 If you want to plot more than one variable, highlight the fi rst, then hold down
the Ctrl key and select the additional variables. To annotate your plots, use the inter-
active editing process described in Section 5.5. The interactive environment is a
rich resource. You’ll get the most out of it by exploring and experimenting.

 5.7 SAVING YOUR PLOTS

 There are several ways to save plots created in MATLAB ® :

 • If you created the plot with programming code stored in an M-fi le, simply
rerunning the code will re-create the fi gure.

 • You can also save the fi gure from the fi le menu, using the Save As . . . option.
You’ll be presented with several choices:
 1. You may save the fi gure as a .fig fi le, which is a MATLAB ® -specifi c fi le for-

mat. To retrieve the fi gure, just double-click on the fi le name in the current
folder. You can do the same thing programatically with the code

open <figurename.fig>

 2. You may save the fi gure in a number of different standard graphics formats,
such as jpeg (.jpg) and enhanced metafi le (.emf). These versions of the fi g-
ure can be inserted into other documents, such as a Word document.

 3. You can select Edit from the menu bar, then select copy figure , and paste the
fi gure into another document.

 4. You can use the fi le menu to create an M-fi le that will re-create the fi gure.

Plotting icon
Figure 5.35
Plotting from the workspace
window, using the
interactive plotting feature.

 PRACTICE EXERCISE 5.6

 Create a plot of y � cos1x2. Practice saving the fi le and inserting it into a
Word document.

Summary 193

 SUMMARY

 The most commonly used graph in engineering is the x – y plot. This two-dimensional
plot can be used to graph data or to visualize mathematical functions. No matter
what a graph represents, it should always include a title and x - and y -axis labels. Axis
labels should be descriptive and should include units, such as ft/s or kJ/kg.

 MATLAB ® includes extensive options for controlling the appearance of your
plots. The user can specify the color, line style, and marker style for each line on a
graph. A grid can be added to the graph, and the axis range can be adjusted. Text
boxes and a legend can be employed to describe the graph. The subplot function is
used to divide the plot window into an m � n grid. Inside each of these subwin-
dows, any of the MATLAB ® plots can be created and modifi ed.

 In addition to x – y plots, MATLAB ® offers a variety of plotting options, including
polar plots, pie charts, bar graphs, histograms, and x – y graphs with two y -axes. The scal-
ing on x – y plots can be modifi ed to produce logarithmic plots on either or both x - and
 y- axes. Engineers often use logarithmic scaling to represent data as a straight line.

 The function fplot allows the user to plot a function without defi ning a vector
of x - and y -values. MATLAB ® automatically chooses the appropriate number of
points and spacing to produce a smooth graph. Additional function-plotting capa-
bility is available in the symbolic toolbox.

 The three-dimensional plotting options in MATLAB ® include a line plot, a
number of surface plots, and contour plots. Most of the options available in two-
dimensional plotting also apply to these three-dimensional plots. The meshgrid
function is especially useful in creating three-dimensional surface plots.

 Interactive tools allow the user to modify existing plots. These tools are availa-
ble from the fi gure menu bar. Plots can also be created with the interactive plotting
option from the workspace window. The interactive environment is a rich resource.
You’ll get the most out of it by exploring and experimenting.

 Figures created in MATLAB ® can be saved in a variety of ways, either to be
edited later or to be inserted into other documents. MATLAB ® offers both propri-
etary fi le formats that minimize the storage space required to store fi gures and
standard fi le formats suitable to import into other applications.

 MATLAB ® SUMMARY

 The following MATLAB ® summary lists all the special characters, commands, and
functions that were defi ned in this chapter:

 Special Characters

 Line Type Indicator Point Type Indicator Color Indicator

 solid - point . blue b
 dotted : circle o green g
 dash-dot -. x-mark x red r
 dashed - - plus + cyan c
 star * magenta m
 square s yellow y
 diamond d black k

(continued)

194 Chapter 5 Plotting

 Commands and Functions

 autumn optional colormap used in surface plots

 axis freezes the current axis scaling for subsequent plots or specifi es the axis dimensions

 axis equal forces the same scale spacing for each axis

 bar generates a bar graph

 bar3 generates a three-dimensional bar graph

 barh generates a horizontal bar graph

 bar3h generates a horizontal three-dimensional bar graph

 bone optional colormap used in surface plots

 clf clear fi gure

 close close the current fi gure window

 close all close all open fi gure windows

 colorcube optional colormap used in surface plots

 colormap color scheme used in surface plots

 comet draws an x – y plot in a pseudo animation sequence

 comet3 draws a three-dimensional line plot in a pseudo animation sequence

 contour generates a contour map of a three-dimensional surface

 cool optional colormap used in surface plots

 copper optional colormap used in surface plots

 fi gure opens a new fi gure window

 fl ag optional colormap used in surface plots

 fplot creates an x – y plot based on a function

 gtext similar to text; the box is placed at a location determined interactively by the user by
clicking in the fi gure window

 grid adds a grid to the current plot only

 grid off turns the grid off

 grid on adds a grid to the current and all subsequent graphs in the current fi gure

 hist generates a histogram

 hold off instructs matlab ® to erase fi gure contents before adding new information

 hold on instructs matlab ® not to erase fi gure contents before adding new information

 hot optional colormap used in surface plots

 hsv optional colormap used in surface plots

 jet default colormap used in surface plots

 legend adds a legend to a graph

 linspace creates a linearly spaced vector

 Special Characters (continued)

 Line Type Indicator Point Type Indicator Color Indicator

 triangle down v white w
 triangle up ̂
 triangle left <
 triangle right >
 pentagram p
 hexagram h

(continued)

Problems 195

 Commands and Functions

 loglog generates an x – y plot with both axes scaled logarithmically

 mesh generates a mesh plot of a surface

 meshgrid places each of two vectors into separate two-dimensional matrices, the size of which
is determined by the source vectors

 pause pauses the execution of a program until any key is hit

 pcolor creates a pseudo color plot similar to a contour map

 peaks creates a sample matrix used to demonstrate graphing functions

 pie generates a pie chart

 pie3 generates a three-dimensional pie chart

 pink optional colormap used in surface plots

 plot creates an x – y plot

 plot3 generates a three-dimensional line plot

 plotyy creates a plot with two y -axes

 polar creates a polar plot

 prism optional colormap used in surface plots

 semilogx generates an x – y plot with the x -axis scaled logarithmically

 semilogy generates an x – y plot with the y -axis scaled logarithmically

 shading fl at shades a surface plot with one color per grid section

 shading inte: shades a surface plot by interpolation

 sphere sample function used to demonstrate graphing

 spring optional colormap used in surface plots

 subplot divides the graphics window into sections available for plotting

 summer optional colormap used in surface plots

 surf generates a surface plot

 surfc generates a combination surface and contour plot

 text adds a text box to a graph

 title adds a title to a plot

 white optional colormap used in surface plots

 winter optional colormap used in surface plots

 xlabel adds a label to the x -axis

 ylabel adds a label to the y -axis

 zlabel adds a label to the z -axis

 Two-Dimensional (x – y) Plots

 5.1 Create plots of the following functions from x � 0 to 10.

 (a) y � ex
 (b) y � sin1x2
 (c) y � ax2 � bx � c, where a � 5, b � 2, and c � 4
 (d) y � 2x

 Each of your plots should include a title, an x -axis label, a y -axis label, and a
grid.

 PROBLEMS

196 Chapter 5 Plotting

 5.2 Plot the following set of data:

 y � 312, 14, 12, 22, 8, 94
 Allow MATLAB ® to use the matrix index number as the parameter for the
 x -axis.

 5.3 Plot the following functions on the same graph for x values from -p to p,
selecting spacing to create a smooth plot:

 y1 � sin1x2
 y2 � sin12x2
 y3 � sin13x2

 (Hint : Recall that the appropriate MATLAB ® syntax for 2 x is 2 * x.)
 5.4 Adjust the plot created in Problem 5.3 so that:

 • Line 1 is red and dashed.
 • Line 2 is blue and solid.
 • Line 3 is green and dotted.
 Do not include markers on any of the graphs. In general, markers are
included only on plots of measured data, not for calculated values.

 5.5 Adjust the plot created in Problem 5.4 so that the x -axis goes from �6 to
 �6.
 • Add a legend.
 • Add a text box describing the plots.

 x – y Plotting with Projectiles

 Use the following information in Problems 5.6 through 5.10:
 The distance a projectile travels when fi red at an angle u is a function of time
and can be divided into horizontal and vertical distances according to the
formulas

 horizontal1t2 � tV0 cos1u2
 and

 vertical1t2 � tV0 sin1u2 � 1
2gt2

 where
 horizontal = distance traveled in the x direction
 vertical = distance traveled in the y direction
 V0 = initial velocity
 g = acceleration due to gravity, 9.8 m > s2
 t = time, s.

 5.6 Suppose the projectile just described is fi red at an initial velocity of 100 m/s
and a launch angle of p > 4 145�2. Find the distance traveled both horizon-
tally and vertically (in the x and y directions) for times from 0 to 20 s with a
spacing of .01 seconds.
 (a) Graph horizontal distance versus time.
 (b) In a new fi gure window, plot vertical distance versus time (with time on

the x -axis).
 Don’t forget a title and labels.

 5.7 In a new fi gure window, plot horizontal distance on the x -axis and vertical
distance on the y -axis.

 5.8 Replot horizontal distance on the x -axis and vertical distance on the y -axis
using the comet function. If the plot draws too quickly or too slowly on your
computer, adjust the number of time values used in your calculations.

Problems 197

 5.9 Calculate three new vectors for each of the vertical 1v1, v2, v32 and hori-
zontal 1h1, h2, h32 distances traveled, assuming launch angles of p > 2, p > 4,
and p > 6.
 • In a new fi gure window, graph horizontal distance on the x -axis and verti-

cal distance on the y -axis, for all three cases. (You’ll have three lines.)
 • Make one line solid, one dashed, and one dotted. Add a legend to iden-

tify which line is which.
 5.10 Re-create the plot from Problem 5.9. This time, create a matrix theta of

the three angles, p > 2, p > 4, and p > 6. Use the meshgrid function to cre-
ate a mesh of theta and the time vector (t). Then use the two new meshed
variables you create to recalculate vertical distance (v) and horizontal dis-
tance (h) traveled. Each of your results should be a 2001 � 3 matrix. Use
the plot command to plot h on the x -axis and v on the y -axis.

 5.11 A tensile testing machine such as the one shown in Figure P5.11 is used
to determine the behavior of materials as they are deformed. In the typical
test, a specimen is stretched at a steady rate. The force (load) required to
deform the material is measured, as is the resulting deformation. An exam-
ple set of data measured in one such test is shown in Table P5.11 . These data

Figure P5.11
A tensile testing machine is
used to measure stress and
strain and to characterize
the behavior of materials
as they are deformed.

 Table P5.11 Tensile Testing Data

(From William Callister, Materials Science and Engineering, An Introduction, 5th ed., p. 149.)

 load, lbf length, inches

 0 2

 1650 2.002

 3400 2.004

 5200 2.006

 6850 2.008

 7750 2.010

 8650 2.020

 9300 2.040

 10100 2.080

 10400 2.120

Moving
crosshead

Specimen

Extensio-
meter

Load cell

198 Chapter 5 Plotting

can be used to calculate the applied stress and the resulting strain with the
following equations.

 s �
F
A
 and e �

l � l0
l0

 where
 s = stress in lbf>in.2 (psi)
 F = applied force in lbf
 A = sample cross-sectional area in in.2
 e = strain in in./in.
 l = sample length
 l0 = original sample length

 (a) Use the provided data to calculate the stress and the corresponding
strain for each data pair. The tested sample was a rod of diameter
0.505 in., so you’ll need to fi nd the cross-sectional area to use in your
calculations.

 (b) Create an x–y plot with strain on the x -axis and stress on the y -axis.
Connect the data points with a solid black line, and use circles to mark
each data point.

 (c) Add a title and appropriate axis labels.
 (d) The point where the graph changes from a straight line with a steep

slope to a fl attened curve is called the yield stress or yield point. This
corresponds to a signifi cant change in the material behavior. Before the
yield point the material is elastic, returning to its original shape if the
load is removed—much like a rubber band. Once the material has been
deformed past the yield point, the change in shape becomes perma-
nent and is called plastic deformation. Use a text box to mark the yield
point on your graph.

 5.12 In the previous chapter, the accumulated cyclone energy index (ACE) was
introduced (Problem 4.5). Use that data to solve the following problems. It
may also be available to you as an EXCEL spreadsheet, named ace_data.
xlsx.

 (a) Create an x–y plot of the year (on the x -axis) versus the ACE index val-
ues (on the y -axis.)

 (b) Calculate the mean ACE value, and use it to draw the mean value on
your graph. (Hint: You just need two points, one at the fi rst year and
another at the fi nal year).

 (c) Use the filter function to fi nd a running weighted average of the
ACE data, over a 10-year period, using the following syntax, assuming
you have named the data extracted from the ACE column, ace .

running_avg_ace = filter(ones(1,10)/10,1,ace);

 Create a plot of the year (on the x -axis) versus the ACE value and the
weighted average on the y -axis. (You will have two lines.) From your
graph, do you think hurricane intensity is increasing? You can fi nd out
more about the filter function by searching the help documentation.

 Using Subplots

 5.13 In Problem 5.1, you created four plots. Combine these into one fi gure with
four subwindows, using the subplot function of MATLAB ® .

Problems 199

 5.14 In Problems 5.6, 5.7, and 5.9, you created a total of four plots. Combine these
into one fi gure with four subwindows, using the subplot function of MATLAB ® .

 Polar Plots

 5.15 Create a vector of angles from 0 to 2p. Use the polar plotting function to
create graphs of the functions that follow. Remember, polar plots expect
the angle and the radius as the two inputs to the polar function. Use the
 subplot function to put all four of your graphs in the same fi gure.

 (a) r � sin21u) � cos21u2
 (b) r � sin1u2
 (c) r � eu > 5
 (d) r � sinh1u2

 5.16 In Practice Exercises 5.3, you created a number of interesting shapes in polar
coordinates. Use those exercises as a help in creating the following fi gures:

 (a) Create a “fl ower” with three petals.
 (b) Overlay your fi gure with eight additional petals, half the size of the

three original ones.
 (c) Create a heart shape.
 (d) Create a six-pointed star.
 (e) Create a hexagon.

 Logarithmic Plots

 5.17 When interest is compounded continuously, the following equation repre-
sents the growth of your savings:

 P � P0e
rt

 In this equation,
 P � current balance
 P0 � initial balance
 r � growth constant, expressed as a decimal fraction
 t � time invested.
 Determine the amount in your account at the end of each year if you invest
$1000 at 8% (0.08) for 30 years. (Make a table.)

 Create a fi gure with four subplots. Plot time on the x -axis and current
balance P on the y -axis.

 (a) In the fi rst quadrant, plot t versus P in a rectangular coordinate system.
 (b) In the second quadrant, plot t versus P , scaling the x -axis logarithmically.
 (c) In the third quadrant, plot t versus P , scaling the y -axis logarithmically.
 (d) In the fourth quadrant, plot t versus P , scaling both axes logarithmically.

 Which of the four plotting techniques do you think displays the data best?
 5.18 According to Moore’s law (an observation made in 1965 by Gordon Moore,

a cofounder of Intel Corporation; see Figure P5.18), the number of transis-
tors that would fi t per square inch on a semiconductor integrated circuit
doubles approximately every 2 years. Although Moore’s law is often reported
as predicting doubling every 18 months, this is incorrect. A colleague of
Moore took into account the fact that transistor performance is also improv-
ing, and when combined with the increased number of transistors results in
doubling of performance every 18 months. The year 2005 was the 40th

Figure P5.18
Gordon Moore, a pioneer
of the semiconductor
industry. (Copyright ©
2005 Intel Corporation.)

200 Chapter 5 Plotting

 anniversary of the law. Over the last 40 years, Moore’s projection has been
consistently met. In 1965, the then state-of-the-art technology allowed for
30 transistors per square inch. Moore’s law says that transistor density can
be predicted by d1t2 � 30 12t > 22, where t is measured in years.

 (a) Letting t � 0 represent the year 1965 and t � 46 represent 2011, use
this model to calculate the predicted number of transistors per square
inch for the 46 years from 1965 to 2011. Let t increase in increments of
2 years. Display the results in a table with two columns—one for the year
and one for the number of transistors.

 (b) Using the subplot feature, plot the data in a linear x – y plot, a semilog
 x plot, a semilog y plot, and a log–log plot. Be sure to title the plots and
label the axes.

 5.19 The total transistor count on integrated circuits produced over the last 35
years is shown in Table P5.19 . Create a semilog plot (with the y -axis scaled

 Table P5.19 Exponential Increase in Transistor Count on Integrated Circuits*

 Processor
 Transistor

Count
 Date of

Introduction Manufacturer

 Intel 4004 2300 1971 Intel

 Intel 8008 2500 1972 Intel

 Intel 8080 4500 1974 Intel

 Intel 8088 29000 1979 Intel

 Intel 80286 134000 1982 Intel

 Intel 80386 275000 1985 Intel

 Intel 80486 1200000 1989 Intel

 Pentium 3100000 1993 Intel

 AMD K5 4300000 1996 AMD

 Pentium II 7500000 1997 Intel

 AMD K6 8800000 1997 AMD

 Pentium III 9500000 1999 Intel

 AMD K6-III 21300000 1999 AMD

 AMD K7 22000000 1999 AMD

 Pentium 4 42000000 2000 Intel

 Barton 54300000 2003 AMD

 AMD K8 105900000 2003 AMD

 Itanium 2 220000000 2003 Intel

 Itanium 2 with 9MB cache 592000000 2004 Intel

 Cell 241000000 2006 Sony/IBM/Toshiba

 Core 2 Duo 291000000 2006 Intel

 Core 2 Quad 582000000 2006 Intel

 G80 681000000 2006 NVIDIA

 POWER6 789000000 2007 IBM

 Dual-Core Itanium 2 1700000000 2006 Intel

 Quad-Core Itanium Tukwila (processor) [1] 2000000000 2008 Intel

 8-Core Xeon Nehalem-EX 2300000000 2010 Intel

 10-Core Xeon Westmere-EX 2600000000 2011 Intel

 *Data from Wikipedia , http://en.wikipedia.org/wiki/Transistor_count .

http://en.wikipedia.org/wiki/Transistor_count

Problems 201

logarithmically) of the actual data, using circles only to indicate the data
points (no lines). Include a second line representing the predicted values
using Moore’s law, based on the 1971 count as the starting point. Add a leg-
end to your plot.

 5.20 Many physical phenomena can be described by the Arrhenius equation. For
example, reaction-rate constants for chemical reactions are modeled as

 k � k0e
1-Q>RT2

 where
 k0 � constant with units that depend upon the reaction
 Q � activation energy, kJ/kmol
 R � ideal gas constant, kJ/kmol K
 T � temperature in K.

 For a certain chemical reaction, the values of the constants are

 Q � 1000 J>mol

 k0 � 10 s-1
 R � 8.314 J>mol K

 for T from 300 K to 1000 K. Find the values of k . Create the following two
graphs of your data in a single fi gure window:

 (a) Plot T on the x -axis and k on the y -axis.
 (b) Plot your results as the log10 of k on the y -axis and 1/ T on the x -axis.

 Bar Graphs, Pie Charts, and Histograms

 5.21 Let the vector

 G � [68, 83, 61, 70, 75, 82, 57, 5, 76, 85, 62, 71, 96, 78, 76, 68, 72, 75, 83, 93]

 represent the distribution of fi nal grades in an engineering course.

 (a) Use MATLAB ® to sort the data and create a bar graph of the scores.
 (b) Create a histogram of the scores.

 5.22 In the engineering class mentioned in Problem 5.21, there are
 2 A’s
 4 B’s
 8 C’s
 4 D’s
 2 E’s

 (a) Create a vector of the grade distribution

grades � 32, 4, 8, 4, 24
 Create a pie chart of the grades vector. Add a legend listing the grade

names (A, B, C, etc.)
 (b) Use the menu text option instead of a legend to add a text box to each

slice of pie, and save your modifi ed graph as a .fig fi le.
 (c) Create a three-dimensional pie chart of the same data. Earlier versions

of MATLAB ® had trouble with legends for many three-dimensional fi g-
ures, so don’t be surprised if your legend doesn’t match the pie chart.

202 Chapter 5 Plotting

 5.23 The inventory of a certain type of screw in a warehouse at the end of each
month is listed in the following table:

 2009 2010

 January 2345 2343

 February 4363 5766

 March 3212 4534

 April 4565 4719

 May 8776 3422

 June 7679 2200

 July 6532 3454

 August 2376 7865

 September 2238 6543

 October 4509 4508

 November 5643 2312

 December 1137 4566

 Plot the data in a bar graph.
 5.24 Use the randn function to create 1000 values in a normal (Gaussian) distri-

bution of numbers with a mean of 70 and a standard deviation of 3.5. Create
a histogram of the data set you calculated.

 Graphs with Two y -Axes

 5.25 In the introduction to Problems 5.6 through 5.9, we learned that the equa-
tions for the distance traveled by a projectile as a function of time are

 Horizontal1t2 � tV0 cos1u2
 Vertical1t2 � tV0 sin1u2 � 1

2gt2

 For time from 0 to 20 s, plot both the horizontal distance versus time and
the vertical distance versus time on the same graph, using separate y -axes
for each line. Assume a launch angle of 45˚ (p > 4 radians) and an initial
velocity of 100 m/s. Assume also that the acceleration due to gravity, g , is 9.8
m/s. Be sure to label both y -axes.

 5.26 If the equation modeling the vertical distance traveled by a projectile as a
function of time is

 Vertical1t2 � tV0 sin1u2 � 1>2 gt2

 then, from calculus, the velocity in the vertical direction is

 Velocity1t2 � V0 sin1u2 � gt

 Create a vector t from 0 to 20 s, and calculate both the vertical position and
the velocity in the vertical direction, assuming a launch angle u of p > 4
radians and an initial velocity of 100 m/s. Plot both quantities on the same
graph with separate y -axes. Be sure to label both y -axes.

 The velocity should be zero at the point where the projectile is the
highest in the vertical direction. Does your graph support this prediction?

 5.27 For many metals, deformation changes their physical properties. In a pro-
cess called cold work , metal is intentionally deformed to make it stronger.

Problems 203

The following data tabulate both the strength and ductility of a metal that
has been cold worked to different degrees:

 Percent Cold Work Yield Strength, MPa Ductility, %

 10 275 43
 15 310 30
 20 340 23
 25 360 17
 30 375 12
 40 390 7
 50 400 4
 60 407 3
 68 410 2

 Plot these data on a single x – y plot with two y -axes. Be sure to label both y -axes.

 Three-Dimensional Line Plots

 5.28 Create a vector x of values from 0 to 20 p, with a spacing of p>100. Defi ne
vectors y and z as

 y � x sin1x2
 and

 z � x cos1x2
 (a) Create an x–y plot of x and y .
 (b) Create a polar plot of x and y .
 (c) Create a three-dimensional line plot of x , y , and z . Don’t forget a title

and labels.

 5.29 Figure out how to adjust your input to plot3 in Problem 5.28 so as to cre-
ate a graph that looks like a tornado (see Figure P5.29). Use comet3
instead of plot3 to create the graph.

100
50

0
50

100

100

50

0

50

100
0

20

40

60

80

Figure P5.29
Tornado plot.

204 Chapter 5 Plotting

 Three-Dimensional Surface and Contour Plots

 5.30 Create x and y vectors from �5 to �5 with a spacing of 0.5. Use the mesh-
grid function to map x and y onto two new two-dimensional matrices
called X and Y . Use your new matrices to calculate vector Z , with magnitude

 Z � sin12X 2 � Y 22
 (a) Use the mesh plotting function to create a three-dimensional plot of Z .
 (b) Use the surf plotting function to create a three-dimensional plot of Z .

Compare the results you obtain with a single input (Z) with those
obtained with inputs for all three dimensions (X, Y, Z) .

 (c) Modify your surface plot with interpolated shading. Try using different
 colormaps .

 (d) Generate a contour plot of Z .
 (e) Generate a combination surface and contour plot of Z .

6

 INTRODUCTION

 The MATLAB ® programming language is built around functions. A function is a piece
of computer code that accepts an input argument from the user and provides output
to the program. Functions allow us to program effi ciently, enabling us to avoid rewrit-
ing the computer code for calculations that are performed frequently. For example,
most computer programs contain a function that calculates the sine of a number. In
MATLAB ® , sin is the function name used to call up a series of commands that per-
form the necessary calculations. The user needs to provide an angle, and MATLAB ®
returns a result. It isn’t necessary for the programmer to know how MATLAB ® calcu-
lates the value of sin(x) .

 6.1 CREATING FUNCTION M-FILES

 We have already explored many of MATLAB ® ’s built-in functions, but you may wish to
defi ne your own functions—those that are used commonly in your programming.
User-defi ned functions are stored as M-fi les and can be accessed by MATLAB ® if they
are in the current folder or on MATLAB®’s search path.

 After reading this chapter, you
should be able to:
 • Create and use your own

MATLAB ® functions with
both single and multiple
inputs and outputs

 • Store and access your own
functions in toolboxes

 • Create and use anonymous
functions

 • Create and use function
handles

 • Create and use
 subfunctions and nested
subfunctions

 Objectives

 User-Defi ned
Functions

 C H A P T E R

206 Chapter 6 User-Defi ned Functions

 6.1.1 Syntax

 Both built-in MATLAB ® functions and user-defi ned MATLAB ® functions have the
same structure. Each consists of a name, user-provided input, and calculated out-
put. For example, the function

cos(x)

 • is named cos ,
 • takes the user input inside the parentheses (in this case, x), and
 • calculates a result.

 The user does not see the calculations performed, but just accepts the answer.
User-defi ned functions work the same way. Imagine that you have created a func-
tion called my_function . Using

my_function(x)

 in a program or from the command window will return a result, as long as x is
defi ned and the logic in the function defi nition works.

 User-defi ned functions are created in M-fi les. Each must start with a function-
defi nition line that contains:

 • The word function
 • A variable that defi nes the function output
 • A function name
 • A variable used for the input argument

 For example,

function output = my_function(x)

 is the fi rst line of the user-defi ned function called my_function . It requires one
input argument, which the program will call x , and will calculate one output argu-
ment, which the program will call output . The function name and the names of
the input and output variables are arbitrary and are selected by the programmer.
Here’s an example of an appropriate fi rst line for a function called calculation :

function result = calculation(a)

 In this case, the function name is calculation , the input argument will be called
a in any calculations performed in the function program, and the output will be
called result . Although any valid MATLAB ® names can be used, it is good pro-
gramming practice to use meaningful names for all variables and for function names.

 KEY IDEA
 Functions allow us to
program more effi ciently

 FUNCTION
 A piece of computer code
that accepts an input,
performs a calculation, and
provides an output

 HINT
 Students are often confused about the use of the word input as it refers to a
function. We use it here to describe the input argument—the value that goes
inside the parentheses when we call a function. In MATLAB ® , input argu-
ments are different from the input command.

 Here’s an example of a very simple MATLAB ® function that calculates the value
of a particular polynomial:

function output = poly(x)
%This function calculates the value of a third-order

6.1 Creating Function M-Files 207

%polynomial
output = 3*x.^3 + 5*x.^2 - 2*x +1;

 The function name is poly , the input argument is x , and the output variable is
named output .

 Before this function can be used, it must be saved into the current folder. The
fi le name must be the same as the function name in order for MATLAB ® to fi nd it. All
of the MATLAB ® naming conventions we learned for naming variables apply to
naming user-defi ned functions. In particular,

 • The function name must start with a letter.
 • It can consist of letters, numbers, and the underscore.
 • Reserved names cannot be used.
 • Any length is allowed, although long names are not good programming practice.

 Once the M-fi le has been saved, the function is available for use from the com-
mand window, from a script M-fi le, or from another function. You cannot execute a
function M-fi le directly from the M-fi le itself. This makes sense, since the input
parameters have not been defi ned until you call the function from the command
window or a script M-fi le. Consider the poly function just created. If, in the com-
mand window, we type

 poly(4)

 then MATLAB ® responds with

ans =
265

 If we set a equal to 4 and use a as the input argument, we get the same result:

a = 4;
poly(a)

ans =
265

 If we defi ne a vector, we get a vector of answers. Thus,

y = 1:5;
poly(y)

 gives

ans =
7 41 121 265 491

 If, however, you try to execute the function by selecting the save-and-run icon from
the function menu bar, the following error message is displayed:

???Input argument “x” is undefined.
Error in ==> poly at 3
output = 3*x.^3 + 5*x.^2 - 2*x +1;

 The value of x must be passed to the function when it is used—either in the com-
mand window or from within a script M-fi le program.

 KEY IDEA
 Name functions using the
standard MATLAB® naming
conventions for variables

208 Chapter 6 User-Defi ned Functions

 HINT
 While you are creating a function, it may be useful to allow intermediate cal-
culations to print to the command window. However, once you complete your
“debugging,” make sure that all your output is suppressed. If you don’t, you’ll
see extraneous information in the command window.

 PRACTICE EXERCISES 6.1

 Create MATLAB ® functions to evaluate the following mathematical func-
tions (make sure you select meaningful function names) and test them. To
test your functions you’ll need to call them from the command window, or
use them in a script M-fi le program. Remember, each function requires its
own M-fi le.

1. y1x2 � x2
2. y1x2 � e1>x
3. y1x2 � sin1x22

 Create MATLAB ® functions for the following unit conversions (you may
need to consult a textbook or the Internet for the appropriate conversion
factors). Be sure to test your functions, either from the command window,
or by using them in a script M-fi le program.

 4. Inches to feet
 5. Calories to joules
 6. Watts to BTU/hr
 7. Meters to miles
 8. Miles per hour (mph) to ft/s

 CONVERTING BETWEEN DEGREES AND RADIANS
 Engineers usually measure angles in degrees, yet most computer programs and
many calculators require that the input to trigonometric functions be in radians.
Write and test a function DR that changes degrees to radians and another function
 RD that changes radians to degrees. Your functions should be able to accept both
scalar and matrix input.

 1. State the Problem
 Create and test two functions, DR and RD , to change degrees to radians and

radians to degrees (see Figure 6.1).
 2. Describe the Input and Output

 Input A vector of degree values
 A vector of radian values

 Output A table converting degrees to radians
 A table converting radians to degrees

 EXAMPLE 6.1

 Figure 6.1
 Trigonometric functions
require angles to be
expressed in radians.
Trigonometry is regularly
used in engineering
drawings.

6.1 Creating Function M-Files 209

(continued)

3. Develop a Hand Example

 degrees � radians � 180>p

 radians � degrees � p>180

 Degrees to Radians

 Degrees Radians

 0 0

 30 301p>1802 � p>6 � 0.524

 60 601p>1802 � p>3 � 1.047

 90 901p>1802 � p>2 � 1.571

 4. Develop a MATLAB ® Solution

%Example 6.1
%
clear, clc
%Define a vector of degree values
degrees = 0:15:180;
% Call the DR function, and use it to find radians
radians = DR(degrees);
%Create a table to use in the output
degrees_radians = [degrees;radians]'
%Define a vector of radian values
radians = 0:pi/12:pi;
%Call the RD function, and use it to find degrees
degrees = RD(radians);
radians_degrees = [radians;degrees]'

 The functions called by the program are

function output = DR(x)
%This function changes degrees to radians
output = x*pi/180;

 and

function output = RD(x)
%This function changes radians to degrees
output = x*180/pi;

 Remember that in order for the script M-fi le to fi nd the functions, they must be
in the current folder and must be named DR.m and RD.m . The program gen-
erates the following results in the command window:

degrees_radians =
0 0.000
15 0.262
30 0.524
45 0.785
60 1.047

210 Chapter 6 User-Defi ned Functions

75 1.309
90 1.571
105 1.833
120 2.094
135 2.356
150 2.618
165 2.880
180 3.142

radians_degrees =
0.000 0.000
0.262 15.000
0.524 30.000
0.785 45.000
1.047 60.000
1.309 75.000
1.571 90.000
1.833 105.000
2.094 120.000
2.356 135.000
2.618 150.000
2.880 165.000
3.142 180.000

5. Test the Solution
 Compare the MATLAB ® solution with the hand solution. Since the output is a

table, it is easy to see that the conversions generated by MATLAB ® correspond
to those calculated by hand.

 ASTM GRAIN SIZE
 You may not be used to thinking of metals as crystals, but they are. If you look at a
polished piece of metal under a microscope, the structure becomes clear, as seen in
 Figure 6.2 . As you can see, every crystal (called a grain in metallurgy) is a different
size and shape. The size of the grains affects the metal’s strength; the fi ner the
grains, the stronger the metal.

 Because it is diffi cult to determine an “average” grain size, a standard tech-
nique has been developed by ASTM (formerly known as the American Society for
Testing and Materials, but now known just by its initials). A sample of metal is exam-
ined under a microscope at a magnifi cation of 100, and the number of grains in
1 square inch is counted. The parameters are related by

 N � 2n�1

 where n is the ASTM grain size and N is the number of grains per square inch at
 100� . The equation can be solved for n to give

 n �
1log1N2 � log1222

log122

 EXAMPLE 6.2

 Figure 6.2
 Typical microstructures of
iron 1400�2. (From Metals
Handbook , 9th ed., Vol. 1,
American Society of
Metals, Metals Park, Ohio,
1978.)

6.1 Creating Function M-Files 211

(continued)

 This equation is not hard to use, but it’s awkward. Instead, let’s create a MATLAB ®

function called grain_size .

1. State the Problem
 Create and test a function called grain_size to determine the ASTM grain

size of a piece of metal.
2. Describe the Input and Output
 To test the function, we’ll need to choose an arbitrary number of grains. For

example:

 Input 16 grains per square inch at 100�

 Output ASTM grain size

3. Develop a Hand Example

 n �
1log1N2 � log1222

log122

 n �
1log1162 � log1222

log122 � 5

 4. Develop a MATLAB ® Solution
 The function, created in a separate M-fi le, is

function output = grain_size(N)
%Calculates the ASTM grain size n
output = (log10(N) + log10(2))./log10(2);

 which was saved as grain_size.m in the current folder. To use this function,
we can call it from the command window:

grain_size(16)
ans =

5

 5. Test the Solution
 The MATLAB ® solution is the same as the hand solution. It might be interest-

ing to see how the ASTM grain size varies with the number of grains per square
inch. We could use the function with an array of values and plot the results in
 Figure 6.3 .

%Example 6.2
%ASTM Grain Size
N = 1:100;
n = grain_size(N);
plot(N,n)
title('ASTM Grain Size')
xlabel('Number of grains per square inch at 100x')
ylabel('ASTM Grain Size')
grid

 As expected, the grain size increases as the number of grains per square inch
increases.

212 Chapter 6 User-Defi ned Functions

 6.1.2 Comments

 As with any computer program, you should comment your code liberally so that it is
easy to follow. However, in a MATLAB ® function, the comments on the line imme-
diately following the very fi rst line serve a special role. These lines are returned
when the help function is queried from the command window. Consider, for exam-
ple, the following function:

function results = f(x)
%This function converts seconds to minutes
results = x./60;

 Querying the help function from the command window

help f

 returns

This function converts seconds to minutes

 6.1.3 Functions with Multiple Inputs and Outputs

 Just as the predefi ned MATLAB ® functions may require multiple inputs and may
return multiple outputs, more complicated user-defi ned functions can be written.
Recall, for example, the remainder function. This predefi ned function calculates
the remainder in a division problem and requires the user to input the dividend
and the divisor. For the problem 53, the correct syntax is

rem(5,3)

 which gives

ans =
2

0 20 40 60 80 1000

2

4

6

8

ASTM Grain Size

Number of grains per square inch at 100x

A
ST

M
 G

ra
in

 S
iz

e

 Figure 6.3
 A plot of a function’s
behavior is a good way to
help determine whether
you have programmed it
correctly.

 KEY IDEA
 Function comments are
displayed when you use
the help feature

6.1 Creating Function M-Files 213

 Similarly, a user-defi ned function could be written to multiply two vectors
together:

function output = g(x,y)
% This function multiplies x and y together
% x and y must be the same size matrices
a = x .*y;
output = a;

 When x and y are defi ned in the command window and the function g is called,
a vector of output values is returned:

x = 1:5;
y = 5:9;
g(x,y)
ans =

5 12 21 32 45

 You can use the comment lines to let users know what kind of input is required
and to describe the function. In this example, an intermediate calculation (a) was
performed, but the only output from this function is the variable we’ve named
 output . This output can be a matrix containing a variety of numbers, but it’s still
only one variable.

 You can also create functions that return more than one output variable. Many
of the predefi ned MATLAB ® functions return more than one result. For example,
 max returns both the maximum value in a matrix and the element number at which
the maximum occurs. To achieve the same result in a user-defi ned function, make
the output a matrix of answers instead of a single variable, as in

function [dist, vel, accel] = motion(t)
% This function calculates the distance, velocity, and
% acceleration of a particular car for a given value of t
% assuming all 3 parameters are initially 0.
accel = 0.5 .*t;
vel = t.^2/4;
dist = t.^3/12;

 Once saved as motion in the current folder, you can use the function to fi nd
values of distance , velocity , and acceleration at specifi ed times:

[distance, velocity, acceleration] = motion(10)

distance =
83.33

velocity =
25

acceleration =
5

 If you call the motion function without specifying all three outputs, only the
fi rst output will be returned:

motion(10)
ans =

83.333

214 Chapter 6 User-Defi ned Functions

 Remember, all variables in MATLAB ® are matrices, so it’s important in the pre-
ceding example to use the .* operator, which specifi es element-by-element multi-
plication. For example, using a vector of time values from 0 to 30 in the motion
function

time = 0:10:30;
[distance, velocity, acceleration] = motion(time)

 returns three vectors of answers:

distance =
0 83.33 666.67 2250.00

velocity =
0 25.00 100.00 225.00

acceleration =
0 5.00 10.00 15.00

 It’s easier to see the results if you group the vectors together, as in

results = [time',distance',velocity',acceleration']

 which returns

results =

0 0 0 0
10.00 83.33 25.00 5.00
20.00 666.67 100.00 10.00
30.00 2250.00 225.00 15.00

 Because time , distance , velocity , and acceleration were row vectors,
the transpose operator was used to convert them into columns.

 PRACTICE EXERCISES 6.2

 Assuming that the matrix dimensions agree, create and test MATLAB ®
functions to evaluate the following simple mathematical functions with
multiple input vectors and a single output vector:

 1. z1x, y2 � x � y
 2. z1a, b, c2 � abc
 3. z1w, x, y2 � we1x>y2
 4. z1p, t2 � p>sin1t2
 Assuming that the matrix dimensions agree, create and test MATLAB ®
functions to evaluate the following simple mathematical functions with a
single input vector and multiple output vectors:

 5. f1x2 � cos1x2
 f1x2 � sin1x2
 6. f1x2 � 5x2 � 2
 f1x2 � 25x2 � 2
 7. f1x2 � exp1x2
 f1x2 � ln1x2

6.1 Creating Function M-Files 215

 Assuming that the matrix dimensions agree, create, and test MATLAB ®

functions to evaluate the following simple mathematical functions with
multiple input vectors and multiple output vectors:

8. f1x, y2 � x � y
f1x, y2 � x � y

9. f1x, y2 � yex
 f1x, y2 � xey

 HOW GRAIN SIZE AFFECTS METAL STRENGTH:
A FUNCTION WITH THREE INPUTS
 Metals composed of small crystals are stronger than metals composed of fewer large
crystals. The metal yield strength (the amount of stress at which the metal starts to
permanently deform) is related to the average grain diameter by the Hall–Petch
equation :

 s � s0 � Kd�1>2

 where the symbols s0 and K represent constants that are different for every metal.
 Create a function called HallPetch that requires three inputs— s0, K , and

 d —and calculates the value of yield strength. Call this function from a MATLAB ®

program that supplies values of s0 and K , then plots the value of yield strength for
values of d from 0.1 to 10 mm.

 1. State the Problem
 Create a function called HallPetch that determines the yield strength of a

piece of metal, using the Hall–Petch equation. Use the function to create a plot
of yield strength versus grain diameter.

2. Describe the Input and Output

 Input K � 9600 psi>2mm
 s0 � 12,000 psi
 d � 0.1 to 10 mm

 Output Plot of yield strength versus diameter

3. Develop a Hand Example
 The Hall–Petch equation is

 s � s0 � Kd�1>2

 Substituting values of 12,000 psi and 9600 psi>2mm for s0 and K , respectively,
then

 s � 12,000 � 9600d�1>2

 For d � 1 mm,

 s � 12,000 � 9600 � 21,600

 EXAMPLE 6.3

(continued)

216 Chapter 6 User-Defi ned Functions

4. Develop a MATLAB ® Solution
 The desired function, created in a separate M-fi le, is

function output = HallPetch(sigma0,k,d)
%Hall–Petch equation to determine the yield
%strength of metals
output = sigma0 + K*d.^(-0.5);

 and was saved as HallPetch.m in the current folder:

%Example 6.3
clear,clc
format compact
s0 = 12000
K = 9600
%Define the values of grain diameter
diameter = 0.1:0.1:10;
yield = HallPetch(s0,K,d);
%Plot the results
figure(1)
plot(diameter,yield)
title('Yield strengths found with the Hall–Petch equation')
xlabel('diameter, mm')
ylabel('yield strength, psi')

 The graph shown in Figure 6.4 was generated by the program.
 5. Test the Solution
 We can use the graph to compare the results to the hand solution.

0 2 4 6 8 10
1.5

2

2.5

3

3.5

4

4.5
 104 Yield strengths found with the Hall–Petch equation

diameter, mm

yi
el

d
st

re
ng

th
, p

si

 Figure 6.4
 Yield strengths predicted
with the Hall–Petch
equation. Small grain
diameters correspond to
large values of the yield
strength.

6.1 Creating Function M-Files 217

 KINETIC ENERGY: A FUNCTION WITH TWO INPUTS
 The kinetic energy of a moving object (Figure 6.5) is

 KE � 1
 >2 mv2.

 Create and test a function called KE to fi nd the kinetic energy of a moving car
if you know the mass m and the velocity v of the vehicle.

1. State the Problem
 Create a function called KE to fi nd the kinetic energy of a car.
2. Describe the Input and Output

 Input Mass of the car, in kilograms
 Velocity of the car, in m/s

 Output Kinetic energy, in joules
3. Develop a Hand Example
 If the mass is 1000 kg, and the velocity is 25 m/s, then

 KE � 1
 >2 � 1000 kg � 125 m>s22 � 312,500 J � 312.5 kJ

4. Develop a MATLAB ® Solution

function output = ke(mass,velocity)
output = 1/2*mass*velocity.^2;

 5. Test the Solution

v = 25;
m = 1000;
ke(m,v)
ans =

312500

 This result matches the hand example, confi rming that the function works cor-
rectly and can now be used in a larger MATLAB ® program.

 EXAMPLE 6.4

 Figure 6.5
 Race cars store a
signifi cant amount of
kinetic energy. (Rick
Graves/Getty Images.)

218 Chapter 6 User-Defi ned Functions

 6.1.4 Functions with No Input or No Output

 Although most functions need at least one input and return at least one output
value, in some situations no inputs or outputs are required. For example, consider
this function, which draws a star in polar coordinates:

function [] = star()
theta = pi/2:0.8*pi:4.8*pi;
r = ones(1,6);
polar(theta,r)

 The square brackets on the fi rst line indicate that the output of the function is
an empty matrix (i.e., no value is returned). The empty parentheses tell us that no
input is expected. If, from the command window, you type

star

 then no values are returned, but a fi gure window opens showing a star drawn in
polar coordinates (see Figure 6.6).

 0.2

0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

 Figure 6.6
 The user-defi ned function
 star requires no input and
produces no output values,
but it does draw a star in
polar coordinates.

 HINT
 You may ask yourself if the star function is really an example of a function
that does not return an output; after all, it does draw a star. But the output of
a function is defi ned as a value that is returned when you call the function. If
we ask MATLAB ® to perform the calculation

A = star

 an error statement is generated, because the star function does not return
anything! Thus, there is nothing to set A equal to.

6.1 Creating Function M-Files 219

 There are numerous built-in MATLAB ® functions that do not require any
input. For example,

A = clock

 returns the current time:

A =
1.0e+003 *
Columns 1 through 4

2.0050 0.0030 0.0200 0.0150
Columns 5 through 6

0.0250 0.0277

 Also,

A = pi

 returns the value of the mathematical constant p:

A =

3.1416

 However, if we try to set the MATLAB ® function tic equal to a variable name,
an error statement is generated, because tic does not return an output value:

A = tic
???Error using ==> tic
Too many output arguments.

 (The tic function starts a timer going for later use in the toc function.)

 6.1.5 Determining the Number of Input and Output Arguments

 There may be times when you want to know the number of input arguments or out-
put values associated with a function. MATLAB ® provides two built-in functions for
this purpose.

 The nargin function determines the number of input arguments in either a
user-defi ned function or a built-in function. The name of the function must be
specifi ed as a string, as, for example, in

nargin('sin')
ans =

1

 The remainder function, rem , requires two inputs; thus,

nargin('rem')
ans =

2

 When nargin is used inside a user-defi ned function, it determines how many
input arguments were actually entered. This allows a function to have a variable
number of inputs. Recall graphing functions such as surf . When surf has a single
matrix input, a graph is created, using the matrix index numbers as the x - and
 y -coordinates. When there are three inputs, x , y , and z , the graph is based on the
specifi ed x- and y -values. The nargin function allows the programmer to deter-
mine how to create the plot, based on the number of inputs.

 KEY IDEA
 Not all functions require
an input

 KEY IDEA
 Using the nargin or
 nargout functions is useful
in programming functions
with variable inputs and
outputs

220 Chapter 6 User-Defi ned Functions

 The surf function is an example of a function with a variable number of
inputs. If we use nargin from the command window to determine the number of
declared inputs, there isn’t one correct answer. The nargin function returns a
negative number to let us know that a variable number of inputs are possible:

nargin('surf')
ans =

-1

 The nargout function is similar to nargin , but it determines the number of
outputs from a function:

nargout('sin')
ans =

1

 The number of outputs is determined by how many matrices are returned, not how
many values are in the matrix. We know that size returns the number of rows and col-
umns in a matrix, so we might expect nargout to return 2 when applied to size. However,

nargout('size')
ans =

1

 returns only one matrix, which has just two elements, as for example, in

x = 1:10;
size(x)
ans =
1 10

 An example of a function with multiple outputs is max :

nargout('max')
ans =

2

 When used inside a user-defi ned function, nargout determines how many
outputs have been requested by the user. Consider this example, in which we have
rewritten the function from Section 6.1.4 to create a star:

function A = star1()
theta = pi/2:0.8*pi:4.8*pi;
r = ones(1,6);
polar(theta,r)
if nargout==1

A = 'Twinkle twinkle little star';
end

 If we use nargout from the command window, as in

nargout('star1')
ans =

1

 MATLAB® tells us that one output is specifi ed. If we call the function simply as

star1

6.1 Creating Function M-Files 221

 nothing is returned to the command window, although the plot is drawn. If we call
the function by setting it equal to a variable, as in

x = star1
x =
Twinkle twinkle little star

 a value for x is returned, based on the if statement embedded in the function,
which used nargout to determine the number of output values.

 If statements are introduced in Chapter 8 .

 6.1.6 Local Variables

 The variables used in function M-fi les are known as local variables . The only way a
function can communicate with the workspace is through input arguments and the
output it returns. Any variables defi ned within the function exist only for the func-
tion to use. For example, consider the g function previously described:

function output = g(x,y)
% This function multiplies x and y together
% x and y must be the same size matrices
a = x .*y;
output = a;

 The variables a , x , y , and output are local variables. They can be used for
additional calculations inside the g function, but they are not stored in the work-
space. To confi rm this, clear the workspace and the command window and then call
the g function:

clear, clc
g(10,20)

 The function returns

g(10,20)
ans =

200

 Notice that the only variable stored in the workspace window is ans , which is
characterized as follows:

 Name Value Size Bytes Class

 ans 200 1 × 1 8 double array

 Just as calculations performed in the command window or from a script M-fi le can-
not access variables defi ned in functions, functions cannot access the variables defi ned
in the workspace. This means that functions must be completely self-contained: The
only way they can get information from your program is through the input arguments,
and the only way they can deliver information is through the function output.

 Consider a function written to fi nd the distance an object falls due to gravity:

function result = distance(t)
%This function calculates the distance a falling object
%travels due to gravity
g = 9.8 %meters per second squared
result = 1/2*g*t.^2;

 LOCAL VARIABLE
 A variable that only has
meaning inside a program
or function

222 Chapter 6 User-Defi ned Functions

 The value of g must be included inside the function. It doesn’t matter whether
 g has or has not been used in the main program. How g is defi ned is hidden to the
distance function unless g is specifi ed inside the function.

 Of course, you could also pass the value of g to the function as an input argument:

function result = distance(g,t)
%This function calculates the distance a falling object
%travels due to gravity
result = 1/2*g*t.^2;

 HINT
 The same matrix names can be used in both a function and the program that
references it. However, they do not have to be the same. Since variable names
are local to either the function or the program that calls the function, the
variables are completely separate. As a beginning programmer, you would be
wise to use different variable names in your functions and your programs—
just so you don’t confuse yourself.

 6.1.7 Global Variables

 Unlike local variables, global variables are available to all parts of a computer
 program. In general, it is a bad idea to defi ne global variables. However, MATLAB®
protects users from unintentionally using a global variable by requiring that it be
identifi ed both in the command-window environment (or in a script M-fi le) and in
the function that will use it.

 Consider the distance function once again:

function result = distance(t)
%This function calculates the distance a falling object
%travels due to gravity
global G
result = 1/2*G*t.^2;

 The global command alerts the function to look in the workspace for the
value of G . G must also have been defi ned in the command window (or script
M-fi le) as a global variable:

global G
G = 9.8;

 This approach allows you to change the value of G without needing to redefi ne
the distance function or providing the value of G as an input argument to the dis-
tance function.

 KEY IDEA
 It is usually a bad idea to
defi ne global variables

 GLOBAL VARIABLE
 A variable that is available
from multiple programs

 HINT
 As a matter of style, always make the names of global variables uppercase.
MATLAB® doesn’t care, but it is easier to identify global variables if you use a
consistent naming convention.

6.1 Creating Function M-Files 223

 6.1.8 Accessing M-File Code

 The functions provided with MATLAB® are of two types. One type is built in, and
the code is not accessible for us to review. The other type consists of M-fi les, stored
in toolboxes provided with the program. We can see these M-fi les (or the M-fi les
we’ve written) with the type command. For example, the sphere function creates
a three-dimensional representation of a sphere; thus,

type sphere

 or

type('sphere')

 returns the contents of the sphere.m fi le:

function [xx,yy,zz] = sphere(varargin)
%SPHERE Generate sphere.
% [X,Y,Z] = SPHERE(N) generates three (N+1)-by-(N+1)
% matrices so that SURF(X,Y,Z) produces a unit sphere.
%
% [X,Y,Z] = SPHERE uses N = 20.
%
% SPHERE(N) and just SPHERE graph the sphere as a SURFACE
% and do not return anything.
%
% SPHERE(AX,(. . .) plots into AX instead of GCA.
%
% See also ELLIPSOID, CYLINDER.
% Clay M. Thompson 4-24-91, CBM 8-21-92.
% Copyright 1984-2002 The MathWorks, Inc.
% $Revision: 5.8.4.1 $ $Date: 2002/09/26 01:55:25 $

% Parse possible Axes input
error(nargchk(0,2,nargin));
[cax,args,nargs] = axescheck(varargin{:});

n = 20;
if nargs > 0, n = args{1}; end
% -pi <= theta <= pi is a row vector.
% -pi/2 <= phi <= pi/2 is a column vector.

 HINT
 It may seem like a good idea to use global variables because they can simplify
your programs. However, consider this example of using global variables in
your everyday life: It would be easier to order a book from an online book-
seller if you had posted your credit card information on a site where any
retailer could just look it up. Then the bookseller wouldn’t have to ask you to
type in the number. However, this might produce some unintended conse-
quences (like other people using your credit card without your permission or
knowledge!). When you create a global variable, it becomes available to other
functions and can be changed by those functions, sometimes leading to unin-
tended consequences.

224 Chapter 6 User-Defi ned Functions

theta = (-n:2:n)/n*pi;
phi = (-n:2:n)'/n*pi/2;
cosphi = cos(phi); cosphi(1) = 0; cosphi(n+1) = 0;
sintheta = sin(theta); sintheta(1) = 0; sintheta(n+1) = 0;

x = cosphi*cos(theta);
y = cosphi*sintheta;
z = sin(phi)*ones(1,n+1);

if nargout == 0
cax = newplot(cax);
surf(x,y,z,'parent',cax)

else
xx = x; yy = y; zz = z;

end

 HINT
 Notice that the sphere function uses varargin to indicate that it will accept
a variable number of input arguments. The function also makes use of the
 nargin and nargout functions. Studying this function may give you ideas
on how to program your own function M-fi les. The sphere function also uses
an if/else structure, which is introduced in a subsequent chapter of this text.

 6.2 CREATING YOUR OWN TOOLBOX OF FUNCTIONS

 When you call a function in MATLAB®, the program fi rst looks in the current folder
to see if the function is defi ned. If it can’t fi nd the function listed there, it starts
down a predefi ned search path, looking for a fi le with the function name. To view
the path the program takes as it looks for fi les, select

 File : Set Path

 from the menu bar or type

pathtool

 in the command window (Figure 6.7).
 As you create more and more functions to use in your programming, you may

wish to modify the path to look in a directory where you’ve stored your own personal
tools. For example, suppose you have stored the degrees-to-radians and radians-to-
degrees functions created in Example 6.1 in a directory called My_functions .

 You can add this directory (folder) to the path by selecting Add Folder from
the list of option buttons in the Set Path dialog window, as shown in Figure 6.7 .
You’ll be prompted to either supply the folder location or browse to fi nd it, as
shown in Figure 6.8 .

 MATLAB® now fi rst looks into the current folder for function defi nitions and
then works down the modifi ed search path, as shown in Figure 6.9 .

 Once you’ve added a folder to the path, the change applies only to the current
MATLAB® session, unless you save your changes permanently. Clearly, you should
never make permanent changes to a public computer. However, if someone else has
made changes you wish to reverse, you can select the default button as shown in
 Figure 6.9 to return the search path to its original settings.

 KEY IDEA
 Group your functions
together into toolboxes

6.2 Creating Your Own Toolbox of Functions 225

 Figure 6.7
 The path tool allows you to
change where MATLAB®
looks for function
defi nitions.

 Figure 6.8
 The Browse for Folder
window.

 The path tool allows you to change the MATLAB® search path interactively;
however, the addpath function allows you to insert the logic to add a search path
to any MATLAB® program. Consult

help addpath

 if you wish to modify the path in this way.

226 Chapter 6 User-Defi ned Functions

 MATLAB® provides access to numerous toolboxes developed at The MathWorks
or by the user community. For more information, see the fi rm’s website, www.
mathworks.com.

 6.3 ANONYMOUS FUNCTIONS AND FUNCTION HANDLES

 Normally, if you go to the trouble of creating a function, you will want to store it for
use in other programming projects. However, MATLAB® includes a simpler kind of
function, called an anonymous function . New to MATLAB® 7, anonymous functions
are defi ned in the command window or in a script M-fi le and are available—much
as are variable names—only until the workspace is cleared. To create an anonymous
function, consider the following example:

ln = @(x) log(x)

 • The @ symbol alerts MATLAB® that ln is a function.
 • Immediately following the @ symbol, the input to the function is listed in

parentheses.
 • Finally, the function is defi ned.

 The function name appears in the variable window, listed as a function_handle:

 Name Value Size Bytes Class

 ln @(x) log(x) 1×1 16 function_handle

 Figure 6.9
 Modifi ed MATLAB® search
path.

 KEY IDEA
 Anonymous functions may
be included in M-fi le
programs with other
commands or may be
defi ned from the command
window

 HINT
 Think of a function handle as a nickname for the function.

 Anonymous functions can be used like any other function—for example,

ln(10)
ans =

2.3026

www.mathworks.com
www.mathworks.com

6.4 Function Functions 227

 Once the workspace is cleared, the anonymous function no longer exists.
Anonymous functions can be saved as .mat fi les, just like any variable, and can be
restored with the load command. For example to save the anonymous function
 ln , type:

save my_ln_function ln

 A fi le named my_ln_function.mat is created, which contains the anonymous ln
function. Once the workspace is cleared, the ln function no longer exists, but it
can be reloaded from the .mat fi le

load my_ln_function

 It is possible to assign a function handle to any M-fi le function. Earlier in this
chapter we created an M-fi le function called distance.m.

function result = distance(t)
result = 1/2*9.8*t.^2;

 The command

distance_handle = @(t) distance(t)

 assigns the handle distance_handle to the distance function.
 Anonymous functions and the related function handles are useful in functions

that require other functions as input (function functions).

 6.4 FUNCTION FUNCTIONS

 MATLAB®’s function functions have an odd, but descriptive name. They are func-
tions that require other functions as input. One example of a MATLAB® built-in
function function is the function plot, fplot . This function requires two inputs: a
function or a function handle, and a range over which to plot. We can demonstrate
the use of fplot with the function handle ln , defi ned as

ln = @(x) log(x)

 The function handle can now be used as input to the fplot function:

fplot(ln,[0.1, 10])

 The result is shown in Figure 6.10 . We could also use the fplot function with-
out the function handle. We just need to insert the function syntax directly, as a
string:

fplot('log(x)',[0.1, 10])

 The advantage to using function handles isn’t obvious from this example, but con-
sider instead this anonymous function describing a particular fi fth-order polynomial:

poly5 = @(x) -5*x.^5 + 400*x.^4 + 3*x.^3 + 20*x.^2 - x + 5;

 Entering the equation directly into the fplot function would be awkward.
Using the function handle is considerably simpler.

fplot(poly5,[-30,90])

 The results are shown in Figure 6.11 .
 A wide variety of MATLAB® functions accept function handles as input. For

example, the fzero function fi nds the value of x where f (x) is equal to 0. It accepts

 KEY IDEA
 Function functions require
functions or function
handles as input

228 Chapter 6 User-Defi ned Functions

1 2 3 4 5 6 7 8 9 10
2.5

2

1.5

1

0.5

0

0.5

1

1.5

2

2.5

20 200 40 60 80
4

3

2

1

0

1

2

x-axis

y-
ax

is

 109 Fifth order polynomial

 Figure 6.10
 Function handles can be
used as input to a function
function, such as fplot .

 Figure 6.11
 This fi fth-order polynomial
was plotted using the
 fplot function function,
with a function handle as
input.

a function handle and a rough guess for x . From Figure 6.11 , we see that our fi fth-
order polynomial probably has a zero between 75 and 85, so a rough guess for the
zero point might be x � 75.

fzero(poly5,75)
ans =

80.0081

 6.5 SUBFUNCTIONS

 More complicated functions can be created by grouping functions together in a
single fi le as subfunctions. These subfunctions can be called only from the primary
function, so they have limited utility. Subfunctions can be used to modularize your
code and to make the primary function easier to read.

6.5 Subfunctions 229

 Each MATLAB® function M-fi le has one primary function. The name of the
M-fi le must be the same as the primary function name. Thus, the primary function
stored in the M-fi le my_function.m must be named my_function . Subfunctions
are added after the primary function, and can have any legitimate MATLAB® vari-
able name. Figure 6.12 shows a very simple example of a function that both adds
and subtracts two vectors. The primary function is named subfunction_demo .
The fi le includes two subfunctions: add and subtract .

 Notice in the editing window that the contents of each function are identifi ed
with a gray bracket. Each code section can be either collapsed or expanded, to
make the contents easier to read, by clicking on the � or � sign included with the
bracket. MATLAB® uses the term “folding” for this functionality. You can also access
folding from the “Text” menu on the menu bar.

 When could you use subfunctions effectively? Imagine that your instructor has
assigned three homework problems, each requiring you to create and test a function.

 • Problem 1 Create and test a function called square to square values of x .
Assume x varies between �3 and �3.

 • Problem 2 Create and test a function called cold_work to fi nd the percent
cold work experienced by a metallic rod, as it is drawn into a wire. Cold work is
described by the following equation

% Cold Work �
r 2

i � r 2
f

r 2
i

� 100

 where ri is the initial radius of the rod, and rf is the fi nal radius of the rod. To
test your function let ri � 0.5 cm and let rf � 0.25 cm.

 • Problem 3 Create and test a function called potential_energy to deter-
mine the potential energy change of a given mass. The change in potential
energy is given by

�PE � m � g � �z

 HINT
 You should not attempt to create code using subfunctions until you have
 mastered function M-fi les containing a single function.

 Figure 6.12
 MATLAB® allows the user
to create subfunctions
within a function M-fi le.
This fi le includes the
primary function,
 subfunction_demo , and
two subfunctions add and
 subtract .

230 Chapter 6 User-Defi ned Functions

 Your function should have three inputs: m , g , and �z. Use the following data to
test your function.

 m � 31 2 34 kg 1The array represents three different masses.2
 g � 9.8 m>s2

 �z � 5 m

 To complete the assignment you would need to create four M-fi les: one for
each function and one to call and test the functions. We can use subfunctions to
reduce the number of M-fi les to one, as shown in Figure 6.13.

 Note the primary function has no input and no output. To execute the primary
function, type the function name at the command prompt:

sample_homework

 or select the save and run icon.
 When the primary function executes, it calls the subfunctions, and the results

are displayed in the command window, as follows:

Problem 1
The squares of the input values are listed below

9 4 1 0 1 4 9
Problem 2
The percent cold work is

 Figure 6.13
 This M-fi le is an example of
a function with sequential
subfunctions.

Summary 231

ans =
 0.7500
Problem 3
The change in potential energy is
ans =
 49 98 147

 In this example, the four functions (primary and three subfunctions) are listed
sequentially. An alternate approach is to list the subfunction within the primary
function, usually placed near the portion of the code from which it is called. This is
called nesting . When functions are nested, we need to indicate the end of each indi-
vidual function with the end command (see Figure 6.14).

 Figure 6.14
 This function M-fi le includes
nested subfunctions.

 MATLAB® contains a wide variety of built-in functions. However, you will often fi nd
it useful to create your own MATLAB® functions. The most common type of user-
defi ned MATLAB® function is the function M-fi le, which must start with a function-
defi nition line that contains

 SUMMARY

232 Chapter 6 User-Defi ned Functions

 Special Characters

 @ identifi es a function handle, such as that
used with anonymous functions

 % comment

 Commands and Functions

 addpath adds a directory to the MATLAB® search path
 fminbnd a function function that accepts a function handle or function defi nition as input

and fi nds the function minimum between two bounds
 Fplot a function function that accepts a function handle or function defi nition as input

and creates the corresponding plot between two bounds

 • the word function ,
 • a variable that defi nes the function output,
 • a function name, and
 • a variable used for the input argument.

 For example,
function output � my_function(x)

 The function name must also be the name of the M-fi le in which the function is
stored. Function names follow the standard MATLAB® naming rules.

 Like the built-in functions, user-defi ned functions can accept multiple inputs
and can return multiple results.

 Comments immediately following the function-defi nition line can be accessed
from the command window with the help command.

 Variables defi ned within a function are local to that function. They are not
stored in the workspace and cannot be accessed from the command window. Global
variables can be defi ned with the global command used in both the command
window (or script M-fi le) and a MATLAB® function. Good programming style sug-
gests that you defi ne global variables with capital letters. In general, however, it is
not wise to use global variables.

 Groups of user-defi ned functions, called “toolboxes,” may be stored in a com-
mon directory and accessed by modifying the MATLAB® search path. This is accom-
plished interactively with the path tool, either from the menu bar, as in

 File: Set Path

 or from the command line, with

 pathtool

 MATLAB® provides access to numerous toolboxes developed at The MathWorks
or by the user community.

 Another type of function is the anonymous function, which is defi ned in a
MATLAB® session or in a script M-file and exists only during that session.
Anonymous functions are especially useful for very simple mathematical expres-
sions or as input to the more complicated function functions.

MATLAB® SUMMARY

 The following MATLAB® summary lists and briefl y describes all of the special char-
acters, commands, and functions that were defi ned in this chapter:

Problems 233

 Commands and Functions

 Fzero a function function that accepts a function handle or function defi nition as input
and fi nds the function zero point nearest a specifi ed value

 function identifi es an M-fi le as a function

global defi nes a variable that can be used in multiple sections of code

 meshgrid maps two input vectors onto two two-dimensional matrices

 nargin determines the number of input arguments in a function

 nargout determines the number of output arguments from a function

 pathtool opens the interactive path tool

 varargin indicates that a variable number of arguments may be input to a function

 anonymous
 argument
 comments
 directory
 fi le name
 folder

 folding
 function
 function function
 function handle
 function name
 global variable

 in-line
 input argument
 local variable
 M-fi le
 nesting
 toolbox

 KEY TERMS

 Function M-Files

 As you create functions in this section, be sure to comment them appropriately.
Remember that, although many of these problems could be solved without a func-
tion, the objective of this chapter is to learn to write and use functions. Each of
these functions (except for the anonymous functions) must be created in its own
M-fi le and then called from the command window or a script M-fi le program.
 6.1 As described in Example 6.2 , metals are actually crystalline materials. Metal

crystals are called grains. When the average grain size is small, the metal is
strong; when it is large, the metal is weaker. Since every crystal in a particu-
lar sample of metal is a different size, it isn’t obvious how we should describe
the average crystal size. The American Society for Testing and Materials
(ASTM) has developed the following correlation for standardizing grain-
size measurements:

 N � 2n � 1

 The ASTM grain size (n) is determined by looking at a sample of a metal under
a microscope at a magnifi cation of 100 � (100 power). The number of grains
in a 1-square-inch area (actual dimensions of 0.01 in � 0.01 in) is estimated
(N) and used in the preceding equation to fi nd the ASTM grain size.

 (a) Write a MATLAB® function called num_grains to fi nd the number of
grains in a 1-square-inch area (N) at 100 � magnifi cation when the
ASTM grain size is known.

 PROBLEMS

234 Chapter 6 User-Defi ned Functions

 (b) Use your function to fi nd the number of grains for ASTM grain sizes
 n � 10 to 100.

 (c) Create a plot of your results.

 6.2 Perhaps the most famous equation in physics is

 E � mc2

 which relates energy E to mass m . The speed of light in a vacuum, c , is the
property that links the two together. The speed of light in a vacuum is
 2.9979 � 108 m>s.

 (a) Create a function called energy to fi nd the energy corresponding to a
given mass in kilograms. Your result will be in joules, since
 1 kg m2>s2 � 1 J.

 (b) Use your function to fi nd the energy corresponding to masses from 1 kg
to 106 kg. Use the logspace function (consult help logspace) to
create an appropriate mass vector.

 (c) Create a plot of your results. Try using different logarithmic plotting
approaches (e.g., semilogy , semilogx , and loglog) to determine
the best way to graph your results.

 6.3 The future-value-of-money formula relates how much a current investment
will be worth in the future, assuming a constant interest rate.

 FV � PV � 11 � I2n

 where
 FV is the future value
 PV is the present value or investment
 I is the interest rate expressed as a fractional amount per
compounding period—i.e., 5% is expressed as .05
 n is the number of compounding periods.

 (a) Create a MATLAB® function called future_value with three inputs:
the investment (present value), the interest rate expressed as a fraction,
and the number of compounding periods.

 (b) Use your function to determine the value of a $1000 investment in 10
years, assuming the interest rate is 0.5% per month, and the interest is
compounded monthly.

 6.4 In freshman chemistry, the relationship between moles and mass is
 introduced:

 n �
m

MW

 where
 n � number of moles of a substance
 m � mass of the substance
 MW � molecular weight (molar mass) of the substance.

 (a) Create a function M-fi le called nmoles that requires two vector inputs—
the mass and molecular weight—and returns the corresponding num-
ber of moles. Because you are providing vector input, it will be necessary
to use the meshgrid function in your calculations.

Problems 235

 (b) Test your function for the compounds shown in the following table, for
masses from 1 to 10 g:

 Compound Molecular Weight (Molar Mass)

 Benzene 78.115 g/mol

 Ethyl alcohol 46.07 g/mol

 Refrigerant R134a
(tetrafl uoroethane)

 102.3 g/mol

 Your result should be a 10 � 3 matrix.

 6.5 By rearranging the preceding relationship between moles and mass, you
can fi nd the mass if you know the number of moles of a compound:

 m � n � MW

 (a) Create a function M-fi le called mass that requires two vector inputs—
the number of moles and the molecular weight—and returns the cor-
responding mass. Because you are providing vector input, it will be
necessary to use the meshgrid function in your calculations.

 (b) Test your function with the compounds listed in the previous problem,
for values of n from 1 to 10.

 6.6 The distance to the horizon increases as you climb a mountain (or a hill).
The expression

 d � 22rh � h2

 where
 d � distance to the horizon
 r � radius of the earth
 h � height of the hill

 can be used to calculate that distance. The distance depends on how high
the hill is and on the radius of the earth (or another planetary body).

 (a) Create a function M-fi le called distance to fi nd the distance to the
horizon. Your function should accept two vector inputs—radius and
height—and should return the distance to the horizon. Don’t forget
that you’ll need to use meshgrid because your inputs are vectors.

 (b) Create a MATLAB® program that uses your distance function to fi nd
the distance in miles to the horizon, both on the earth and on Mars, for
hills from 0 to 10,000 feet. Remember to use consistent units in your
calculations. Note that

 • Earth’s diameter � 7926 miles
 • Mars’ diameter � 4217 miles

 Report your results in a table. Each column should represent a different
planet, and each row a different hill height.

 6.7 A rocket is launched vertically. At time t � 0, the rocket’s engine shuts
down. At that time, the rocket has reached an altitude of 500 m and is rising

236 Chapter 6 User-Defi ned Functions

at a velocity of 125 m/s. Gravity then takes over. The height of the rocket as
a function of time is

 h1t2 � -
9.8
2

 t2 � 125t � 500 for t 7 0

 (a) Create a function called height that accepts time as an input and
returns the height of the rocket. Use your function in your solutions to
parts b and c.

 (b) Plot height versus time for times from 0 to 30 seconds. Use an incre-
ment of 0.5 second in your time vector.

 (c) Find the time when the rocket starts to fall back to the ground. (The
 max function will be helpful in this exercise.)

 6.8 The distance a freely falling object travels is

 x �
1
2

 gt2

 where
 g � acceleration due to gravity, 9.8 m>s2
 t � time in seconds
 x � distance traveled in meters.

 If you have taken calculus, you know that we can fi nd the velocity of the
object by taking the derivative of the preceding equation. That is,

dx
dt

� v � gt

 We can fi nd the acceleration by taking the derivative again:

dv
dt

� a � g

 (a) Create a function called free_fall with a single input vector t that
returns values for distance x , velocity v , and acceleration g .

 (b) Test your function with a time vector that ranges from 0 to 20 seconds.

 6.9 Create a function called polygon that draws a polygon with any number of
sides. Your function should require a single input: the number of sides
desired. It should not return any value to the command window but should
draw the requested polygon in polar coordinates.

 Creating Your Own Toolbox

 6.10 This problem requires you to generate temperature-conversion tables. Use
the following equations, which describe the relationships between tempera-
tures in degrees Fahrenheit 1TF2, degrees Celsius 1TC2, kelvins 1TK2, and
degrees Rankine 1TR2, respectively:

 TF � TR � 459.67�R

TF �
9
5

TC � 32�F

 TR �
9
5

TK

Problems 237

 You will need to rearrange these expressions to solve some of the problems.

 (a) Create a function called F_to_K that converts temperatures in
Fahrenheit to Kelvin. Use your function to generate a conversion table
for values from 0°F to 200°F.

 (b) Create a function called C_to_R that converts temperatures in Celsius
to Rankine. Use your function to generate a conversion table from 0°C
to 100°C. Print 25 lines in the table. (Use the linspace function to
create your input vector.)

 (c) Create a function called C_to_F that converts temperatures in Celsius
to Fahrenheit. Use your function to generate a conversion table from
0°C to 100°C. Choose an appropriate spacing.

 (d) Group your functions into a folder (directory) called my_temp_
conversions . Adjust the MATLAB® search path so that it fi nds your
folder. (Don’t save any changes on a public computer!)

 Anonymous Functions and Function Handles

 6.11 Barometers have been used for almost 400 years to measure pressure
changes in the atmosphere. The fi rst known barometer was invented by
Evangelista Torricelli (1608–1647), a student of Galileo during his fi nal
years in Florence, Italy. The height of a liquid in a barometer is directly pro-
portional to the atmospheric pressure, or

 P � rgh

 where P is the pressure, r is the density of the barometer fl uid, and h is the
height of the liquid column. For mercury barometers, the density of the
fl uid is 13,560 kg>m3. On the surface of the earth, the acceleration due to
gravity, g , is approximately 9.8 m>s2. Thus, the only variable in the equation
is the height of the fl uid column, h , which should have the unit of meters.

 (a) Create an anonymous function P that fi nds the pressure if the value of
 h is provided. The units of your answer will be

kg

m3

m
s2 m �

kg
m

1
s2 � Pa

 (b) Create another anonymous function to convert pressure in Pa (Pascals) to
pressure in atmospheres (atm). Call the function Pa_to_atm . Note that

1 atm � 101,325 Pa

 (c) Use your anonymous functions to fi nd the pressure for fl uid heights
from 0.5 m to 1.0 m of mercury.

 (d) Save your anonymous functions as .mat fi les

 6.12 The energy required to heat water at constant pressure is approximately equal to

 E � mCp �T

 where
 m � mass of the water, in grams
 Cp = heat capacity of water, 1 cal/g K
 �T � change in temperature, K.

238 Chapter 6 User-Defi ned Functions

 (a) Create an anonymous function called heat to fi nd the energy required
to heat 1 gram of water if the change in temperature is provided as the
input.

 (b) Your result will be in calories:

g
cal
g

1
K

K � cal

 Joules are the unit of energy used most often in engineering. Create another
anonymous function cal_to_J to convert your answer from part (a) into
joules. (There are 4.2 J/cal.)

 (c) Save your anonymous functions as .mat fi les.

 6.13. (a) Create an anonymous function called my_function , equal to

-x2 � 5x � 3 � ex

 (b) Use the fplot function to create a plot from x � � 5 to x � � 5.
Recall that the fplot function can accept a function handle as input.

 (c) Use the fminbnd function to fi nd the minimum function value in this
range. The fminbnd function is an example of a function function,
since it requires a function or function handle as input. The syntax is

fminbnd(function_handle, xmin, xmax)

 Three inputs are required: the function handle, the minimum value of x ,
and the maximum value of x . The function searches between the minimum
value of x and the maximum value of x for the point where the function
value is a minimum.

 6.14 In Problem 6.7, you created an M-fi le function called height to evaluate
the height of a rocket as a function of time. The relationship between time,
 t , and height, h (t), is:

 h1t2 � -
9.8
2

t2 � 125t � 500 for t 7 0

 (a) Create a function handle to the height function called height_
handle .

 (b) Use height_handle as input to the fplot function, and create a
graph from 0 to 60 seconds.

 (c) Use the fzero function to fi nd the time when the rocket hits the
ground (i.e., when the function value is zero). The fzero function is
an example of a function function, since it requires a function or func-
tion handle as input. The syntax is

fzero(function_handle, x_guess)

 The fzero function requires two inputs—a function handle and your
guess as to the time value where the function is close to zero. You can select
a reasonable x_guess value by inspecting the graph created in part (b).

Problems 239

 Subfunctions

 6.15 In Problem 6.10 you were asked to create and use three different temperature-
conversion functions, based on the following conversion equations:

 TF � TR � 459.67�R

 TF �
9
5

TC � 32�F

 TR �
9
5

TK

 Recreate Problem 6.10 using nested subfunctions. The primary function
should be called temperature_conversions and should include the
subfunctions

F_to_K
C_to_R
C_to_F

 Within the primary function use the subfunctions to:

 (a) Generate a conversion table for values from 0°F to 200°F. Include a col-
umn for temperature in Fahrenheit and Kelvin.

 (b) Generate a conversion table from 0°C to 100°C. Print 25 lines in the
table. (Use the linspace function to create your input vector.) Your
table should include a column for temperature in Celsius and Rankine.

 (c) Generate a conversion table from 0°C to 100°C. Choose an appropriate
spacing. Include a column for temperature in Celsius and Fahrenheit.

 Recall that you will need to call your primary function from the command
window or from a script M-fi le.

7

INTRODUCTION

 So far, we have explored the use of MATLAB ® in two modes: in the command window
as a scratch pad and in the editing window to write simple programs (script M-fi les).
The programmer has been the user. Now we move on to more complicated programs,
written in the editing window, where the programmer and the user may be different
people. That will make it necessary to use input and output commands to communi-
cate with the user, instead of rewriting the actual code to solve similar problems.
MATLAB ® offers built-in functions to allow a user to communicate with a program as it
executes. The input command pauses the program and prompts the user for input;
the disp and fprintf commands provide output to the command window.

 7.1 USER-DEFINED INPUT

 Although we have written programs in script M-fi les, we have assumed that the pro-
grammer (you) and the user are the same person. To run the program with different
input values, we actually changed some of the code. We can create more general
 programs by allowing the user to input values of a matrix from the keyboard while the

 After reading this chapter, you
should be able to:
 • Prompt the user for input

to an M-fi le program
 • Create output with the

 disp function
 • Create formatted output by

using fprintf

 • Create formatted output
for use in other functions
with the sprintf function

 • Use graphical techniques
to provide program input

• Use the cell mode to
 modify and run M-fi le
 programs

 Objectives

 User-Controlled
Input and Output

 C H A P T E R

7.1 User-Defi ned Input 241

program is running. The input function allows us to do this. It displays a text
string in the command window and then waits for the user to provide the requested
input. For example,

z = input('Enter a value')

 displays

Enter a value

 in the command window. If the user enters a value such as

5

 the program assigns the value 5 to the variable z . If the input command does not
end with a semicolon, the value entered is displayed on the screen:

z =
5

 The same approach can be used to enter a one- or two-dimensional matrix. The
user must provide the appropriate brackets and delimiters (commas and semico-
lons). For example,

z = input('Enter values for z in brackets')

 requests the user to input a matrix such as

[1, 2, 3; 4, 5, 6]

 and responds with

z =
1 2 3
4 5 6

 This input value of z can then be used in subsequent calculations by the script
M-fi le.

 Data entered with input does not need to be numeric information. Suppose
we prompt the user with the command

x = input('Enter your name in single quotes')

 and enter

'Holly'

 when prompted. Because we haven’t used a semicolon at the end of the input
command, MATLAB ® will respond

x =
Holly

 Notice in the workspace window that x is listed as a 1 � 5 character array:

 KEY IDEA
 The input function can be
used to communicate with
the program user

 Name Value Size Bytes Class

 abc x ‘Holly’ 1 × 5 6 char

 If you are entering a string (in MATLAB ® , strings are character arrays), you
must enclose the characters in single quotes. However, an alternative form of the

242 Chapter 7 User-Controlled Input and Output

input command alerts the function to expect character input without the single
quotes by specifying string input in the second fi eld:

x = input('Enter your name', 's')

 Now you need only enter the characters, such as

Ralph

 and the program responds with

x =
Ralph

 PRACTICE EXERCISES 7.1

 1. Create an M-fi le to calculate the area A of a triangle:

 A �
1
2

 base height

 Prompt the user to enter the values for the base and for the height.
 2. Create an M-fi le to fi nd the volume V of a right circular cylinder:

 V � pr2h
 Prompt the user to enter the values of r and h .
 3. Create a vector from 0 to n , allowing the user to enter the value of n .
 4. Create a vector that starts at a , ends at b , and has a spacing of c . Allow

the user to input all of these parameters.

 EXAMPLE 7.1
 FREELY FALLING OBJECTS
 Consider the behavior of a freely falling object under the infl uence of gravity (see
 Figure 7.1).

 Figure 7.1
 The Leaning Tower of
Pisa. (Courtesy of Tim
Galligan.)

7.1 User-Defi ned Input 243

 The position of the object is described by

 d �
1
2

gt2

 where d � distance the object travels
 g � acceleration due to gravity
 t � elapsed time.

 We shall allow the user to specify the value of g —the acceleration due to gravity—and
a vector of time values.

1. State the Problem
 Find the distance traveled by a freely falling object and plot the results.
2. Describe the Input and Output

Input Value of g , the acceleration due to gravity, provided by the user
Time, provided by the user

Output DistancesPlot of distance versus time
3. Develop a Hand Example

 d �
1
2

gt2, so, on the moon at 100 seconds,

 d �
1
2

� 1.6 m>s2 � 1002 s2

 d � 8000 m

4. Develop a MATLAB ® Solution

% Example 7.1
%Free fall
clear, clc
%Request input from the user
g = input('What is the value of acceleration due to
 gravity?')
start = input('What starting time would you like?')
finish = input('What ending time would you like?')
incr = input('What time increments would you like
 calculated?')
time = start:incr:finish;
%Calculate the distance
distance = 1/2*g*time.^2;
%Plot the results
loglog(time,distance)
title('Distance Traveled in Free Fall')
xlabel('time, s'),ylabel('distance, m')
%Find the maximum distance traveled
final_distance = max(distance)

 The interaction in the command window is:

What is the value of acceleration due to gravity? 1.6
g =

1.6000

(continued)

244 Chapter 7 User-Controlled Input and Output

What starting time would you like? 0
start =
0

What ending time would you like? 100
finish =

100
What time increments would you like calculated? 10
incr =
10

final_distance =
8000

 The results are plotted in Figure 7.2 .
5. Test the Solution
 Compare the MATLAB ® solution with the hand solution. Since the user can

control the input, we entered the data used in the hand solution. MATLAB ®

tells us that the fi nal distance traveled is 8000 m, which, since we entered 100
seconds as the fi nal time, corresponds to the distance traveled after 100 seconds.

101 102
101

102

103

104
Distance Traveled in Free Fall

Time, s

D
is

ta
nc

e,
 m

 Figure 7.2
 Distance traveled when
the acceleration is
1.6 m/s. Notice that
the fi gure is a loglog
plot.

 7.2 OUTPUT OPTIONS

 There are several ways to display the contents of a matrix. The simplest is to enter the
name of the matrix, without a semicolon. The name will be repeated, and the values of
the matrix will be displayed, starting on the next line. For example, fi rst defi ne a matrix x :

x = 1:5;

 Because there is a semicolon at the end of the assignment statement, the values
in x are not repeated in the command window. However, if you want to display x
later in your program, simply type in the variable name

x

7.2 Output Options 245

 which returns

X =
1 2 3 4 5

 MATLAB ® offers two other approaches to displaying results: the disp function
and the fprintf function.

 7.2.1 Display Function

 The display (disp) function can be used to display the contents of a matrix without
printing the matrix name. It accepts a single array as input. Thus,

disp(x)

 returns

 1 2 3 4 5

 The display command can also be used to display a string (text enclosed in sin-
gle quotation marks). For example,

disp('The values in the x matrix are:');

 returns

The values in the x matrix are:

 When you enter a string as input into the disp function, you are really enter-
ing an array of character information. Try entering the following on the command
line:

'The values in the x matrix are:'

 MATLAB ® responds

ans =
'The values in the x matrix are:'

 The workspace window lists ans as a 1 � 32 character array.

 KEY IDEA
 The disp function can
display either character
arrays or numeric arrays

 CHARACTER ARRAY
 Stores character
information

 Name Size Bytes Class

 abc ans 1 � 32 90 char array

 Character arrays store character information in arrays similar to numerical
arrays. Characters can be letters, numbers, punctuation, and even some nondis-
played characters. Each character, including spaces, is an element in the character
array.

 When we execute the two display functions

disp('The values in the x matrix are:');
disp(x)

 MATLAB ® responds

The values in the x matrix are:
1 2 3 4 5

 Notice that the two disp outputs are displayed on separate lines. You can get
around this feature by creating a combined matrix of your two outputs, using the

 KEY IDEA
 Characters can be letters,
numbers, or symbols

246 Chapter 7 User-Controlled Input and Output

 num2str (number to string) function. The process is called concatenation and
creates a single character array. Thus,

disp(['The values in the x array are:' num2str(x)])

 returns

The values in the x array are: 1 2 3 4 5

 The num2str function changes an array of numbers into an array of charac-
ters. In the preceding example, we used num2str to transform the x matrix to a
character array, which was then combined with the fi rst string (by means of square
brackets, []) to make a bigger character array. You can see the resulting matrix by
typing

A = ['The values in the x array are: ' num2str(x)]

 which returns
A =

The values in 1 2 3 4 5 the x array are:
 Checking in the workspace window, we see that A is a 1 � 45 matrix. The work-

space window also tells us that the matrix contains character data instead of numeric
information. This is evidenced both by the icon in front of A and in the class
 column.

 Name Size Bytes Class

 ab A 1 × 45 90 char array

 HINT
 If you want to include an apostrophe in a string, you need to enter the apos-
trophe twice. If you don’t do this, MATLAB ® will interpret the apostrophe as
terminating the string. An example of the use of two apostrophes is

disp('The moon"s gravity is 1/6th that of the earth')

 You can use a combination of the input and disp functions to mimic a conversa-
tion. Try creating and running the following M-fi le:

disp('Hi There');
disp('I'm your MATLAB program');
name = input('Who are you?','s');
disp(['Hi',name]);
answer = input('Don''t you just love computers?','s');
disp([answer,'?']);
disp('Computers are very useful');
disp('You''ll use them a lot in college!!');
disp('Good luck with your studies')
pause(2);
disp('Bye bye')

 This interaction made use of the pause function. If you execute pause with-
out any input, the program waits until the user hits the Enter key. If a value is used
as input to the pause function, the program waits for the specifi ed number of sec-
onds, and then continues.

7.2 Output Options 247

 7.2.2 Formatted Output—The fprintf Function

 The fprintf function (formatted print function) gives you even more control
over the output than you have with the disp function. In addition to displaying
both text and matrix values, you can specify the format to be used in displaying the
values, and you can specify when to skip to a new line. If you are a C programmer,
you will be familiar with the syntax of this function. With few exceptions, the
MATLAB ® fprintf function uses the same formatting specifi cations as the C
 fprintf function. This is hardly surprising, since MATLAB ® was written in C. (It
was originally written in Fortran and then later rewritten in C.)

 The general form of the fprintf command contains two arguments, one a
string and the other a list of matrices:

fprintf(format-string, var,. . .)

 Consider the following example:

cows = 5;
fprintf('There are %f cows in the pasture', cows)

 The string, which is the fi rst argument inside the fprintf function, contains a
placeholder (%) where the value of the variable (in this case, cows) will be inserted.
The placeholder also contains formatting information. In this example, the %f tells
MATLAB ® to display the value of cows in a default fi xed-point format. The default
format displays six places after the decimal point:

There are 5.000000 cows in the pasture

 Besides defaulting to a fi xed-point format, MATLAB ® allows you to specify an
exponential format, %e , or lets you allow MATLAB ® to choose whichever is shorter,
fi xed point or exponential (%g). It also lets you display character information (%c)
or a string of characters (%s). The decimal format (%d) is especially useful if the
number you wish to display is an integer.

fprintf('There are %d cows in the pasture', cows)
There are 5 cows in the pasture

 Table 7.1 illustrates the various formats supported by fprintf , and the related
 sprintf functions.

 MATLAB ® does not automatically start a new line after an fprintf function is
executed. If you tried out the preceding fprintf command example, you proba-
bly noticed that the command prompt is on the same line as the output:

There are 5.000000 cows in the pasture>>

 KEY IDEA
 The fprintf function
allows you to control how
numbers are displayed

 Table 7.1 Type Field Format

 Type Field Result

 %f fi xed-point notation

 %e exponential notation

 %d decimal notation—does not include trailing zeros if the value displayed is an
integer. If the number includes a fractional component, it is displayed using
exponential notation.

 %g whichever is shorter, %f or %e

 %c character information (displays one character at a time)

 %s string of characters (displays the entire string)

Additional type fi elds are described in the help feature.

248 Chapter 7 User-Controlled Input and Output

 If we execute another command, the results will appear on the same line
instead of moving down. Thus, if we issue the new commands

cows = 6;
fprintf('There are %f cows in the pasture', cows);

 from an M-fi le, MATLAB ® continues the command window display on the same
line:

There are 5.000000 cows in the pasture There are 6.000000 cows
in the pasture

 To cause MATLAB ® to start a new line, you’ll need to use \n , called a linefeed,
at the end of the string. For example, the code

cows = 5;
fprintf('There are %f cows in the pasture \n', cows)
cows = 6;
fprintf('There are %f cows in the pasture \n', cows)

 returns the following output:

There are 5.000000 cows in the pasture
There are 6.000000 cows in the pasture

 KEY IDEA
 The fprintf function
allows you to display both
character and numeric
information with a single
command

 HINT
 The backslash (\) and forward slash (/) are different characters. It’s a com-
mon mistake to confuse them—and then the linefeed command doesn’t
work! Instead, the output to the command window will be

There are 5.000000 cows in the pasture /n

 Other special format commands are listed in Table 7.2 . The tab (\t) is especially
useful for creating tables in which everything lines up neatly.

 You can further control how the variables are displayed by using the optional
 width field and precision field with the format command. The width
field controls the minimum number of characters to be printed. It must be a
positive decimal integer. The precision field is preceded by a period (.) and
specifi es the number of decimal places after the decimal point for exponential and
fi xed-point types. For example, %8.2f specifi es that the minimum total width avail-
able to display your result is eight digits, two of which are after the decimal point.
Thus, the code

voltage = 3.5;
fprintf(‘The voltage is %8.2f millivolts \n',voltage);

 Table 7.2 Special Format Commands

 Format Command Resulting Action

 \n Linefeed

 \r carriage return (similar to linefeed)

 \t tab

 \b backspace

7.2 Output Options 249

 returns

The voltage is 3.50 millivolts

 Notice the empty space before the number 3.50. This occurs because we
reserved six spaces (eight total, two after the decimal) for the portion of the num-
ber to the left of the decimal point.

 Often when you use the fprintf function, your variable will be a matrix—for
example,

x = 1:5;

 MATLAB ® will repeat the string in the fprintf command until it uses all the
values in the matrix. Thus,

fprintf(‘%8.2f \n',x);

 returns

1.00
2.00
3.00
4.00
5.00

 If the variable is a two-dimensional matrix, MATLAB ® uses the values one col-
umn at a time, going down the fi rst column, then the second, and so on. Here’s a
more complicated example:

feet = 1:3;
inches = feet.*12;

 Combine these two matrices:

table = [feet;inches]

 MATLAB ® then returns

table =
1 2 3
12 24 36

 Now we can use the fprintf function to create a table that is easier to inter-
pret. For instance,

fprintf(‘%4.0f %7.2f \n',table)

 sends the following output to the command window:

1 12.00
2 24.00
3 36.00

 Why don’t the two outputs look the same? The fprintf statement we created
uses two values at a time. It goes through the table array one column at a time to
fi nd the numbers it needs. Thus, the fi rst two numbers used in the fprintf output
are from the fi rst column of the table array.

 The fprintf function can accept a variable number of matrices after the
string. It uses all of the values in each of these matrices, in order, before moving on

250 Chapter 7 User-Controlled Input and Output

to the next matrix. As an example, suppose we wanted to use the feet and inches
matrices without combining them into the table matrix. Then we could type

fprintf(‘%4.0f %7.2f \n', feet, inches)
1 2.00
3 12.00
24 36.00

 The function works through the values of feet fi rst and then uses the values in
 inches . It is unlikely that this is what you really want the function to do (in this
example it wasn’t), so the output values are almost always grouped into a single
matrix to use in fprintf .

 The fprintf command gives you considerably more control over the form of
your output than MATLAB ® ’s simple format commands. It does, however, require
some care and forethought to use.

 In addition to creating formatted output for display in the command window,
the fprintf function can be used to send formatted output to a fi le. First, you’ll
need to create and open an output fi le and assign it a fi le identifi er (nickname).
You do this with the fopen function

file_id = fopen('my_output_file.txt', 'wt');

 The fi rst fi eld is the name of the fi le, and the second fi eld makes it possible for us to
write data to the fi le (hence the string ‘wt’). Once the fi le has been identifi ed and
opened for writing, we use the fprintf function, adding the fi le identifi er as the
fi rst fi eld in the function input.

fprintf(file_id, 'Some example output is %4.2f \n', pi*1000)

 This form of the function sends the result of the formatted string

Some example output is 3141.59

 to my_output_file.txt . To the command window the function sends a count
of the number of bytes transferred to the fi le.

ans =
32

 HINT
 A common mistake new programmers make when using fprintf is to for-
get to include the fi eld type identifi er, such as f, in the placeholder sequence.
The fprintf function won’t work, but no error message is returned either.

 HINT
 If you want to include a percentage sign in an fprintf statement, you need
to enter the % twice. If you don’t, MATLAB ® will interpret the % as a place-
holder for data. For example,

fprintf('The interest rate is %5.2f %% \n', 5)

 results in

The interest rate is 5.00 %

7.2 Output Options 251

 EXAMPLE 7.2
 FREE FALL: FORMATTED OUTPUT
 Let’s redo Example 7.1 , but this time let’s create a table of results instead of a plot, and
let’s use the disp and fprintf commands to control the appearance of the output.

 1. State the Problem
 Find the distance traveled by a freely falling object.
 2. Describe the Input and Output

Input Value of g , the acceleration due to gravity, provided by the user
Time t , provided by the user

Output Distances calculated for each planet and the moon
3. Develop a Hand Example

 d �
1
2

gt2, so, on the moon at 100 seconds,

 d �
1
2
 � 1.6 m>s2 � 1002 s2

 d � 8000 m

4. Develop a MATLAB ® Solution

 % Example 7.2
 %Free Fall
 clear, clc
 %Request input from the user
 g = input('What is the value of acceleration due to
 gravity?')
 start = input('What starting time would you like?')
 finish = input('What ending time would you like?')
 incr = input('What time increments would you like
 calculated?')
 time = start:incr:finish;
 %Calculate the distance
 distance = 1/2*g*time.^2;
 %Create a matrix of the output data
 table = [time;distance];
 %Send the output to the command window
 fprintf('For an acceleration due to gravity of %5.1f seconds
 \n the following data were calculated \n', g)
 disp('Distance Traveled in Free Fall')
 disp('time, s distance, m')
 fprintf('%8.0f %10.2f\n',table)

 This M-fi le produces the following interaction in the command window:

What is the value of acceleration due to gravity? 1.6
 g =
 1.6000
 What starting time would you like? 0
 start =
 0 (continued)

252 Chapter 7 User-Controlled Input and Output

 What ending time would you like? 100
 finish =
 100
 What time increments would you like calculated? 10
 incr =
 10
 For an acceleration due to gravity of 1.6 seconds the following
 data were calculate d
 Distance Traveled in Free Fall
 time, s distance, m
 0 0.00
 10 80.00
 20 320.00
 30 720.00
 40 1280.00
 50 2000.00
 60 2880.00
 70 3920.00
 80 5120.00
 90 6480.00
 100 8000.00

5. Test the Solution
 Compare the MATLAB ® solution with the hand solution. Since the output is a table,

it is easy to see that the distance traveled at 100 seconds is 8000 m. Try using other
data as input, and compare your results with the graph produced in Example 7.1 .

 PRACTICE EXERCISES 7.2

In an M-file,
1. Use the disp command to create a title for a table that converts inches

to feet.
 2. Use the disp command to create column headings for your table.
3. Create an inches vector from 0 to 120 with an increment of 10.
4. Calculate the corresponding values of feet .
5. Group the inch vector and the feet vector together into a table matrix.
6. Use the fprintf command to send your table to the command window.

 7.2.3 Formatted Output—The sprintf Function

 The sprintf function is similar to fprintf , but instead of just sending the result
of the formatted string to the command window, sprintf assigns it a name and
sends it to the command window.

a = sprintf('Some example output is %4.2f \n', pi*1000) =
a =

Some example output is 3141.59

 When would this be useful? In Example 7.3 , the sprintf function is used to specify
the contents of a text box, which is shown as an annotation on a graph.

 KEY IDEA
 The sprintf function is
similar to fprintf and is
useful for annotating plots

7.2 Output Options 253

 EXAMPLE 7.3
 PROJECTILE MOTION: ANNOTATING A GRAPH
 Recall from earlier examples that the equation describing the range of a projectile
fi red from a cannon is

 R1u2 �
v2

g
sin12u2

 where
 R1u2 is the range in meters
 v is the initial projectile velocity in m/s
 u is the launch angle
 g is the acceleration due to gravity, 9.9 m>s2

 Plot the angle on the x -axis versus the range on the y -axis and add a text box indicat-
ing the value of the maximum range.

 1. State the Problem
 Find and plot the distance traveled by projectile, as a function of launch angle.

Annotate a plot, indicating the maximum range.
 2. Describe the Input and Output

 3. Develop a Hand Example
 We know from physics and from previous examples that the maximum range

occurs at a launch angle of 45°. Substituting into the provided equation,

 R � (45�) �
1002m2/s2

9.9 m/s2 sin(2 * 45�)

 Since the angle is specifi ed in degrees, you must either set your calculator to
accept degrees into the sine function or else convert 45° to the corresponding
number of radians 1p>42. After you have done so, the result is

 R145�2 � 1010 m

 4. Develop a MATLAB ® Solution

% Example 7.3
% Find the maximum projectile range
% Create an annotated graph of the results
% Define the input parameters
 g=9.9; %Acceleration due to gravity
 velocity = 100; %Initial velocity, m/s^2
 theta = [0:5:90] %Launch angle in degrees
% Calculate the range
 range = velocity^2/g*sind(2*theta);
% Calculate the maximum range
 m = max(range);
% Create the input for the textbox

tinput=sprintf('Max range was %4.0f me \n',m);

Input Acceleration due to gravity, g � 9.9 m>s2
 Launch angle
 Initial projectile velocity, 100 m/s

Output An annotated graph indicating the maximum range.

(continued)

254 Chapter 7 User-Controlled Input and Output

% Plot the results
 plot(theta,range)
 title('Range of a Projectile')
 xlabel('Angle, degrees'), ylabel('Range, meters')
 text(10,m,tinput)

 There are several things to notice about this program. First, we took advantage
of the sind function to calculate the value of sine, using degrees as input.
Second, the location of the text box will always start on the graph at 10° (meas-
ured on the x -axis), but the y location depends on the maximum range.

 This M-fi le produces the graph shown in Figure 7.3a .
5. Test the Solution
 Compare the MATLAB ® solution with the hand solution. The text box used to

annotate the graph lists the maximum range as 1010 m, the same value calcu-
lated by hand. We could also test the program with a different initial velocity,
for example, 110 m/s. The result is shown in Figure 7.3 .

1200

0

200

400

600

800

1000

0 20 40 60
Angle, degrees

Range of a Projectile

The maximum range was 1010 meters

R
an

ge
, m

et
er

s

80 100

1200

1400

0

200

400

600

800

1000

0 20 3010 40 50 60 70
Angle, degrees

Range of a Projectile

The maximum range was 1222 meters

R
an

ge
, m

et
er

s

80 90

 Figure 7.3
 The contents of the text box change, depending on the input to the program, and are controlled by the sprintf Function.

 7.3 GRAPHICAL INPUT

 MATLAB ® offers a technique for entering ordered pairs of x - and y -values graphi-
cally. The ginput command allows the user to select points from a fi gure window
and converts the points into the appropriate x - and y -coordinates. In the statement

[x,y] = ginput(n)

 MATLAB ® requests the user to select n points from the fi gure window. If the value
of n is not included, as in

[x,y] = ginput

 MATLAB ® accepts points until the return key is pressed.
 This technique is useful for picking points off a graph. Consider the graph in

 Figure 7.4 .

7.4 More Cell Mode Features 255

 The fi gure was created by defi ning x from 5 to 30 and calculating y :

x = 5:30;
y = x.^2 - 40.*x + 400;
plot(x,y)
axis([5,30,-50,250])

 The axis values were defi ned so that the graph would be easier to trace.
 Once the ginput function has been executed, as in

[a,b] = ginput

 MATLAB ® adds a fl oating cross hair to the graph, as shown in Figure 7.4 . After this
cross hair is positioned to the user’s satisfaction, right-clicking and then selecting
Return (Enter) sends the values of the x - and y -coordinates to the program:

a =
24.4412

b =
19.7368

 7.4 MORE CELL MODE FEATURES

 A useful feature to use in conjunction with cell mode is Publish. It allows the user to
publish an M-fi le program to an HTML fi le. MATLAB ® runs the program and creates
a report showing the code in each cell, as well as the calculational results that were
sent to the command window. Any fi gures created are also included in the report.
 Figure 7.5 shows part of an M-fi le created to solve the homework problems from a
previous chapter. It was created using cell mode, as can be seen from the cell dividers.
A portion of the report created using the publish feature is shown in Figure 7.6 .

Floating
cross hair

 Figure 7.4
 The ginput function
allows the user to pick
points off a graph.

 KEY IDEA
 Cell mode allows you to
create reports in HTML,
Word, and PowerPoint

256 Chapter 7 User-Controlled Input and Output

 If you prefer a report in a different format, such as Word, PowerPoint or pdf,
you can use the menu bar option

 File: Publish Configuration for ...

 to publish the results in your choice of several different formats. You’ll need to
select “edit publish confi gurations” and then the “output fi le format” setting, and

 Figure 7.5
 M-Files such as this script,
which was used to solve
homework problems from a
previous chapter, can be
published using MATLAB ® ’s
publish feature.

 Figure 7.6
 HTML report created from
a MATLAB ® M-fi le using the
 Publish feature.

7.4 More Cell Mode Features 257

change it from html to your desired format, as shown in Figure 7.7 . The publish
feature does not work well if you have programmed user interactions such as
prompts for data input into the fi le. During the publishing process, the M-fi le pro-
gram is executed, but no values are available for the user input. This results in an
error message, which is included in the published version of the fi le. The publish
feature can be used to publish M-fi le programs that do not contain cells. The result
is equivalent to a program that consists of only one cell.

 The cell toolbar also includes a set of value-manipulation tools, as shown in
 Figure 7.8 . Whatever number is closest to the cursor (in Figure 7.8 , it’s the number 2)

Increment and
decrement
value

Divide and
multiply value

 Figure 7.8
 Value manipulation tools
allow the user to
experiment with changing
values in calculations.

 Figure 7.7
 Change the output fi le
format in the edit
confi guration window to
create reports in a number
of popular formats,
including Word documents
and pdf fi les.

258 Chapter 7 User-Controlled Input and Output

can be adjusted by the factor shown on the toolbar by selecting the appropriate
icon (- ,+ , , , or �). When this feature is used in combination with the evaluate
cell tool, you can repeat a set of calculations multiple times while easily adjusting
a variable of interest.

 EXAMPLE 7.4
 INTERACTIVELY ADJUSTING PARAMETERS
 On the basis of an energy balance calculation, you know that the change in enthalpy
of a 1-kmol (29-kg) sample of air going from state 1 to state 2 is 8900 kJ. You’d like
to know the fi nal temperature, but the equation relating the change in enthalpy to
temperature, namely,

 �h �L
2

1

CpdT

 where

 Cp � a � bT � cT 2 � dT 3

 is too complicated to solve for the fi nal temperature. However, using techniques
learned in calculus, we fi nd that

 �h � a(T2 � T12 �
b
2
1T 2

2 � T2
12 �

c
3
1T 3

2 � T 3
12 �

d
4
1T 4

2 � T 4
12

 If we know the starting temperature 1T12 and the values of a , b , c , and d , we can
guess values of the fi nal temperature 1T22 until we get the correct value of �h. The
interactive ability to modify variable values in the cell mode makes solving this prob-
lem easy.

 1. State the Problem
 Find the fi nal temperature of air when you know the starting temperature and

the change in internal energy.
 2. Describe the Input and Output

 Input Used in the equation for Cp, these values of a , b , c , and d will give a
heat capacity value in kJ/kmol K:

 a � 28.90
 b � 0.1967 � 10�2
 c � 0.4802 � 10�5
 d � -1.966 � 10�9
 �h � 8900 kJ
 T1 � 300 K

 Output For every guessed value of the fi nal temperature, an estimate of �h
should print to the screen.

3. Develop a Hand Example
 If we guess a fi nal temperature of 400 K, then

 �h � a(T2 � T1) �
b
2

(T 2
2 � T 2

1) �
c
3

(T 3
2 � T 3

1) �
d
4

(T 4
2 � T 4

1)

 �h � 28.91400 � 3002 �
0.1967 � 10�2

2
14002 � 30022 �

0.4802 � 10�5

3

� 14003 � 30032 � %
-1.966 � 10�9

4
14004 � 30042

7.4 More Cell Mode Features 259

 which gives

 �h � 3009.47

4. Develop a MATLAB ® Solution

%% Example 7.4
% Interactively Adjusting Parameters
clear,clc
a = 28.90;
b = 0.1967e-2;
c = 0.4802e-5;
d = -1.966e-9;
T1 = 300
%% guess T2 and adjust
T2 = 400
format bank
delta_h = a*(T2-T1) + b*(T2.^2 - T1.^2)/2 + c*(T2.^3-T1.^3)/
3 + d*(T2.^4-T1.^4)/4

 Run the program once, and MATLAB ® returns

T1 � 300.00
T2 � 400.00
delta_h � 3009.47

 Now position the cursor near the T2=400 statement, as shown in Figure 7.9 .
 (In this example, the edit window was docked with the MATLAB ® desktop.)

 Figure 7.9
 The original guess gives
us an idea of how far
away we are from the
fi nal answer .

260 Chapter 7 User-Controlled Input and Output

 By selecting the Increment Value icon, with the value set at 100, we can quickly try
several different temperatures (see Figure 7.10). Once we’re close, we can change
the increment and zero in the answer.

 A T2 value of 592 K gave a calculated �h value of 8927, which is fairly close to
our goal. We could get closer if we believed that the added accuracy was justifi ed.
 5. Test the Solution
 Substitute the calculated value of T2 into the original equation, and check the

results with a calculator:

 �h � 28.91592 � 3002 �
0.1967 � 10�2

2
15922 � 30022

�
0.4802 � 10�5

3
15923 � 30032 �

-1.966 � 10�9

4
15924 � 30042

 �h � 8927.46

 Figure 7.10
 Adjust the value closest
to the cursor by
selecting one of the
Increment/Decrement
icons and adjusting the
step size shown on the
cell-mode toolbar.

 7.5 READING AND WRITING DATA FROM FILES

 Data are stored in many different formats, depending on the devices and programs
that created the data and on the application. For example, sound might be stored
in a .wav fi le, and an image might be stored in a .jpg fi le. Many applications store
data in Excel spreadsheets (.xls fi les). The most generic of these fi les is the ASCII
fi le, usually stored as a .dat or a .txt fi le. You may want to import these data into

 KEY IDEA
 MATLAB ® can import data
from fi les using a variety of
formats

7.5 Reading and Writing Data from Files 261

MATLAB ® to analyze in a MATLAB ® program, or you might want to save your data
in one of these formats to make the fi le easier to export to another application.

 7.5.1 Importing Data

 Import Wizard
 If you select a data fi le from the current folder and double-click on the fi le name,
the Import Wizard launches. The Import Wizard determines what kind of data is in
the fi le and suggests ways to represent the data in MATLAB ® . Table 7.3 is a list of
some of the data types MATLAB ® recognizes. Not every possible data format is sup-
ported by MATLAB ® . You can fi nd a complete list by typing

 doc fileformats

 in the command window.
 The Import Wizard can be used for simple ASCII fi les and for Excel spread-

sheet fi les. Many of the other formats can also be imported with the Import Wizard,
which can be launched from the command line, using the uiimport function:

uiimport(' filename.extension ')

 For example, it is easy to record sound fi les using a variety of software tools, or
to fi nd existing fi les on the Internet. To import a sound fi le, such as one called
 decision.wav , type

uiimport(' decision.wav ')

 The Import Wizard then opens, as shown in Figure 7.11 .
 Either technique for launching the Import Wizard (double-clicking on the fi le

name in the current folder window, or using the uiimport function in the com-
mand window) requires an interaction with the user (through the Wizard). If you
want to load a data fi le from a MATLAB ® program, you’ll need a different
approach.

 Table 7.3 Some of the Data File Types Supported by MATLAB ®

 File Type Extension Remark

 Text .mat MATLAB ® workspace
 .dat ASCII data
 .txt ASCII data
 .csv Comma-separated values ASCII data

 Other common scientifi c .cdf common data format

 data formats .fi ts fl exible image transport system data
 .hdf hierarchical data format

 Spreadsheet data .xls, xlxx Excel spreadsheet
 .wk1 Lotus 123

 Image data .tiff tagged image fi le format
 .bmp bit map
 .jpeg or jpg joint photographics expert group
 .gif graphics interchange format

 Audio data .au, snd audio
 .wav Microsoft wave fi le

 Movie .avi audio/video interleaved fi le
 mpg motion picture experts group

262 Chapter 7 User-Controlled Input and Output

 Import Commands
 You can bypass the Wizard interactions by using one of the functions that are espe-
cially designed to read each of the supported fi le formats. For example, to read in a
.wav fi le, use the wavread function:

[data,fs] = wavread('decision.wav')

 Clearly, you need to understand what kind of data to expect, so that you can
name the created variables appropriately. Recall that you can fi nd a list of import
functions by typing

doc fileformats

 To use the fi les you have imported, you’ll need to use a function appropriate to
the data. In the case of a .wav fi le, the sound function is appropriate, so the code to
play the decision.wav fi le is

sound(data,fs)

 You should be aware that data storage formats are constantly changing, which
can affect MATLAB ® ’s ability to interpret them. For example, some but not all .wav
fi les use a data compression algorithm not supported by MATLAB ® .

 7.5.2 Exporting Data

 The easiest way to fi nd the appropriate function for writing a fi le is to use the help
tutorial to fi nd the correct function to read it and then to follow the links to the
 write function. For example, to read an Excel spreadsheet fi le (.xls), we’d use
 xlsread :

xlsread('filename.xls')

 At the end of the tutorial page, we are referred to the correct function for writ-
ing an Excel fi le, namely,

xlswrite('filename.xls', M)

 where M is the array you want to store in the Excel spreadsheet.

 Figure 7.11
 The Import Wizard
launches when the
 uiimport command is
executed.

7.6 Debugging Your Code 263

 7.6 DEBUGGING YOUR CODE

 A software bug is a problem that exists in the code you have written. It can be a mis-
take that results in the code not working at all (a coding error), or it can be a logic
error that results in a wrong answer. The term “bug” has its genesis in electronics,
where actual insects sometimes caused equipment failure. Perhaps the most famous
example is the moth (Figure 7.12) found in the innards of one of the earliest com-
puters, the Harvard Mark II Aiken Relay Calculator, in 1947.

 MATLAB ® includes a number of tools to help you debug your code, including
the error bar and more comprehensive tools that allow you to step through the code.

 7.6.1 Error Bar

 Whenever you use an M-fi le, notice that along the right-hand side of the fi gure win-
dow a vertical bar appears, that marks locations where there are actual errors or
where MATLAB ® has issued warnings. The portion of the code that concerns
MATLAB ® is highlighted. For example, in Figure 7.13 there are several places
marked with a light orange highlight, which indicates a warning. If you run your
cursor over the highlight (either in the code or along the bar), a message appears
with a suggested fi x for the problem. Not every warning corresponds to a real prob-
lem. For example, the warnings issued for the program in Figure 7.13 resulted from
lines of code without semicolons at the end of the line. In this particular case we
wanted the code to report answers to the command window; in other cases you
might want to suppress the output. You can edit which error messages are shown by
selecting

 File → Preferences → Code Analyser

 If the errors shown on the error bar are marked in red, they will cause the
M-fi le to stop executing. In Figure 7.14 , the code was adjusted to introduce such an
error. On line 22 the right-hand parentheses are missing, as indicated by the error
message. You can walk through the warnings and actual error messages by clicking
on the square at the top of the error bar.

 Figure 7.12
 The moth found trapped
between in a relay in
Harvard’s Mark II Aiken
Relay Calculator. This is
often erroneously reported to
be the fi rst use of the term
“bug” as a synonym for a
computer problem. This
page from the computer log
book is currently on exhibit
in the Smithsonian Institute’s
National Museum of
American History. (Image
courtesy of the Naval
Surface Warfare Center,
Dalgren, VA, 1988 .)

 KEY IDEA
 MATLAB ® includes
debugging tools to help
you fi nd errors in your
code

264 Chapter 7 User-Controlled Input and Output

Error Bar

 Figure 7.13
 The error bar on the
right-hand side of the
screen identifi es lines of
code with potential errors.
Locations in the code with
potential errors are
indicated with a light
orange highlight.

 Figure 7.14
 M-fi le with an error on
line 22 .

7.6 Debugging Your Code 265

 7.6.2 Debugging Toolbar

 When trying to fi nd logic errors in a piece of code, it is often useful to run sections
of the program, then to stop, evaluate what has happened, and continue. Using cell
mode is one way to accomplish this, but a more comprehensive approach is offered
by the debugging toolbar. It allows you to set breakpoints (places in the code where
the execution stops while you evaluate results) and to step through the code one
line at a time. Breakpoints can’t be enabled until all of the syntax errors have been
resolved.

 To set a breakpoint, click next to the line number on the left-hand side of the
editing window, or select the set/clear breakpoint icon on the toolbar. A red circle
should appear, as shown in Figure 7.15 . If the circle is gray, syntax errors still exist
in the program, or you have not saved the most recent version of the code. When
you run the program, the execution will pause at the breakpoint, and mark the
location with a green arrow. To continue, select the continue icon from the break-
point toolbar.

 You can also choose to step through the code one line at a time, using the step
icon. If your code includes calls to user-defi ned functions, you can step into the
function and then step through the function code one line at a time, using the step
in icon. To leave the user-defi ned function, select the step out icon. For example,
 Figure 7.16 shows an M-fi le program that calls the user-defi ned function, RD. Both
M-fi les are displayed in the editing window by selecting the arrange documents
icon. Notice that the line where we “stepped out” of the main program and into the
function is marked with a white arrow.

The execution is
paused here

Breakpoint

Step icon

Set/clear
breakpoint icon

Continue to the
next breakpoint

 Figure 7.15
 Breakpoints enable the user
to move through the code
in small pieces.

266 Chapter 7 User-Controlled Input and Output

 While you are executing the M-fi le using breakpoints to pause the code, the
command window prompt is

 K>>

 The prompt returns to the standard symbol

 >>

 when you have completed the process.

Step in Step out

Arrange
docu-

 Figure 7.16
 The step in icon makes it
possible to step through
user-defi ned functions one
line at a time, as they are
called by the main
program.

 SUMMARY

 MATLAB ® provides functions that allow the user to interact with an M-fi le program
and allow the programmer to control the output to the command window.

 The input function pauses the program and sends a prompt determined by
the programmer to the command window. Once the user has entered a value or
values and hits the return key, program execution continues.

 The display (disp) function allows the programmer to display the contents of
a string or a matrix in the command window. Although the disp function is ade-
quate for many display tasks, the fprintf function gives the programmer consid-
erably more control over the way results are displayed. The programmer can
combine text and calculated results on the same line and specify the number for-
mat used. The sprintf function behaves exactly the same way as the fprintf
function. However, the result of sprintf is assigned a variable name and can be
used with other functions that require strings as input. For example, the functions

Summary 267

used to annotate graphs such as title , text , and xlabel all accept strings as
input and therefore will accept the result of the sprintf function as input.

 For applications in which graphical input is required, the ginput command allows
the user to provide input to a program by selecting points from a graphics window.

 Cell mode includes a number of useful features, past just dividing up M-fi les
into convenient sections. The publish tool creates a report containing both the
M-fi le code and results as well as any fi gures generated when the program executes.
The Increment and Decrement icons on the cell toolbar allow the user to auto-
matically change the value of a parameter each time the code is executed, making
it easy to test the result of changing a variable.

 MATLAB ® includes functions that allow the user to import and export data in
a number of popular fi le formats. A complete list of these formats is available in the
 help tutorial on the File Formats page (doc fi leformats). The fprintf function
can also be used to export formatted output to a text fi le.

 The error bar, located on the right-hand side of the M-fi le window, identifi es
lines of code with potential errors. Warnings are indicated in orange and errors
that will cause the execution of the code to terminate are shown in red. More exten-
sive debugging tools are available from the debugging toolbar.

 MATLAB® SUMMARY

 The following MATLAB ® summary lists all the special characters, commands, and
functions that were defi ned in this chapter:

 Special Characters

 ’ begins and ends a string
 % placeholder used in the fprintf command
 %f fi xed-point, or decimal, notation
 %d signed integer notation
 %e exponential notation
 %g either fi xed point or exponential notation
 %s string notation
 %% cell divider
 \n linefeed
 \r carriage return (similar to linefeed)
 \t tab
 \b backspace

 Comma j261d Functions

 disp displays a string or a matrix in the command window

 fprintf creates formatted output which can be sent to the command window or to a fi le

 ginput allows the user to pick values from a graph

 input allows the user to enter values

 num2str changes a number to a string

 pause pauses the program

 sound plays MATLAB ® data through the speakers

 sprintf similar to fprintf creates formatted output which is assigned to a variable name
and stored as a character array

 uiimport launches the Import Wizard

 wavread reads wave fi les

 xlsimport imports Excel data fi les

 xlswrite exports data as an Excel fi le

268 Chapter 7 User-Controlled Input and Output

 cell
 cell mode
 character array

 formatted output
 precision fi eld

 string
 width fi eld

 KEY TERMS

 Input Function

 7.1 Create an M-fi le that prompts the user to enter a value of x and then calcu-
lates the value of sin(x).

 7.2 Create an M-fi le that prompts the user to enter a matrix and then use the
 max function to determine the largest value entered. Use the following
matrix to test your program:

 [1, 5, 3, 8, 9, 22]

 7.3 The volume of a cone is

 V � 1
3 � area of the base � height

 Prompt the user to enter the area of the base and the height of the cone
(Figure P7.3). Calculate the volume of the cone.

 Disp Function

 7.4 One of the fi rst computer programs many students write is called “Hello,
World.” The only thing the program does is print this message to the com-
puter screen. Write a “Hello, World” program in an M-fi le, using the disp
function.

 7.5 Use two separate input statements to prompt a user to enter his or her
fi rst and last names. Use the disp function to display those names on
one line. (You’ll need to combine the names and some spaces into an
array.)

 7.6 Prompt the user to enter his or her age. Then use the disp function to
report the age back to the command window. If, for example, the user
enters 5 when prompted for her age, your display should read

 Your age is 5

 This output requires combining both character data (a string) and numeric
data in the disp function—which can be accomplished by using the
 num2str function.

 7.7 Prompt the user to enter an array of numbers. Use the length function to
determine how many values were entered, and use the disp function to
report your results to the command window.

 fprintf

 7.8 Repeat Problem 7.7, and use fprintf to report your results.

 PROBLEMS

r

h

 Figure P7.3
 Volume of a cone.

Problems 269

 7.9 Use fprintf to create the multiplication tables from 1 to 13 for the num-
ber 6. Your table should look like this.

 1 times 6 is 6
 2 times 6 is 12
 3 times 6 is 18

 o
 7.10 Before calculators were readily available (about 1974), students used tables

to determine the values of mathematical functions like sine, cosine, and
log. Create such a table for sine, using the following steps:

 • Create a vector of angle values from 0 to 2p in increments of p>10.
 • Calculate the sine of each of the angles, and group your results into a

table that includes the angle and the sine.
 • Use disp to create a title for the table and a second disp command to

create column headings.
 • Use the fprintf function to display the numbers. Display only two val-

ues past the decimal point.

 7.11 Very small dimensions—those on the atomic scale—are often measured in
angstroms. An angstrom is represented by the symbol Å and corresponds to
a length of 10�10 m. Create an inches-to-angstroms conversion table as fol-
lows for values of inches from 1 to 10:

 • Use disp to create a title and column headings.
 • Use fprintf to display the numerical information.
 • Because the length represented in angstroms is so big, represent your

result in scientifi c notation, showing two values after the decimal point.
This corresponds to three signifi cant fi gures (one before and two after
the decimal point).

 7.12 Use your favorite Internet search engine and World Wide Web browser to
identify recent currency conversions for British pounds sterling, Japanese
yen, and the European euro to US dollars. Use the conversion tables to cre-
ate the following tables (use the disp and fprintf commands in your
solution, which should include a title, column labels, and formatted output):

 (a) Generate a table of conversions from yen to dollars. Start the yen col-
umn at 5 and increment by 5 yen. Print 25 lines in the table.

 (b) Generate a table of conversions from the euros to dollars. Start the euro
column at 1 euro and increment by 2 euros. Print 30 lines in the table.

 (c) Generate a table with four columns. The fi rst should contain dollars,
the second the equivalent number of euros, the third the equivalent
number of pounds, and the fourth the equivalent number of yen. Let
the dollar column vary from 1 to 10.

 Problems Combining the input, disp, and fprintf Commands

 7.13 This problem requires you to generate temperature conversion tables. Use
the following equations, which describe the relationships between tempera-
tures in degrees Fahrenheit 1TF2, degrees Celsius 1TC2, kelvins 1TK2, and
degrees Rankine 1TR2, respectively:

 TF � TR � 459.67�R

 TF �
9
5

TC � 32�F

 TR �
9
5

TK

270 Chapter 7 User-Controlled Input and Output

 You will need to rearrange these expressions to solve some of the problems.

 (a) Generate a table of conversions from Fahrenheit to Kelvin for values
from 0°F to 200°F. Allow the user to enter the increments in degrees F
between lines. Use disp and fprintf to create a table with a title,
column headings, and appropriate spacing.

 (b) Generate a table of conversions from Celsius to Rankine. Allow the user
to enter the starting temperature and the increment between lines.
Print 25 lines in the table. Use disp and fprintf to create a table
with a title, column headings, and appropriate spacing.

 (c) Generate a table of conversions from Celsius to Fahrenheit. Allow the
user to enter the starting temperature, the increment between lines,
and the number of lines for the table. Use disp and fprintf to create
a table with a title, column headings, and appropriate spacing.

 7.14 Engineers use both English and SI (Système International d’Unités) units
on a regular basis. Some fi elds use primarily one or the other, but many
combine the two systems. For example, the rate of energy input to a steam
power plant from burning fossil fuels is usually measured in Btu/hour.
However, the electricity produced by the same plant is usually measured in
joules/s (watts). Automobile engines, by contrast, are often rated in horse-
power or in ft lbf>s. Here are some conversion factors relating these differ-
ent power measurements:

 1 kW � 3412.14 Btu>h � 737.56 ft lbf>s

 1 hp � 550 ft lbf>s � 2544.5 Btu>h

 (a) Generate a table of conversions from kW to hp. The table should start
at 0 kW and end at 15 kW. Use the input function to let the user defi ne
the increment between table entries. Use disp and fprintf to create
a table with a title, column headings, and appropriate spacing.

 (b) Generate a table of conversions from ft lbf>s to Btu/h. The table should
start at 0 ft lbf>s but let the user defi ne the increment between table
entries and the fi nal table value. Use disp and fprintf to create a
table with a title, column headings, and appropriate spacing.

 (c) Generate a table that includes conversions from kW to Btu/h, hp, and
 ft lbf>s. Let the user defi ne the initial value of kW, the fi nal value of kW,
and the number of entries in the table. Use disp and fprintf to cre-
ate a table with a title, column headings, and appropriate spacing.

 ginput

 7.15 At time t � 0, when a rocket’s engine shuts down, the rocket has reached
an altitude of 500 m and is rising at a velocity of 125 m/s. At this point, grav-
ity takes over. The height of the rocket as a function of time is

 h1t2 � -
9.8
2

t2 � 125t � 500 for t 7 0

 Plot the height of the rocket from 0 to 30 seconds, and

 • Use the ginput function to estimate the maximum height the rocket
reaches and the time when the rocket hits the ground.

 • Use the disp command to report your results to the command window.

Problems 271

 7.16 The ginput function is useful for picking distances off a graph.
Demonstrate this feature by doing the following:

 • Create a graph of a circle by defi ning an array of angles from 0 to 2p, with
a spacing of p>100.

 • Use the ginput function to pick two points on the circumference of the
circle.

 • Use hold on to keep the fi gure from refreshing, and plot a line between
the two points you picked.

 • Use the data from the points to calculate the length of the line between
them. (Hint : Use the Pythagorean theorem in your calculation.)

 7.17 In recent years, the price of gasoline has increased dramatically. Automobile
companies have responded with more fuel-effi cient cars, in particular,
hybrid models. But will you save money by purchasing a hybrid such as the
Toyota Camry rather than a Camry with a standard engine? The hybrid
vehicles are considerably more expensive, but get better gas mileage.
Consider the vehicle prices and gas effi ciencies shown in Table P7.17 .

 Table P7.17 A Comparison of Standard and Hybrid Vehicles

 Year Model Base
MSRP

 Gas Effi ciency,
in-town/highway

 2008 Toyota Camry $18,720 21/31 mpg
 2008 Toyota Camry Hybrid $25,350 33/34 mpg

 2008 Toyota Highlander 4WD $28,750 17/23 mpg

 2008 Toyota Highlander 4WD Hybrid $33,700 27/25 mpg (hybrids may actually get
better mileage in town than on the road)

 2008 Ford Escape 2WD $19,140 24/28 mpg

 2008 Ford Escape 2WD Hybrid $26,495 34/30 mpg

 One way to compare two vehicles is to fi nd the “cost to own.”

 Cost to own � Purchase cost � Upkeep � Gasoline cost

 Assume for this exercise that the upkeep costs are the same, so in our
comparison we’ll set them equal to zero.

 (a) What do you think the cost of gasoline will be over the next several
years? Prompt the user to enter an estimate of gasoline cost in dollars/
gallon.

 (b) Find the “cost to own” as a function of the number of miles driven for a
pair of vehicles from the table, based on the fuel price estimate from
part a. Plot your results on an x–y graph. The point where the two lines
cross is the break-even point.

 (c) Use the ginput function to pick the break-even point off the graph.

 (d) Use sprintf to create a string identifying the break-even point, and
use the result to create a text-box annotation on your graph. Position
the text box using the gtext function.

 Cell Mode

 7.18 Publish your program and results from Problem 7.17 to HTML, using the
 publish to HTML feature from the cell toolbar. Unfortunately, because this

272 Chapter 7 User-Controlled Input and Output

chapter’s assignment requires interaction with the user, the published
results will include errors.

 7.19 Revisit Problem 7.17, which compares the cost to own for hybrids versus
standard-engine vehicles.

 (a) Instead of allowing the user to enter an estimate of fuel cost, assume
that gasoline will cost $2.00 per gallon for the next several years.

 (b) Use the incremental value adjustment tool on the cell-mode toolbar to
change the value of the gasoline cost, until the break-even point occurs
at less than 100,000 miles.

8

 INTRODUCTION

 One way to think of a computer program (not just MATLAB ®) is to consider how the
statements that compose it are organized. Usually, sections of computer code can be
categorized as sequences , selection structures , and repetition structures (see Figure 8.1). So
far, we have written code that contains sequences but none of the other structures:

 • A sequence is a list of commands that are executed one after another.
 • A selection structure allows the programmer to execute one command (or set of

commands) if some criterion is true and a second command (or set of com-
mands) if the criterion is false. A selection statement provides the means of choos-
ing between these paths, based on a logical condition . The conditions that are
evaluated often contain both relational and logical operators or functions.

 • A repetition structure, or loop, causes a group of statements to be executed mul-
tiple times. The number of times a loop is executed depends on either a counter
or the evaluation of a logical condition.

 After reading this chapter, you
should be able to:
 • Understand how

MATLAB ® interprets
 relational and logical
 operators

 • Use the find function
 • Understand the appropri-

ate uses of the if/else
 family of commands

 • Understand the switch/
case structure

 Objectives

 Logical Functions
and Selection
Structures

 C H A P T E R

274 Chapter 8 Logical Functions and Selection Structures

 8.1 RELATIONAL AND LOGICAL OPERATORS

 The selection and repetition structures used in MATLAB ® depend on relational
and logical operators. MATLAB ® has six relational operators for comparing two
matrices of equal size, as shown in Table 8.1 .

 Comparisons are either true or false, and most computer programs (including
MATLAB ®) use the number 1 for true and 0 for false. (MATLAB ® actually takes any
number that is not 0 to be true.) If we defi ne two scalars

x = 5;
y = 1;

 and use a relational operator such as <, the result of the comparison

x<y

 is either true or false. In this case, x is not less than y , so MATLAB ® responds

ans =
0

 indicating that the comparison is false. MATLAB ® uses this answer in selection
statements and in repetition structures to make decisions.

 Of course, variables in MATLAB ® usually represent entire matrices. If we rede-
fi ne x and y , we can see how MATLAB ® handles comparisons between matrices.
For example,

x = 1:5;
y = x -4;
x<y

Repetition
(loop)

Sequence Selection Figure 8.1
 Programming structures
used in MATLAB ®.

 Table 8.1 Relational Operators

 Relational Operator Interpretation

 < less than

 <= less than or equal to

 > greater than

 >= greater than or equal to

 == equal to

 ~= not equal to

 KEY IDEA
 Relational operators
compare values

8.1 Relational and Logical Operators 275

 returns
ans =

0 0 0 0 0

 MATLAB ® compares corresponding elements and creates an answer matrix of
zeros and ones. In the preceding example, x was greater than y for every compari-
son of elements, so every comparison was false and the answer was a string of zeros.
If, instead, we have

x = [1, 2, 3, 4, 5];
y = [-2, 0, 2, 4, 6];
x<y

 then

ans =
0 0 0 0 1

 The results tell us that the comparison was false for the fi rst four elements, but
true for the last. For a comparison to be true for an entire matrix, it must be true for
 every element in the matrix. In other words, all the results must be ones.

 MATLAB ® also allows us to combine comparisons with the logical operators
 and , not , and or (see Table 8.2).

 The code

x = [1, 2, 3, 4, 5];
y = [-2, 0, 2, 4, 6];
z = [8, 8, 8, 8, 8];
z>x & z>y

 returns

ans =
1 1 1 1 1

 because z is greater than both x and y for every element. The statement

x>y | x>z

 is read as “ x is greater than y or x is greater than z ” and returns

ans =
1 1 1 0 0

 This means that the condition is true for the fi rst three elements and false for
the last two.

 These relational and logical operators are used in both selection structures and
loops to determine what commands should be executed.

 KEY IDEA
 Logical operators are used
to combine comparison
statements

 Table 8.2 Logical Operators

 Logical Operator Interpretation

 & and

 ~ not

 | or

 xor exclusive or

276 Chapter 8 Logical Functions and Selection Structures

 8.2 FLOWCHARTS AND PSEUDOCODE

 With the addition of selection and repetition structures to your group of program-
ming tools, it becomes even more important to plan your program before you start
coding. Two common approaches are to use fl owcharts and pseudocode. A fl ow-
chart is a graphical approach to creating your coding plan, and pseudocode is a
verbal description of your plan. You may want to use either or both for your pro-
gramming projects.

 For simple programs, pseudocode may be the best (or at least the simplest)
planning approach:

 • Outline a set of statements describing the steps you will take to solve a problem.
 • Convert these steps into comments in an M-fi le.
 • Insert the appropriate MATLAB ® code into the fi le between the comment

lines.

 Here’s a really simple example: Suppose you’ve been asked to create a program
to convert mph to ft/s. The output should be a table, complete with a title and col-
umn headings. Here’s an outline of the steps you might follow:

 • Defi ne a vector of mph values.
 • Convert mph to ft/s.
 • Combine the mph and ft/s vectors into a matrix.
 • Create a table title.
 • Create column headings.
 • Display the table.

 Once you’ve identifi ed the steps, put them into a MATLAB ® M-fi le as comments:

%Define a vector of mph values
%Convert mph to ft/s
%Combine the mph and ft/s vectors into a matrix
%Create a table title
%Create column headings
%Display the table

 Now you can insert the appropriate MATLAB ® code into the M-fi le

%Define a vector of mph values
mph = 0:10:100;

%Convert mph to ft/s
fps = mph*5280/3600;

%Combine the mph and ft/s vectors into a matrix
table = [mph;fps]

%Create a table title
disp('Velocity Conversion Table')

%Create column headings
disp(' mph f/s')

%Display the table
fprintf('%8.0f %8.2f \n',table)

 If you put some time into your planning, you probably won’t need to change
the pseudocode much, once you start programming.

 Flowcharts alone or fl owcharts combined with pseudocode are especially appro-
priate for more complicated programming tasks. You can create a “big picture” of
your program graphically and then convert your project to pseudocode suitable to

 KEY IDEA
 Flow charts and
pseudocode are used to
plan programming tasks

 FLOWCHART
 A pictoral representation of
a computer program

8.3 Logical Functions 277

enter into the program as comments. Before you can start fl owcharting, you’ll need
to be introduced to some standard fl owcharting symbols (see Table 8.3).

 Figure 8.2 is an example of a fl owchart for the mph-to-ft/s problem. For a prob-
lem this simple, you would probably never actually create a fl owchart. However, as
problems become more complicated, fl owcharts become an invaluable tool, allow-
ing you to organize your thoughts.

 Once you’ve created a fl owchart, you should transfer the ideas into comment
lines in an M-fi le and then add the appropriate code between the comments.

 Remember, both fl owcharts and pseudocode are tools intended to help you
create better computer programs. They can also be used effectively to illustrate the
structure of a program to nonprogrammers, since they emphasize the logical pro-
gression of ideas over programming details.

 8.3 LOGICAL FUNCTIONS

 MATLAB ® offers both traditional selection structures, such as the family of if func-
tions, and a series of logical functions that perform much the same task. The pri-
mary logical function is find , which can often be used in place of both traditional
selection structures and loops.

 8.3.1 Find

 The find command searches a matrix and identifi es which elements in that matrix
meet a given criterion. For example, the U.S. Naval Academy requires applicants to
be at least 5�6�(66�) tall. Consider this list of applicant heights:

height = [63,67,65,72,69,78,75]

 You can fi nd the index numbers of the elements that meet our criterion by
using the find command:

accept = find(height>=66)

 This command returns

accept =
2 4 5 6 7

Start

Define a vector of
mph

Calculate the
ft/s vector

Combine into a
table

Create an output
table, using disp
and fprintf

End

 Figure 8.2
 Flowcharts make it easy to
visualize the structure of a
program.

 Table 8.3 Flowcharting for Designing Computer Programs

 An oval is used to indicate the beginning
or the end of a section of code.

 A parallelogram is used to indicate input
or output processes.

 A diamond indicates a decision point.

 Calculations are placed in rectangles.

 PSEUDOCODE
 A list of programming
tasks necessary to create
a program

278 Chapter 8 Logical Functions and Selection Structures

 The find function returns the index numbers from the matrix that meet the
criterion. If you want to know what the actual heights are, you can call each element,
using the index number:

height(accept)
ans =

67 72 69 78 75

 An alternative approach would be to nest the commands

height(find(height(>=66)))

 You could also determine which applicants do not meet the criterion. Use

decline = find(height<66)

 which gives

decline =
1 3

 To create a more readable report use the disp and fprintf functions:

disp('The following candidates meet the height requirement');
fprintf('Candidate # %4.0f is %4.0f
inches tall \n', [accept;height(accept)])

 These commands return the following table in the command window:

The following candidates meet the height requirement
Candidate # 2 is 67 inches tall
Candidate # 4 is 72 inches tall
Candidate # 5 is 69 inches tall
Candidate # 6 is 78 inches tall
Candidate # 7 is 75 inches tall

 Clearly, you could also create a table of those who do not meet the requirement:

disp('The following candidates do not meet the height
 requirement')
fprintf('Candidate # %4.0f is %4.0f inches tall \n',
 [decline;height(decline)])

 Similar to the previous code, the following table is returned in the command
window:

The following candidates do not meet the height requirement
Candidate # 1 is 63 inches tall
Candidate # 3 is 65 inches tall

 You can create fairly complicated search criteria that use the logical operators.
For example, suppose the applicants must be at least 18 years old and less than 35
years old. Then your data might look like this:

 KEY IDEA
 Logical functions are often
more effi cient programming
tools than traditional
selection structures

 Height, Inches Age, Years

 63 18
 67 19
 65 18
 72 20
 69 36
 78 34
 75 12

8.3 Logical Functions 279

 Now we defi ne the matrix and fi nd the index numbers of the elements in column 1
that are greater than 66. Then we fi nd which of those elements in column 2 are also
greater than or equal to 18 and less than or equal to 35. We use the commands

applicants = [63, 18; 67, 19; 65, 18; 72, 20; 69, 36; 78,
 34; 75, 12]
pass = find(applicants(:,1)>=66 & applicants(:,2)>=18
 & applicants(:,2) < 35)

 which return

pass =
2
4
6

 the list of applicants that meet all the criteria. We could use fprintf to create a
nicer output. First create a table of the data to be displayed:

results = [pass,applicants(pass,1),applicants(pass,2)]';

 Then use fprintf to send the results to the command window:

fprintf('Applicant # %4.0f is %4.0f inches tall and
 %4.0f years old\n',results)

 The resulting list is

Applicant # 2 is 67 inches tall and 19 years old
Applicant # 4 is 72 inches tall and 20 years old
Applicant # 6 is 78 inches tall and 34 years old

 So far, we’ve used find only to return a single index number. If we defi ne two
outputs from find , as in

[row, col] = find(criteria)

 it will return the appropriate row and column numbers (also called the row and
column index numbers or subscripts).

 Now, imagine that you have a matrix of patient temperature values measured in
a clinic. The column represents the number of the station where the temperature
was taken. Thus, the command

temp = [95.3, 100.2, 98.6; 97.4,99.2, 98.9; 100.1,99.3, 97]

 gives

temp =
95.3000 100.2000 98.6000
97.4000 99.2000 98.9000
100.1000 99.3000 97.0000

 and

element = find(temp>98.6)

 gives us the element number for the single-index representation:

element =
3
4
5
6
8

280 Chapter 8 Logical Functions and Selection Structures

 When the find command is used with a two-dimensional matrix, it uses an
element-numbering scheme that works down each column one at a time. For
example, consider our 3 � 3 matrix. The element index numbers are shown in
 Figure 8.3 . The elements that contain values greater than 98.6 are shown in bold.

 In order to determine the row and column numbers, we need the syntax

[row, col] = find(temp>98.6)

 which gives us the following row and column numbers:

row =
3
1
2
3
2

col =
1
2
2
2
3

 Together, these numbers identify the elements shown in Figure 8.4 .
 Using fprintf , we can create a more readable report. For example,

fprintf('Patient%3.0f at station%3.0f had a temp of%6.1f
\n', [row,col,temp(element)]')

 returns

Patient 3 at station 1 had a temp of 100.1
Patient 1 at station 2 had a temp of 100.2
Patient 2 at station 2 had a temp of 99.2
Patient 3 at station 2 had a temp of 99.3
Patient 2 at station 3 had a temp of 98.9

 8.3.2 Flowcharting and Pseudocode for Find Commands

 The find command returns only one answer: a vector of the element numbers
requested. For example, you might fl owchart a sequence of commands as shown in
 Figure 8.5 . If you use find multiple times to separate a matrix into categories, you
may choose to employ a diamond shape, indicating the use of find as a selection
structure.

%Define a vector of x-values
x = [1,2,3; 10, 5,1; 12,3,2;8, 3,1]
%Find the index numbers of the values in x >9
element = find(x>9)
%Use the index numbers to find the x-values

2

1

5
6

4

3 9
8
7

 Figure 8.3
 Element-numbering
sequence for a matrix.

 KEY IDEA
 MATLAB ® is column
dominant

1, 2
2, 2
3, 2

1, 3
2, 3
3, 3

1, 1
2, 1
3, 1

 Figure 8.4
 Row, element designation
for a 3 � 3 matrix. The
elements that meet the
criterion are shown in bold.

Start

Define a vector of
x-values.

Find the index numbers
in the x matrix for values
greater than 9.

Use the index numbers to
find the x-values.

Create an output table
using disp and fprintf.

End

 Figure 8.5
 Flowchart illustrating the
 find command.

8.3 Logical Functions 281

%greater than 9 by plugging them into x
values = x(element)
% Create an output table
disp('Elements greater than 9')
disp('Element # Value')
fprintf('%8.0f %3.0f \n', [element';values'])

 SIGNAL PROCESSING USING THE SINC FUNCTION
 The sinc function is used in many engineering applications, but especially in signal
processing (Figure 8.6). Unfortunately, this function has two widely accepted
 defi nitions:

 f11x2 �
sin(px2
px

 and f2(x2 �
sin x

x

 Both of these functions have an indeterminate form of 0/0 when x � 0. In this
case, l’Hôpital’s theorem from calculus can be used to prove that both functions are
equal to 1 when x � zero. For values of x not equal to zero, the two functions have
a similar form. The fi rst function, f1(x), crosses the x -axis when x is an integer; the
second function crosses the x -axis when x is a multiple of p.

 Suppose you would like to defi ne a function called sinc_x that uses the sec-
ond defi nition. Test your function by calculating values of sinc_x for x from �5p
to �5p and plotting the results.

1. State the Problem
 Create and test a function called sinc_x , using the second defi nition:

 f2(x) �
sin x

x

2. Describe the Input and Output

 Input Let x vary from �5p to �5p.

 Output Create a plot of sinc_x versus x .

3. Develop a Hand Example
4. Develop a MATLAB ® Solution
 Outline your function in a fl owchart, as shown in Figure 8.7 . Then convert the

fl owchart to pseudocode comments, and insert the appropriate MATLAB ® code.

 EXAMPLE 8.1

 Figure 8.6
 Oscilloscopes are widely
used in signal-processing
applications. (Courtesy of
Agilent Technologies, Inc.)

 Once we’ve created the function, we should test it in the command window:

sinc_x(0)
ans =

1
sinc_x(pi/2)
ans =

0.6366
sinc_x(pi)
ans =

3.8982e-017
sinc_x(-pi/2)
ans =

0.6366 (continued)

282 Chapter 8 Logical Functions and Selection Structures

function output = sinc_x(x)
%This function finds the value of sinc,
%using the second definition,
% sin(x)/x
%Determine the index #s of the
%elements in the x array that are close to 0

set1 = find(abs(x)<0.0001);
%Set those elements in the output
%array equal to 1
output(set1) = 1;

%Determine the index #s of the
%elements in the x array that are not
%close to 0

set2 = find(abs(x)>=0.0001);
%Calculate sin(x)/x for the elements
%that are not close to 0,
% and assign the results to the corresponding
% output array elements

output(set2) = sin(x(set2))./x(set2);

 Figure 8.7
 Flowchart of the sinc
function.

 Notice that sinc_x(pi/2) equals a very small number, but not zero. That is
because MATLAB ® treats p as a fl oating-point number and uses an approxima-
tion of its real value (Table 8.4).

 5. Test the Solution
 When we compare the results with those of the hand example, we see that the

answers match. Now we can use the function confi dently in our problem.
 We have

%Example 8.1
clear, clc

%Define an array of angles
x = -5*pi:pi/100:5*pi;

%Calculate sinc_x
y = sinc_x(x);

%Create the plot
plot(x,y)
title('Sinc Function'), xlabel('angle,
radians'),ylabel('sinc')

 Table 8.4 Calculating the Sinc Function

 x sin(x) sinc_x(x) = sin(x)/x

 0 0 0>0 � 1

 p>2 1 1>(p>2) � 0.637

 p 0 0

 �p>2 �1 �1>(p>2) � �0.637

output 1

output sin(x)/x

End

Find the index #s of the
elements of x close to zero

x<abs(.0001)

x> abs(.0001)

Start sinc_x(x)

Find the index #s of the
elements of x not close to zero

8.3 Logical Functions 283

 which generates the plot in Figure 8.8 .
 The plot also supports our belief that the function is working properly. Testing

sinc_x with one value at a time validated its answers for a scalar input; however,
the program that generated the plot sent a vector argument to the function. The
plot confi rms that it also performs properly with vector input.

 If you have trouble understanding how this function works, remove the semico-
lons that are suppressing the output, then run the program. Understanding the
output from each line will help you understand the program logic better.

20 10 0 10 20
0.4

0

0.2

0.6

0.4

0.2

1

0.8

Sinc Function

angle, radians

si
nc

 Figure 8.8
 The sinc function.

 In addition to find , MATLAB ® offers two other logical functions: all and any .
The all function checks to see if a logical condition is true for every member of an
array, and the any function checks to see if a logical condition is true for any mem-
ber of an array. Consult MATLAB ® ’s built-in help function for more information.

 PRACTICE EXERCISES 8.1

 Consider the following matrices:

 x � ≥ 1 10 42 6
5 8 78 23
56 45 9 13
23 22 8 9

¥ y � £1 2 3
4 10 12
7 21 27

§ z � 310 22 5 134
 1. Using single-index notation, fi nd the index numbers of the elements

in each matrix that contain values greater than 10.
 2. Find the row and column numbers (sometimes called subscripts) of

the elements in each matrix that contain values greater than 10.
 3. Find the values in each matrix that are greater than 10.

284 Chapter 8 Logical Functions and Selection Structures

 4. Using single-index notation, fi nd the index numbers of the elements
in each matrix that contain values greater than 10 and less than 40.

 5. Find the row and column numbers for the elements in each matrix
that contain values greater than 10 and less than 40.

 6. Find the values in each matrix that are greater than 10 and less than
40.

 7. Using single-index notation, fi nd the index numbers of the elements
in each matrix that contain values between 0 and 10 or between 70 and
80.

 8. Use the length command together with results from the find
command to determine how many values in each matrix are between 0
and 10 or between 70 and 80.

 KEY IDEA
 if statements usually work
best with scalars

 8.4 SELECTION STRUCTURES

 Most of the time, the find command can and should be used instead of an if
statement. In some situations, however, the if statement is required. This section
describes the syntax used in if statements.

 8.4.1 The Simple If

 A simple if statement has the following form:

if comparison
statements

end

 If the comparison (a logical expression) is true, the statements between the if
statement and the end statement are executed. If the comparison is false, the pro-
gram jumps immediately to the statement following end . It is good programming
practice to indent the statements within an if structure for readability. However,
recall that MATLAB ® ignores white space. Your programs will run regardless of
whether you do or do not indent any of your lines of code.

 Here’s a really simple example of an if statement:

if G<50
disp('G is a small value equal to:')
disp(G);

end

 This statement (from if to end) is easy to interpret if G is a scalar. If G is less
than 50, then the statements between the if and the end lines are executed. For
example, if G has a value of 25, then

G is a small value equal to:
25

 is displayed on the screen. However, if G is not a scalar, then the if statement consid-
ers the comparison true only if it is true for every element ! Thus, if G is defi ned
from 0 to 80,

G = 0:10:80;

 the comparison is false, and the statements inside the if statement are not exe-
cuted! In general, if statements work best when dealing with scalars.

8.4 Selection Structures 285

 8.4.2 The If/Else Structure

 The simple if allows us to execute a series of statements if a condition is true and
to skip those steps if the condition is false. The else clause allows us to execute one
set of statements if the comparison is true and a different set if the comparison is
false. Suppose you would like to take the logarithm of a variable x . You know from
basic algebra classes that the input to the log function must be greater than 0.
Here’s a set of if/else statements that calculates the logarithm if the input is
positive and sends an error message if the input to the function is 0 or negative:

if x >0
y = log(x)

else
disp('The input to the log function must be positive')

end

 When x is a scalar, this is easy to interpret. However, when x is a matrix, the
comparison is true only if it is true for every element in the matrix. So, if

x = 0:0.5:2;

 then the elements in the matrix are not all greater than 0. Therefore, MATLAB ®
skips to the else portion of the statement and displays the error message. The if/
else statement is probably best confi ned to use with scalars, although you may fi nd
it to be of limited use with vectors.

 HINT
 MATLAB ® includes a function called beep that causes the computer to “beep”
at the user. You can use this function to alert the user to an error. For example,
in the if/else clause, you could add a beep to the portion of the code that
includes an error statement:

x = input('Enter a value of x greater than 0: ');
if x >0

y = log(x)
else

beep
disp('The input to the log function must be positive')

end

 8.4.3 The Elseif Structure

 When we nest several levels of if/else statements, it may be diffi cult to determine
which logical expressions must be true (or false) in order to execute each set of
statements. The elseif function allows you to check multiple criteria while keep-
ing the code easy to read. Consider the following lines of code that evaluate whether
to issue a driver’s license, based on the applicant’s age:

if age<16
disp('Sorry – You'll have to wait')

elseif age<18
disp('You may have a youth license')

286 Chapter 8 Logical Functions and Selection Structures

elseif age<70
disp('You may have a standard license')

else
disp('Drivers over 70 require a special license')

end

 In this example, MATLAB ® fi rst checks to see if age 6 16. If the comparison is
true, the program executes the next line or set of lines, displays the message Sorry—
You'll have to wait , and then exits the if structure. If the comparison is
false, MATLAB ® moves on to the next elseif comparison, checking to see if
 age 6 18 this time. The program continues through the if structure until it
fi nally fi nds a true comparison or until it encounters the else . Notice that the
 else line does not include a comparison, since it executes if the elseif immedi-
ately before it is false.

 The fl owchart for this sequence of commands (Figure 8.9) uses the diamond
shape to indicate a selection structure.

 This structure is easy to interpret if age is a scalar. If it is a matrix, the compari-
son must be true for every element in the matrix. Consider this age matrix

age = [15,17,25,55,75]

 The fi rst comparison, if age<16 , is false, because it is not true for every ele-
ment in the array. The second comparison, elseif age<18 , is also false. The
third comparison, elseif age<70 , is false as well, since not all of the ages are
below 70. The result is Drivers over 70 require a special license —a
result that won’t please the other drivers.

Start

if age<16
True

Sorry – You’ll
have to wait

age<18
You may have a
youth license

age<70

True

You may have a
standard license

True

Drivers over 70 require
a special license

End

elseif

elseif

else

 Figure 8.9
 Flowchart using multiple
 if statements.

8.4 Selection Structures 287

 In general, elseif structures work well for scalars, but find is probably a bet-
ter choice for matrices. Here’s an example that uses find with an array of ages and
generates a table of results in each category:

age = [15,17,25,55,75];
set1 = find(age<16);
set2 = find(age>=16 & age<18);
set3 = find(age>=18 & age<70);
set4 = find(age>=70);

fprintf('Sorry – You''ll have to wait - you"re only %3.0f
 \n',age(set1))
fprintf('You may have a youth license because you"re %3.0f
 \n',age(set2))
fprintf('You may have a standard license because you"re
 %3.0f \n',age(set3))
fprintf('Drivers over 70 require a special license. You"re
 %3.0f \n',age(set4))

 These commands return

Sorry – You'll have to wait - you're only 15
You may have a youth license because you're 17
You may have a standard license because you're 25
You may have a standard license because you're 55
Drivers over 70 require a special license. You're 75

 Since every find in this sequence is evaluated, it is necessary to specify the
range completely (for example, age>=16 & age<18).

 HINT
 One common mistake new programmers make when using if statements
is to overspecify the criteria. In the preceding example, it is enough to state
that age 6 18 in the second if clause, because age cannot be less than
16 and still reach this statement. You don’t need to specify age 6 18 and
 age > � 16. If you overspecify the criteria, you risk defi ning a calculational
path for which there is no correct answer. For example, in the code

if age<16
disp('Sorry – You''ll have to wait')

elseif age<18 & age>16
disp('You may have a youth license')

elseif age<70 & age>18
disp('You may have a standard license')

elseif age>70
disp('Drivers over 70 require a special license')

end

 there is no correct choice for age = 16, 18, or 70.

288 Chapter 8 Logical Functions and Selection Structures

 ASSIGNING GRADES
 The if family of statements is used most effectively when the input is a scalar.
Create a function to determine test grades based on the score and assuming a single
input into the function. The grades should be based on the following criteria:

 Grade Score

 A 90 to 100

 B 80 to 90

 C 70 to 80

 D 60 to 70

 E
60

 1. State the Problem
 Determine the grade earned on a test.
 2. Describe the Input and Output

 Input Single score, not an array

 Output Letter grade

 3. Develop a Hand Example
 85 should be a B
 But should 90 be an A or a B? We need to create more exact criteria.

 Grade Score

 A �90 to 100

 B �80 and
90

 C �70 and
80

 D �60 and
70

 E
60

 4. Develop a MATLAB ® Solution
 Outline the function, using the fl owchart shown in Figure 8.10 .
 5. Test the Solution
 Now test the function in the command window:

grade(25)
ans =
E
grade(80)
ans =
B
grade(-52)
ans =
E
grade(108)
ans =
A

 EXAMPLE 8.2

8.4 Selection Structures 289

 Notice that although the function seems to work properly, it returns grades for
values over 100 and values less than 0. If you’d like, you can now go back and
add the logic to exclude those values:

function results = grade(x)
%This function requires a scalar input

if(x>=0 & x<=100)
if(x>=90)

results = 'A';
elseif(x>=80)

results = 'B';
elseif(x>=70)

results = 'C';
elseif(x>=60)

results = 'D';
else

results = 'E';
end

else
results = 'Illegal Input';

end

Start
grade(x)

if x > 90
True

results 'A'

results 'B'

results 'C'

results 'D'

x > 70

x > 80
True

True

results 'E'

End

x > 60

elseif

elseif

elseif

else

 Figure 8.10
 Flowchart for a grading
scheme.

function results = grade(x)
%This function requires a
%scalar input
if(x>=90)

results = 'A';
elseif(x>=80)

results = 'B';
elseif(x>=70)

results = 'C';
elseif(x>=60)

results = 'D';
else

results = 'E';
end

(continued)

290 Chapter 8 Logical Functions and Selection Structures

 We can test the function again in the command window:

grade(-10)
ans =
Illegal Input
grade(108)
ans =
Illegal Input

 This function will work great for scalars, but if you send a vector to the
function, you may get some unexpected results, such as

score = [95,42,83,77];
grade(score)
ans =
E

 PRACTICE EXERCISES 8.2

 The if family of functions is particularly useful in functions. Write and test
a function for each of these problems, assuming that the input to the func-
tion is a scalar:

 1. Suppose the legal drinking age is 21 in your state. Write and test a
function to determine whether a person is old enough to drink.

 2. Many rides at amusement parks require riders to be a certain minimum
height. Assume that the minimum height is 48�� for a certain ride.
Write and test a function to determine whether the rider is tall enough.

 3. When a part is manufactured, the dimensions are usually specifi ed
with a tolerance. Assume that a certain part needs to be 5.4 cm long,
plus or minus 0.1 cm 15.4 	 0.1 cm2. Write a function to determine
whether a part is within these specifi cations.

 4. Unfortunately, the United States currently uses both metric and
English units. Suppose the part in Exercise 3 was inspected by
measuring the length in inches instead of centimeters. Write and test a
function that determines whether the part is within specifi cations and
that accepts input into the function in inches.

 5. Many solid-fuel rocket motors consist of three stages. Once the fi rst
stage burns out, it separates from the missile and the second stage
lights. Then the second stage burns out and separates, and the third
stage lights. Finally, once the third stage burns out, it also separates
from the missile. Assume that the following data approximately
represent the times during which each stage burns:

 Stage 1 0–100 seconds
 Stage 2 100–170 seconds
 Stage 3 170–260 seconds

 Write and test a function to determine whether the missile is in Stage 1
fl ight, Stage 2 fl ight, Stage 3 fl ight, or free fl ight (unpowered).

8.4 Selection Structures 291

 8.4.4 Switch and Case

 The switch/case structure is often used when a series of programming path options
exists for a given variable, depending on its value. The switch/case is similar to the
 if/else/elseif . As a matter of fact, anything you can do with switch/case
could be done with if/else/elseif . However, the code is a bit easier to read with
 switch/case , a structure that allows you to choose between multiple outcomes,
based on some criterion. This is an important distinction between switch/case and
 elseif . The criterion can be either a scalar (a number) or a string. In practice, it is
used more with strings than with numbers. The structure of switch/case is

switch variable
case option1

code to be executed if variable is equal to option 1
case option2

code to be executed if variable is equal to option 2

o
case option_n

code to be executed if variable is equal to option n
otherwise

code to be executed if variable is not equal to any of
 the options

end

 Here’s an example: Suppose you want to create a function that tells the user
what the airfare is to one of three different cities:

city = input('Enter the name of a city in single quotes: ')
switch city

case 'Boston'
disp('$345')

case 'Denver'
disp('$150')

case 'Honolulu'
disp('Stay home and study')

otherwise
disp('Not on file')

end

 If, when you run this script, you reply 'Boston' at the prompt, MATLAB ®
responds

city =
Boston
$345

 You can tell the input command to expect a string by adding “s” in a second
fi eld. This relieves the user of the awkward requirement of adding single quotes
around any string input. With the added “s”, the preceding code now reads as follows:

city = input('Enter the name of a city: ','s')
switch city

case 'Boston'
disp('$345')

case 'Denver'

292 Chapter 8 Logical Functions and Selection Structures

disp('$150')
case 'Honolulu'

disp('Stay home and study')
otherwise

disp('Not on file')
end

 The otherwise portion of the switch/case structure is not required for the
structure to work. However, you should include it if there is any way that the user
could input a value not equal to one of the cases.

 Switch/case structures are fl owcharted exactly the same as if/else structures.

 HINT
 If you are a C programmer, you may have used switch/case in that lan-
guage. One important difference in MATLAB ® is that once a “true” case has
been found, the program does not check the other cases.

 BUYING GASOLINE
 Four countries in the world do not offi cially use the metric system: the United
States, the United Kingdom, Liberia, and Myanmar. Even in the United States, the
practice is that some industries are almost completely metric and others still use the
English system of units. For example, any shade-tree mechanic will tell you that
although older cars have a mixture of components—some metric and others
English—new cars (any car built after 1989) are almost completely metric. Wine is
packaged in liters, but milk is packaged in gallons. Americans measure distance in
miles, but power in watts. Confusion between metric and English units is common.
American travelers to Canada are regularly confused because gasoline is sold by the
liter in Canada, but by the gallon in the United States.

 Imagine that you want to buy gasoline (Figure 8.11). Write a program that:

 • Asks the user whether he or she wants to request the gasoline in liters or in gallons.
 • Prompts the user to enter how many units he or she wants to buy.
 • Calculates the total cost to the user, assuming that gasoline costs $2.89 per gallon.

 Use a switch/case structure.

1. State the Problem
 Calculate the cost of a gasoline purchase.
2. Describe the Input and Output

 Input Specify gallons or liters
 Number of gallons or liters

 Output Cost in dollars, assuming $2.89 per gallon

 3. Develop a Hand Example
 If the volume is specifi ed in gallons, the cost is

 volume � $2.89

 EXAMPLE 8.3

 Figure 8.11
 Gasoline is sold in both
liters and gallons.

8.4 Selection Structures 293

 so, for 10 gallons,

 cost � 10 gallons � $2.89>gallon � $28.90

 If the volume is specifi ed in liters, we need to convert liters to gallons and then
calculate the cost:

 volume � liters � 0.264 gallon>liter

cost � volume � $2.89

 So, for 10 liters,

 volume � 10 liters � 0.264 gallon>liter � 2.64 gallons

cost � 2.64 gallons � 2.89 � $7.63

 4. Develop a MATLAB ® Solution
 First create a fl owchart (Figure 8.12). Then convert the fl owchart into pseu-

docode comments. Finally, add the MATLAB ® code:

Define the cost/gal

Input gallons or liters

case 'gallons'

case 'liters'

Start
clear,clc

Switch

factor 1

factor 0.264

T

T
F

Not available

cost volume * factor * rate

Enter the amount of gasoline

send results to the screen

factor 0

if factor ~ 0

End

T

F

 Figure 8.12
 Flowchart to determine the
cost of gasoline, using the
switch/case structure.

(continued)

294 Chapter 8 Logical Functions and Selection Structures

clear,clc
%Define the cost per gallon
rate = 2.89;
%Ask the user to input gallons or liters
unit = input('Enter gallons or liters\n ','s');
%Use a switch/case to determine the conversion factor
switch unit
case 'gallons'

factor = 1;
case 'liters'

factor = 0.264;
otherwise

disp('Not available')
factor = 0;

end

%Ask the user how much gas he/she would like to buy
volume = input(['Enter the volume you would like to buy
in ',unit,': \n']);
%Calculate the cost of the gas
if factor ~ = 0

cost = volume * factor*rate;
%Send the results to the screen
fprintf('That will be $ %5.2f for %5.1f %s

\n',cost,volume,unit)
end

 There are several things to notice about this solution. First, the variable unit
contains an array of character information. If you check the workspace window
after you run this program, you’ll notice that unit is either a 1 � 6 character
array (if you entered liters) or a 1 � 7 character array (if you entered gallons).

 On the line

unit = input('Enter gallons or liters ','s');

 the second fi eld, 's' , tells MATLAB ® to expect a string as input. This allows the
user to enter gallons or liters without the surrounding single quotes.

 On the line

volume = input(['Enter the volume you would like to buy in
',unit,': ']);

 we created a character array out of three components:

 • The string 'Enter the volume you would like to buy in'
 • The character variable unit
 • The string ':'

 By combining these three components, we were able to make the program
prompt the user with either

Enter the volume you would like to buy in liters:

 or

Enter the volume you would like to buy in gallons:

8.4 Selection Structures 295

 In the fprintf statement, we included a fi eld for string input by using the
placeholder %s :

fprintf('That will be $ %5.2f for %5.1f %s
 \n',cost,volume,unit)

 This allowed the program to tell the users that the gasoline was measured either
in gallons or in liters.

 Finally, we used an if statement so that if the user entered something
besides gallons or liters, no calculations were performed.

 5. Test the Solution
 We can test the solution by running the program three separate times, once for

gallons, once for liters, and once for some unit not supported. The interaction
in the command window for gallons is

Enter gallons or liters
gallons
Enter the volume you would like to buy in gallons:
10
That will be $ 28.90 for 10.0 gallons

 For liters, the interaction is

Enter gallons or liters
liters
Enter the volume you would like to buy in liters:
10
That will be $ 7.63 for 10.0 liters

 Finally, if you enter anything besides gallons or liters, the program sends an
error message to the command window:

Enter gallons or liters
quarts
Not available

 Since the program results are the same as the hand calculation, it appears that
the program works as planned.

 8.4.5 Menu

 The menu function is often used in conjunction with a switch/case structure.
This function causes a menu box to appear on the screen, with a series of buttons
defi ned by the programmer.

input = menu(' Message to the user ',' text for button
 1 ',' text for button 2 ', etc.)

 We can use the menu option in our previous airfare example to ensure that the
user chooses only cities about which we have information. This also means that we
don’t need the otherwise syntax, since it is not possible to choose a city “not on fi le.”

city = menu('Select a city from the menu:
 ','Boston','Denver','Honolulu')

 KEY IDEA
 Graphical user interfaces
like the menu box reduce
the opportunity for user
errors, such as spelling
mistakes

296 Chapter 8 Logical Functions and Selection Structures

switch city
case 1

disp('$345')
case 2

disp('$150')
case 3

disp('Stay home and study')
end

 Notice that a case number has replaced the string in each case line. When the
script is executed, the menu box shown in Figure 8.13 appears and waits for the
user to select one of the buttons. If you choose Honolulu, MATLAB ® will respond

city =
3

Stay home and study

 Of course, you could suppress the output from the disp command, which was
included here for clarity.

 Figure 8.13
 The pop-up menu window.

 BUYING GASOLINE: A MENU APPROACH
 In Example 8.3 , we used a switch/case approach to determine whether the cus-
tomer wanted to buy gasoline measured in gallons or liters. One problem with our
program is that if the user can’t spell, the program won’t work. For example, if,
when prompted for gallons or liters, the user enters

litters

 The program will respond

Not Available

 We can get around this problem by using a menu; then the user need only press a
button to make a choice. We’ll still use the switch/case structure, but will com-
bine it with the menu.

 1. State the Problem
 Calculate the cost of a gasoline purchase.

 EXAMPLE 8.4

8.4 Selection Structures 297

2. Describe the Input and Output

 Input Specify gallons or liters, using a menu
 Number of gallons or liters

 Output Cost in dollars, assuming $2.89 per gallon

3. Develop a Hand Example
 If the volume is specifi ed in gallons, the cost is

 volume � $2.89

 So, for 10 gallons,

 cost � 10 gallons � $2.89>gallon � $28.90

 If the volume is specifi ed in liters, we need to convert liters to gallons and then
calculate the cost:

 volume � liters � 0.264 gallon>liter

 cost � volume � $2.89

 So, for 10 liters,

 volume � 10 liters � 0.264 gallon>liter � 2.64 gallons

 cost � 2.64 gallons � 2.89 � $7.63

4. Develop a MATLAB ® Solution
 First create a fl owchart (Figure 8.14). Then convert the fl owchart into pseu-

docode comments. Finally, add the MATLAB ® code:
%Example 8.4
clear,clc
%Define the cost per gallon
rate = 2.89;
%Ask the user to input gallons or liters, using a menu
disp('Use the menu box to make your selection ')
choice = menu('Measure the gasoline in liters or
gallons?','gallons','liters');
%Use a switch/case to determine the conversion factor
switch choice

case 1
factor = 1;
unit = 'gallons'

case 2
factor = 0.264;
unit = 'liters'

end

%Ask the user how much gas he/she would like to buy
volume = input(['Enter the volume you would like to
 buy in ',unit,': \n']);
%Calculate the cost of the gas
cost = volume * factor*rate;
%Send the results to the screen
fprintf('That will be $ %5.2f for %5.1f %s
 \n',cost,volume,unit)

(continued)

298 Chapter 8 Logical Functions and Selection Structures

 This solution is simpler than the one in Example 8.3 because there is no
chance for bad input. There are a few things to notice, however.

 When we defi ne the choice by using the menu function, the result is a
number, not a character array:

choice = menu('Measure the gasoline in liters or
 gallons?','gallons','liters');

 You can check this by consulting the workspace window, in which the choice is
listed as a 1 � 1 double-precision number.

 Because we did not use the input command to defi ne the variable unit ,
which is a string (a character array), we needed to specify the value of unit as
part of the case calculations:

case 1
factor = 1;
unit = 'gallons'

case 2
factor = 0.264;
unit = 'liters'

 Doing this allows us to use the value of unit in the output to the command
window, both in the disp command and in fprintf .

Define the cost/gal

Input gallons or liters

case 1

case 2

Start
clear,clc

Switch

factor = 1

factor = 0.264

T

T
F

cost = volume * factor * rate

Enter the amount of gasoline

Send results to the screen

End

 Figure 8.14
 Flowchart to determine the
cost of gasoline, using a
menu.

8.4 Selection Structures 299

5. Test the Solution
 As in Example 8.3 , we can test the solution by running the program, but this

time we need to try it only twice—once for gallons and once for liters. The
interaction in the command window for gallons is

Use the menu box to make your selection

Enter the volume you would like to buy in gallons:
10
That will be $ 28.90 for 10.0 gallons

 For liters, the interaction is

Use the menu box to make your selection

Enter the volume you would like to buy in liters:
10
That will be $ 7.63 for 10.0 liters

 These values match those in the hand solution and have the added advantage
that you can’t misspell any of the input.

 PRACTICE EXERCISES 8.3

 Use the switch/case structure to solve these problems:

 1. Create a program that prompts the user to enter his or her year in
school—freshman, sophomore, junior, or senior. The input will be a
string. Use the switch/case structure to determine which day fi nals
will be given for each group—Monday for freshmen, Tuesday for
sophomores, Wednesday for juniors, and Thursday for seniors.

300 Chapter 8 Logical Functions and Selection Structures

 2. Repeat Exercise 1, but this time with a menu.
 3. Create a program to prompt the user to enter the number of candy

bars he or she would like to buy. The input will be a number. Use the
 switch/case structure to determine the bill, where

 1 bar � $0.75
 2 bars � $1.25
 3 bars � $1.65

 more than 3 bars � $1.65 � $0.30 1number ordered � 32

Command prompt

Variables
are listed
as they are
created

Folding
has been
activated

Current location as we
step through the code

Break-
point

 Figure 8.15
 Using debugging tools is
an effective way to
evaluate how MATLAB ®
moves through the code as
it executes.

 8.5 DEBUGGING

 As the code we are writing becomes more complicated, the debugging tools available in
MATLAB ® become more valuable. Consider the simple program shown in Figure 8.15
that demonstrates the use of the if/else structure. A breakpoint has been added on line
two. When the code is executed by selecting the save and run icon, it will fi rst pause on
line 1 waiting for the user to enter a number. Once the number has been entered, the
program moves to line two and stops because the breakpoint has been encountered.
Selecting the step icon will progress the execution through the code one line at a time,
allowing the programmer to observe the effect of each line of code.

 Also notice that the folding capability available in MATLAB ® has been activated
for if/else structures. This was accomplish by selecting

File -> Preferences -> Editor/Debugger -> Code Folding

 from the menu bar. By activating code folding for if/else blocks a visual cue is cre-
ated, making it easier to keep track of which lines of code are included in the structure.

Summary 301

 SUMMARY

 Sections of computer code can be categorized as sequences, selection structures,
and repetition structures. Sequences are lists of instructions that are executed in
order. Selection structures allow the programmer to defi ne criteria (conditional
statements) that the program uses to choose execution paths. Repetition structures
defi ne loops in which a sequence of instructions is repeated until some criterion is
met (also defi ned by conditional statements).

 MATLAB ® uses the standard mathematical relational operators, such as greater
than 172 and less than 162. The not-equal-to 1� � 2 operator’s form is not usually
seen in mathematics texts. MATLAB ® also includes logical operators such as and
(&) and or 1 � 2. These operators are used in conditional statements, allowing
MATLAB ® to make decisions regarding which portions of the code to execute.

 The find command is unique to MATLAB ® and should be the primary condi-
tional function used in your programming. This command allows the user to spe-
cify a condition by using both logical and relational operators. The command is
then used to identify elements of a matrix that meet the condition.

 Although the if , else , and elseif commands can be used for both scalars
and matrix variables, they are useful primarily for scalars. These commands allow
the programmer to identify alternative computing paths on the basis of the results
of conditional statements.

 The following MATLAB ® summary lists and briefl y describes all the special
characters, commands, and functions that were defi ned in this chapter:

 MATLAB ® SUMMARY

 Special Characters

 < less than
 <= less than or equal to
 > greater than
 >= greater than or equal to
 == equal to
 ~= not equal to
 & and
 | or
 ~ not

 Commands and Functions

 all checks to see if a criterion is met by all the elements in an array
 any checks to see if a criterion is met by any of the elements in an array
 case selection structure
 else defi nes the path if the result of an if statement is false
 elseif defi nes the path if the result of an if statement is false, and specifi es a new logical test
 end identifi es the end of a control structure
 fi nd determines which elements in a matrix meet the input criterion
 if checks a condition, resulting in either true or false
 menu creates a menu to use as an input vehicle
 otherwise part of the case selection structure
 switch part of the case selection structure

302 Chapter 8 Logical Functions and Selection Structures

 control structure
 index
 local variable
 logical condition

 logical operator
 loop
 relational operator
 repetition

 selection
 sequence
 subscript

 KEY TERMS

 LOGICAL OPERATORS: FIND

 8.1 A sensor that monitors the temperature of a backyard hot tub records the
data shown in Table 8.5 .

 Table 8.5 Hot-Tub Temperature Data

 Time of Day Temperature, °F

 00:00 100

 01:00 101

 02:00 102

 03:00 103

 04:00 103

 05:00 104

 06:00 104

 07:00 105

 08:00 106

 09:00 106

 10:00 106

 11:00 105

 12:00 104

 13:00 103

 14:00 101

 15:00 100

 16:00 99

 17:00 100

 18:00 102

 19:00 104

 20:00 106

 21:00 107

 22:00 105

 23:00 104

 24:00 104

 (a) The temperature should never exceed 105°F. Use the find function to
fi nd the index numbers of the temperatures that exceed the maximum
allowable temperature.

 PROBLEMS

Problems 303

 (b) Use the length function with the results from part (a) to determine
how many times the maximum allowable temperature was exceeded.

 (c) Determine at what times the temperature exceeded the maximum
allowable temperature, using the index numbers found in part (a).

 (d) The temperature should never be lower than 102°F. Use the find func-
tion together with the length function to determine how many times
the temperature was less than the minimum allowable temperature.

 (e) Determine at what times the temperature was less than the minimum
allowable temperature.

(f) Determine at what times the temperature was within the allowable limits
(i.e., between 102°F and 105°F, inclusive).

 (g) Use the max function to determine the maximum temperature reached
and the time at which it occurred.

 8.2 The height of a rocket (in meters) can be represented by the following
equation:

 height � 2.13t2 � 0.0013t4 � 0.000034t4.751

 Create a vector of time (t) values from 0 to 100 at 2-second intervals.

 (a) Use the find function to determine when the rocket hits the ground to
within 2 seconds. (Hint : The value of height will be positive for all val-
ues until the rocket hits the ground.)

 (b) Use the max function to determine the maximum height of the rocket
and the corresponding time.

 (c) Create a plot with t on the horizontal axis and height on the vertical axis for
times until the rocket hits the ground. Be sure to add a title and axis labels.*

 8.3 Solid-fuel rocket motors are used as boosters for the space shuttle, in satel-
lite launch vehicles, and in weapons systems (see Figure P8.3). The propel-
lant is a solid combination of fuel and oxidizer, about the consistency of an
eraser. For the space shuttle, the fuel component is aluminum and the oxi-
dizer is ammonium perchlorate, held together with an epoxy resin “glue.”
The propellant mixture is poured into a motor case, and the resin is allowed
to cure under controlled conditions. Because the motors are extremely
large, they are cast in segments, each requiring several “batches” of propel-
lant to fi ll. (Each motor contains over 1.1 million pounds of propellant!)
This casting–curing process is sensitive to temperature, humidity, and pres-
sure. If the conditions aren’t just right, the fuel could ignite or the proper-
ties of the propellant grain (which means its shape; the term grain is
borrowed from artillery) might be degraded. Solid-fuel rocket motors are
extremely expensive as well as dangerous and clearly must work right every
time, or the results will be disastrous. Failures can cause loss of human life
and irreplaceable scientifi c data and equipment. Highly public failures can
destroy a company. Actual processes are tightly monitored and controlled.
However, for our purposes, consider these general criteria:

 The temperature should remain between 115°F and 125°F.
 The humidity should remain between 40% and 60%.
 The pressure should remain between 100 and 200 torr.

 Figure P8.3

 Solid-fuel rocket booster to
a titan missile. (Courtesy of
NASA.)

* From Etter, Kancicky, and Moore, Introduction to Matlab 7 (Upper Saddle River, NJ: Pearson/Prentice
Hall, 2005).

304 Chapter 8 Logical Functions and Selection Structures

 Imagine that the data in Table 8.6 were collected during a casting–curing
process.

 (a) Use the find command to determine which batches did and did not
meet the criterion for temperature.

 (b) Use the find command to determine which batches did and did not
meet the criterion for humidity.

 (c) Use the find command to determine which batches did and did not
meet the criterion for pressure.

 (d) Use the find command to determine which batches failed for any rea-
son and which passed.

 (e) Use your results from the previous questions, along with the length
command, to determine what percentage of motors passed or failed on
the basis of each criterion and to determine the total passing rate.

 8.4 Two gymnasts are competing with each other. Their scores are shown in
 Table 8.7 .

 Table 8.7 Gymnastics Scores

 Event Gymnast 1 Gymnast 2

 Pommel horse 9.821 9.700

 Vault 9.923 9.925

 Floor 9.624 9.83

 Rings 9.432 9.987

 High bar 9.534 9.354

 Parallel bars 9.203 9.879

 (a) Write a program that uses find to determine how many events each
gymnast won.

 (b) Use the mean function to determine each gymnast’s average score.

 8.5 Create a function called f that satisfi es the following criteria:

 For values of x 7 2, f1x2 � x2
 For values of x … 2, f1x2 � 2x

 Plot your results for values of x from -3 to 5. Choose your spacing to create
a smooth curve. You should notice a break in the curve at x � 2.

 Table 8.6 Casting–Curing Data

 Batch Number Temperature, °F Humidity, % Pressure, torr

 1 116 45 110

 2 114 42 115

 3 118 41 120

 4 124 38 95

 5 126 61 118

Problems 305

 8.6 Create a function called g that satisfi es the following criteria:

 For x 6 -p, g1x2 � -1
 For x Ú -p and x … p, g1x2 � cos1x2
 For x 7 p, g1x2 � -1

 Plot your results for values of x from -2p to +2p. Choose your spacing to
create a smooth curve.

 8.7 A fi le named temp.dat contains information collected from a set of thermo-
couples. The data in the fi le are shown in Table 8.8 . The fi rst column consists
of time measurements (one for each hour of the day), and the remaining
columns correspond to temperature measurements at different points in a
process.
 (a) Write a program that prints the index numbers (rows and columns) of

temperature data values greater than 85.0. (Hint : You’ll need to use the
fi nd command.)

 (b) Find the index numbers (rows and columns) of temperature data values
less than 65.0.

 (c) Find the maximum temperature in the fi le and the corresponding hour
value and thermocouple number.

 Table 8.8 Temperature Data

 Hour Temp1 Temp2 Temp3

 1 68.70 58.11 87.81

 2 65.00 58.52 85.69

 3 70.38 52.62 71.78

 4 70.86 58.83 77.34

 5 66.56 60.59 68.12

 6 73.57 61.57 57.98

 7 73.57 67.22 89.86

 8 69.89 58.25 74.81

 9 70.98 63.12 83.27

 10 70.52 64.00 82.34

 11 69.44 64.70 80.21

 12 72.18 55.04 69.96

 13 68.24 61.06 70.53

 14 76.55 61.19 76.26

 15 69.59 54.96 68.14

 16 70.34 56.29 69.44

 17 73.20 65.41 94.72

 18 70.18 59.34 80.56

 19 69.71 61.95 67.83

 20 67.50 60.44 79.59

 21 70.88 56.82 68.72

 22 65.99 57.20 66.51

 23 72.14 62.22 77.39

 24 74.87 55.25 89.53

306 Chapter 8 Logical Functions and Selection Structures

 8.8 The Colorado River Drainage Basin covers parts of seven western states. A
series of dams has been constructed on the Colorado River and its tributar-
ies to store runoff water and to generate low-cost hydroelectric power (see
 Figure P8.8). The ability to regulate the fl ow of water has made the growth
of agriculture and population in these arid desert states possible. Even during
periods of extended drought, a steady, reliable source of water and electricity

 Figure P8.8
 Glen Canyon dam at Lake
Powell. (Courtesy of Getty
images, Inc.)

has been available to the basin states. Lake Powell is one of these reservoirs.
The fi le lake_powell.dat contains data on the water level in the reservoir for
the 8 years from 2000 to 2007. These data are shown in Table 8.9 . Use the
data in the fi le to answer the following questions:
 (a) Determine the average elevation of the water level for each year and for

the 8-year period over which the data were collected.
 (b) Determine how many months each year exceed the overall average for

the 8-year period.
 (c) Create a report that lists the month (number) and the year for each of the

months that exceed the overall average. For example, June is month 6.
 (d) Determine the average elevation of the water for each month for the

8-year period.

 Table 8.9 Water-Level Data for Lake Powell, Measured in Feet above Sea Level

 2000 2001 2002 2003 2004 2005 2006 2007

 January 3680.12 3668.05 3654.25 3617.61 3594.38 3563.41 3596.26 3601.41

 February 3678.48 3665.02 3651.01 3613 3589.11 3560.35 3591.94 3598.63

 March 3677.23 3663.35 3648.63 3608.95 3584.49 3557.42 3589.22 3597.85

 April 3676.44 3662.56 3646.79 3605.92 3583.02 3557.52 3589.94 3599.75

 May 3676.76 3665.27 3644.88 3606.11 3584.7 3571.60 3598.27 3604.68

 June 3682.19 3672.19 3642.98 3615.39 3587.01 3598.06 3609.36 3610.94

 July 3682.86 3671.37 3637.53 3613.64 3583.07 3607.73 3608.79 3609.47

 August 3681.12 3667.81 3630.83 3607.32 3575.85 3604.96 3604.93 3605.56

 September 3678.7 3665.45 3627.1 3604.11 3571.07 3602.20 3602.08 3602.27

 October 3676.96 3663.47 3625.59 3602.92 3570.7 3602.31 3606.12 3601.27

 November 3674.93 3661.25 3623.98 3601.24 3569.69 3602.65 3607.46 3599.71

 December 3671.59 3658.07 3621.65 3598.82 3565.73 3600.14 3604.96 3596.79

Problems 307

 Note : This problem should be solved using the find function, the mean function,
and the length function. Programmers with previous experience may be tempted
to use a loop structure, which is not required.

 IF STRUCTURES

 8.9 Create a program that prompts the user to enter a scalar value of tempera-
ture. If the temperature is greater than 98.6°F, send a message to the com-
mand window telling the user that he or she has a fever.

 8.10 Create a program that fi rst prompts the user to enter a value for x and then
prompts the user to enter a value for y . If the value of x is greater than the
value of y , send a message to the command window telling the user that
 x 7 y. If x is less than or equal to y , send a message to the command win-
dow telling the user that y 7� x.

 8.11 The inverse sine (asin) and inverse cosine (acos) functions are valid only
for inputs between -1 and +1, because both the sine and the cosine have
values only between -1 and +1 (Figure P8.11). MATLAB ® interprets the
result of asin or acos for a value outside the range as a complex number.
For example, we might have

acos(-2)
ans =
3.1416 - 1.3170i

 which is a questionable mathematical result. Create a function called my_
asin that accepts a single value of x and checks to see if it is between -1
and +1 1-1 6 � x 6 � 12. If x is outside the range, send an error
message to the screen. If it is inside the allowable range, return the value of
 asin .

10 48 6 02 4 6 82 10
2

1

1.5

0

0.5

1

0.5

2

1.5

The sine function

angle

si
n(

x)

 Figure P8.11
 The sine function varies
between -1 and +1 . Thus,
the inverse sine (asin)
is not defi ned for values
greater than 1 and values
less than -1.

 8.12 Create a program that prompts the user to enter a scalar value for the out-
side air temperature. If the temperature is equal to or above 80°F, send a
message to the command window telling the user to wear shorts. If the tem-
perature is between 60°F and 80°F send a message to the command window
telling the user that it is a beautiful day. If the temperature is equal to or
below 60°F, send a message to the command window telling the user to
wear a jacket or coat.

308 Chapter 8 Logical Functions and Selection Structures

 8.13 Suppose the following matrix represents the number of saws ordered from
your company each month over the last year.

saws = [1,4,5,3,7,5,3,10,12,8, 7, 4]

 All the numbers should be zero or positive.

 (a) Use an if statement to check whether any of the values in the matrix
are invalid. (Evaluate the whole matrix at once in a single if state-
ment.) Send the message “All valid” or else “Invalid number found” to
the screen, depending on the results of your analysis.

 (b) Change the saws matrix to include at least one negative number, and
check your program to make sure that it works for both cases.

 8.14 Most large companies encourage employees to save by matching their con-
tributions to a 401(k) plan. The government limits how much you can save
in these plans, because they shelter income from taxes until the money is
withdrawn during your retirement. The amount you can save is tied to your
income, as is the amount your employer can contribute. The government
will allow you to save additional amounts without the tax benefi t. These
plans change from year to year, so this example is just a made-up “what if.”

 Suppose the Quality Widget Company has the savings plan described in
 Table 8.10 . Create a function that fi nds the total yearly contribution to your
savings plan, based on your salary and the percentage you contribute.
Remember, the total contribution consists of the employee contribution
and the company contribution.

 Table 8.10 Quality Widget Company Savings Plan

 Income
 Maximum You Can
 Save Tax Free

 Maximum the Company
 Will Match

 Up to $30,000 10% 10%

 Between $30,000 and
$60,000

 10% 10% of the fi rst $30,000 and 5%
of the amount above $30,000

 Between $60,000 and
$100,000

 10% of the fi rst $60,000 and 8%
of the amount above $60,000

 10% of the fi rst $30,000 and 5%
of the amount between $30,000
and $60,000; nothing for the
remainder above $60,000

 Above $100,000 10% of the fi rst $60,000 and 8%
of the amount between $60,000
and $100,000; nothing on the
amount above $100,000

 Nothing—highly compensated
employees are exempt from this
plan and participate in stock
options instead

 SWITCH/CASE

 8.15 In order to have a closed geometric fi gure composed of straight lines
(Figure P8.15), the angles in the fi gure must add to

 1n � 22 1180 degrees2
 where n is the number of sides.

 (a) Prove this statement to yourself by creating a vector called n from 3 to 6
and calculating the angle sum from the formula. Compare what you
know about geometry with your answer.

 Figure P8.15
 Regular Polygons.

Problems 309

 (b) Write a program that prompts the user to enter one of the following:

 triangle
 square
 pentagon
 hexagon

 Use the input to defi ne the value of n via a switch/case structure;
then use n to calculate the sum of the interior angles in the fi gure.

 (c) Reformulate your program from part (b) so that it uses a menu.

 8.16 At a local university, each engineering major requires a different number
of credits for graduation. For example, recently the requirements were as
follows:

 Civil Engineering 130

 Chemical Engineering 130

 Computer Engineering 122

 Electrical Engineering 126.5

 Mechanical Engineering 129

 Prompt the user to select an engineering program from a menu. Use a
 switch/case structure to send the minimum number of credits required
for graduation back to the command window.

 8.17 The easiest way to draw a star in MATLAB ® is to use polar coordinates. You
simply need to identify points on the circumference of a circle and draw lines
between those points. For example, to draw a fi ve-pointed star, start at the top
of the circle 1u � p>2, r � 12 and work counterclockwise (Figure P8.17).

 Prompt the user to specify either a fi ve-pointed or a six-pointed star,
using a menu. Then create the star in a MATLAB ® fi gure window. Note that
a six-pointed star is made of three triangles and requires a strategy different
from that used to create a fi ve-pointed star.

 CHALLENGE PROBLEMS

 8.18 Most major airports have separate lots for long-term and short-term parking.
The cost to park depends on the lot you select, and how long you stay.
Consider this rate structure from the Salt Lake International Airport during
the summer of 2008.
 • Long-Term (Economy) Parking

 • The fi rst hour is $1.00, and each additional hour or fraction thereof is
$1.00

 • Daily maximum $6.00
 • Weekly maximum $42.00

 • Short-Term Parking
 • The fi rst 30 minutes are free and each additional 20 minutes or fraction

thereof is $1.00
 • Daily maximum $25.00

 Write a program that asks the user the following:

 • Which lot are you using?
 • How many weeks, hours, days, and minutes did you park? Your program

should then calculate the parking bill.

310 Chapter 8 Logical Functions and Selection Structures

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

 Figure P8.17
 Steps required to draw a fi ve-pointed star in polar coordinates.

9

 INTRODUCTION

 As discussed in the previous chapter, one way to think of a computer program (not
just MATLAB ®) is to consider how the statements that compose it are organized.
Usually, sections of computer code can be categorized as sequences , selection structures ,
and repetition structures. The previous chapter described selection structures; in this
chapter we will focus on repetition structures. As a rule of thumb, if a section of code
is repeated more than three times, it is a good candidate for a repetition structure.

 Repetition structures are often called loops. All loops consist of fi ve basic parts.

 • A parameter to be used in determining whether or not to end the loop.
 • Initialization of this parameter.
 • A way to change the parameter each time through the loop. (If you don’t change

it, the loop will never stop executing.)
 • A comparison, using the parameter, to a criterion used to decide when to end the

loop.
 • Calculations to do inside the loop.

 After reading this chapter, you
should be able to:
 • Write and use for loops
 • Write and use while loops
 • Create midpoint break

structures

 • Measure the time required
to execute program
 components

 • Understand how to
improve program
execution times

 Objectives

 Repetition
Structures

 C H A P T E R

312 Chapter 9 Repetition Structures

 MATLAB ® supports two different types of loops: the for loop and the while
loop. Two additional commands, break and continue , can be used to create a
third type of loop, called a midpoint break loop. The for loop is the easiest
choice when you know how many times you need to repeat the loop. While loops
are the easiest choice when you need to keep repeating the instructions until a
criterion is met. Midpoint break loops are useful for situations where the com-
mands in the loop must be executed at least once, but where the decision to exit
the loop is based on some criterion. If you have previous programming experi-
ence, you may be tempted to use loops extensively. However, in many cases you
can compose MATLAB ® programs that avoid loops, either by using the find
command or by vectorizing the code. (In vectorization, we operate on entire vec-
tors at a time instead of one element at a time.) It’s a good idea to avoid loops
whenever possible, because vectorized programs run faster and often require
fewer programming steps.

 9.1 FOR LOOPS

 The structure of the for loop is simple. The fi rst line identifi es the loop and
defi nes an index, which is a number that changes on each pass through the loop
and is used to determine when to end the repetitions. After the identifi cation line
comes the group of commands we want to execute. Finally, the end of the loop is
identifi ed by the command end . Thus, the structure of a for loop can be summa-
rized as

for index = [matrix]
commands to be executed

end

 The loop is executed once for each element of the index matrix identifi ed in
the fi rst line. Here’s a really simple example:

for k = [1,3,7]
k

End

 During the fi rst pass through the loop k is assigned a value of 1, the fi rst value
in the k matrix. During the next pass the value of k is modifi ed to 3, the second
value in the k matrix. Each time through the loop k is modifi ed and assigned to
subsequent values from the index matrix. This example code returns

k =
1

k =
3

k =
7

 The index in this case is k . Programmers often use k as an index variable as a
matter of style. The index matrix can also be defi ned with the colon operator or,
indeed, in a number of other ways as well. Here’s an example of code that fi nds the
value of 5 raised to powers between 1 and 3:

 KEY IDEA:
 Loops allow you to repeat
sequences of commands
until some criterion is met

 KEY IDEA:
 Use for loops when you
know how many times you
need to repeat a sequence
of commands

 KEY IDEA:
 Use while loops when
you don’t know how
many times a sequence
of commands will need
to be repeated

9.1 For Loops 313

for
k = 1:3

a = 5^k
end

 On the fi rst line, the index, k , is defi ned as the matrix [1, 2, 3]. The fi rst time
through the loop, k is assigned a value of 1, and 51 is calculated. Then the loop
repeats, but now k is equal to 2 and 52 is calculated. The last time through the
loop, k is equal to 3 and 53 is calculated. Because the statements in the loop are
repeated three times, the value of a is displayed three times in the command
window:

a =
5

a =
25

a =
125

 Although we defi ned k as a matrix in the fi rst line of the for loop, because k is
an index number when it is used in the loop, it can equal only one value at a time.
After we fi nish executing the loop, if we call for k , it has only one value: the value of
the index the fi nal time through the loop. For the preceding example,

k

 returns

k =
3

 Notice that k is listed as a 1 � 1 matrix in the workspace window.
 A common way to use a for loop is in defi ning a new matrix. Consider, for

example, the code

for
k = 1:5

a(k) = k^2
end

 This loop defi nes a new matrix, a , one element at a time. Since the program
repeats its set of instructions fi ve times, a new element is added to the a matrix each
time through the loop, with the following output in the command window:

a =
1

a =
1 4

a =
1 4 9

a =
1 4 9 16

a =
1 4 9 16 25

314 Chapter 9 Repetition Structures

 Another common use for a for loop is to combine it with an if statement and
determine how many times something is true. For example, in the list of test scores
shown in the fi rst line, how many are above 90?

scores = [76,45,98,97];
count = 0;
for k=1:length(scores)

if scores(k)>90
count = count + 1;

end
end
disp(count)

 The variable count is initialized as zero, then each time through the loop, if the
score is greater than 90, the count is incremented by 1. Notice that the length com-
mand was used to determine how many times the for loop should repeat. In this case

length(scores)

 is equal to four, the number of values in the scores array.
 Most of the time, for loops are created which use an index matrix that is a sin-

gle row. However, if a two-dimensional matrix is defi ned in the index specifi cation,
MATLAB ® uses an entire column as the index each time through the loop. For
example, suppose we defi ne the index matrix as

 k � £1 2 3
1 4 9
1 8 27

§
 Then

for k = [1,2,3; 1,4,9; 1,8,27]
a = k'

 end

 HINT
 Most computer programs do not have MATLAB ® ’s ability to handle matrices so
easily; therefore, they rely on loops similar to the one just presented to defi ne
arrays. It would be easier to create the vector a in MATLAB ® with the code

k = 1:5
a = k.^2

 which returns

k =
1 2 3 4 5

a =
1 4 9 16 25

 This is an example of vectorizing the code.

9.1 For Loops 315

 returns

a =
1 1 1

a =
2 4 8

a =
3 9 27

 Notice that k was transposed when it was set equal to a , so our results are rows
instead of columns. We did this to make the output easier to read.

 We can summarize the use of for loops with the following rules:

 • The loop starts with a for statement and ends with the word end .
 • The fi rst line in the loop defi nes the number of times the loop will repeat,

using an index matrix.
 • The index of a for loop must be a variable. (The index is the number that

changes each and every time through the loop.) Although k is often used as the
symbol for the index, any variable name may be employed. The use of k is a
matter of style.

 • Any of the techniques learned to defi ne a matrix can be used to defi ne the
index matrix. One common approach is to use the colon operator, as in

for index = start:inc:final

 • If the expression is a row vector, the elements are used one at a time—once for
each time through the loop.

 • If the expression is a two-dimensional matrix (this alternative is not common),
each time through the loop the index will contain the next column in the matrix.
This means that the index will be a column vector!

 • Once you’ve completed a for loop, the index variable retains the last value used.
 • For loops can often be avoided by vectorizing the code.

 The basic fl owchart for a for loop includes a diamond, which refl ects the fact
that a for loop starts each pass with a check to see if there is a new value in the
index matrix (Figure 9.1). If there isn’t, the loop is terminated and the program
continues with the statements after the loop.

Check to see if the
index has been

exceeded

Calculations

True; you’ve run
out of

values in
the index

matrix

 Figure 9.1
 Flowchart for a for loop.

316 Chapter 9 Repetition Structures

 EXAMPLE 9.1
 CREATING A DEGREES-TO-RADIANS TABLE
 Although it would be much easier to use MATLAB ® ’s vector capability to create a
degrees-to-radians table, we can demonstrate the use of for loops with this example.

 1. State the Problem
 Create a table that converts angle values from degrees to radians, from 0 to 360

degrees, in increments of 10 degrees.
 2. Describe the Input and Output

 Input An array of angle values in degrees

 Output A table of angle values in both degrees and radians

 3. Develop a Hand Example
 For 10 degrees,

 Radians � 1102 p
180

� 0.1745

 4. Develop a MATLAB ® Solution
 First develop a fl owchart (Figure 9.2) to help you plan your code.

for k 1:36

deg(k) k*10
rad(k) deg(k)*pi/180

Start

You’ve run
out of
values in
the index
matrix

Define a table of degrees and
radians

Output table

End

 Figure 9.2
 Flowchart for changing degrees to radians.

 % Example 9.5
 %Create a table of degrees to
 %radians
 clear, clc
 %Use a for loop for
%the calculations

 for k=1:36
 deg(k) = k*10;
 rad(k)=deg(k)*pi/180;

 end

 %Create a table

 t = [deg;rad]

 %Send the table to the
 %command window

 disp('Degrees to Radians')
 disp('Degrees Radians')
 fprintf('%8.0f %8.2f \n',t)

9.1 For Loops 317

 The command window displays the following results:

Degrees to Radians

Degrees Radians

10 0.17

20 0.35

30 0.52 etc.

5. Test the Solution
 The value for 10 degrees calculated by MATLAB ® is the same as the hand
 calculation.

 Clearly, it is much easier to use MATLAB ® ’s vector capabilities for this calcu-
lation. You get exactly the same answer, and it takes signifi cantly less computing
time. This approach is called vectorization of your code and is one of the
strengths of MATLAB ® . The vectorized code is

deg = 0:10:360;

rad = deg * pi/180;

t = [deg;rad]

disp('Degrees to Radians')

disp('Degrees Radians')

fprintf('%8.0f %8.2f \n',t)

 EXAMPLE 9.2
 CALCULATING FACTORIALS WITH A FOR LOOP
 A factorial is the product of all the integers from 1 to N . For example, 5 factorial is

 1 # 2 # 3 # 4 # 5

 In mathematics texts, factorial is usually indicated with an exclamation point:

 5! is fi ve factorial.

 MATLAB ® contains a built-in function for calculating factorials, called facto-
rial . However, suppose you would like to program your own factorial function
called fact .

 1. State the Problem
 Create a function called fact to calculate the factorial of any number. Assume

scalar input.
 2. Describe the Input and Output

 Input A scalar value N

 Output The value of N !

 3. Develop a Hand Example

 5! � 1 # 2 # 3 # 4 # 5 � 120

318 Chapter 9 Repetition Structures

4. Develop a MATLAB ® Solution
 First develop a fl owchart (Figure 9.3) to help you plan your code.

5. Test the Solution
 Test the function in the command window:

fact(5)

ans =

120

 This function works only if the input is a scalar. If an array is entered, the for
loop does not execute, and the function returns a value of 1:

x=1:10;

fact(x)

ans =

1

 You can add an if statement to confi rm that the input is a positive integer and
not an array, as shown in the fl owchart in Figure 9.4 and the accompanying
code.

 Check the new function in the command window:

fact(-4)

ans =

Input must be a positive integer

for k 1:x

a a*k

You’ve run
out of
values in
the index
matrix

Output to the main
program a

Initialize a to 1

function output fact(x)

End

 Figure 9.3
 Flowchart for fi nding a factorial, using a for loop.

 function output = fact(x)
 %This function accepts a
 %scalar input and
 %calculates its factorial

 % initialize a

 a = 1;

 %Use a loop to calculate the
%factorial

 for k = 1:x
 a = a*k;

 end

 output = a;

9.1 For Loops 319

fact(x)

ans =

Input must be a positive integer

 PRACTICE EXERCISES 9.1

 Use a for loop to solve the following problems:

1. Create a table that converts inches to feet.
2. Consider the following matrix of values:

 x � 345, 23, 17, 34, 85, 334
 How many values are greater than 30? (Use a counter.)
 3. Repeat Exercise 2, this time using the find command.

Check to see if x is a
scalar

Output “Input must be a
positive integer

for k 1:x

a a*k

You’ve run
out of
values in
the index
matrix

Output to the main
program a

Initialize a to 1

Not a scalar

function output fact(x)

End

“

 Figure 9.4
 Flowchart for fi nding a factorial, including error checking.

 function output = fact(x)
 %This function accepts a scalar
 %input and calculates its factorial

 %Check to confirm that x is a single-
 %value array
 if(length(x)>1 | x<0)

 output = 'Input must be a positive
 integer';

 else
 % initialize a
 a = 1;
 %Use a loop to calculate the
%factorial
 for k = 1:x

 a = a*k;
 end
 output = a;

 end

320 Chapter 9 Repetition Structures

 9.2 WHILE LOOPS

 While loops are similar to for loops. The big difference is the way MATLAB ®
decides how many times to repeat the loop. While loops continue until some crite-
rion is met. The format for a while loop is

 while criterion
commands to be executed

end

 Here’s an example:

k = 0;
while k<3

k = k+1
end

 In this case, we initialized a counter, k , before the loop. Then the loop repeated
as long as k was less than 3. We incremented k by 1 every time through the loop, so
that the loop repeated three times, giving

k =
1

k =
2

k =
3

 Notice that when k=3 the criterion in the while statement

k<3

 is false. Thus, when MATLAB ® checks to see if it should make another pass through
the loop the program makes the decision (based on the criterion) to skip to the end
of the structure.

 We could use k as an index number to defi ne a matrix or just as a counter. Most
 for loops can also be coded as while loops. Recall the for loop in the previous
section used to calculate the fi rst three powers of 5. The following while loop
accomplishes the same task:

k = 0;
while k<3

k = k+1;
a(k) = 5^k

end

 4. Use a for loop to sum the elements of the matrix in Problem 2. Check
your results with the sum function. (Use the help feature if you don’t
know or remember how to use sum .)

 5. Use a for loop to create a vector containing the fi rst 10 elements in
the harmonic series, i.e.,

 1>1 1>2 1>3 1>4 1>5... 1>10

 6. Use a for loop to create a vector containing the fi rst 10 elements in the
alternating harmonic series, i.e.,

 1>1 -1>2 1>3 -1>4 1>5... -1>10

 KEY IDEA:
 Any problem that can be
solved using a while loop
could also be solved using
a for loop

9.2 While Loops 321

 The code returns

a =
5

a =
5 25

a =
5 25 125

 Each time through the loop, another element is added to the matrix a .
 As another example, fi rst initialize a :

a = 0;

 Then fi nd the fi rst multiple of 3 that is greater than 10:

While(a<10)
a = a + 3

end;

 The fi rst time through the loop, a is equal to 0, so the comparison is true. The
next statement (a = a + 3) is executed, and the loop is repeated. This time a is
equal to 3 and the condition is still true, so execution continues. In succession, we have

a =
3

a =
6

a =
9

a =
12

 The last time through the loop, a starts out as 9 and then becomes 12 when 3 is
added to 9. The comparison is made one fi nal time, but since a is now equal to
12—which is greater than 10—the program skips to the end of the while loop and
no longer repeats.

 While loops can also be used to count how many times a condition is true by
incorporating an if statement. Recall the test scores we counted in a for loop ear-
lier. We can also count them with a while loop:

scores = [76,45,98,97];
count = 0;
k = 0;
while k<length(scores)

k = k+1;
if scores(k)>90

count = count + 1;
end

end
disp(count)

 The variable count is used to count how many values are greater than 90. The
variable k is used to count how many times the loop is executed.

 The basic fl ow chart for a while loop (Figure 9.5) is the same as that for a for
loop (Figure 9.4).

322 Chapter 9 Repetition Structures

 One common use for a while loop is error checking of user input. Consider a
program where we prompt the user to input a positive number, and then we calcu-
late the log base 10 of that value. We can use a while loop to confi rm that the
number is positive, and if it is not, to prompt the user to enter an allowed value.
The program keeps on prompting for a positive value until the user fi nally enters a
valid number.

x = input('Enter a positive value of x')
while (x<=0)

disp('log(x) is not defined for negative numbers')
x = input('Enter a positive value of x')

end
y = log10(x);

fprintf('The log base 10 of %4.2f is %5.2f \n',x,y)

 If, when the code is executed, a positive value of x is entered, the while loop
does not execute (since x is not less than 0). If, instead, a zero or negative value is
entered, the while loop is executed, an error message is sent to the command
window, and the user is prompted to reenter the value of x . The while loop con-
tinues to execute until a positive value of x is fi nally entered.

Check to see if the
criterion is still true

Calculations

False—the criterion
 is no longer
 true and the
 program
 exits the loop

 Figure 9.5
 Flowchart for a while
loop.

 KEY IDEA:
 It is easy to create an
 infinite loop with
a while structure

 HINT
 The variable used to control the while loop must be updated every time
through the loop. If not, you’ll generate an endless loop. When a calculation
is taking a long time to complete, you can confi rm that the computer is really
working on it by checking the lower left-hand corner for the “busy” indicator.
If you want to exit the calculation manually, type Ctrl c . (Depress the Ctrl
and c key at the same time.) Make sure that the command window is the
active window when you execute this command.

 HINT
 Many computer texts and manuals indicate the control key with the ^ symbol.
This is confusing at best. The command ̂ C usually means to strike the Ctrl
key and the c key at the same time.

9.2 While Loops 323

 EXAMPLE 9.3
 CREATING A TABLE FOR CONVERTING DEGREES TO RADIANS
WITH A WHILE LOOP
 Just as we used a for loop to create a table for converting degrees to radians in
 Example 9.2 , we can use a while loop for the same purpose.

 1. State the Problem
 Create a table that converts degrees to radians, from 0 to 360 degrees, in incre-

ments of 10 degrees.
 2. Describe the Input and Output

 Input An array of angle values in degrees

 Output A table of angle values in both degrees and radians

 3. Develop a Hand Example
 For 10 degrees,

 radians � 1102 p
180

� 0.1745

 4. Develop a MATLAB ® Solution
 First develop a fl owchart (Figure 9.6) to help you plan your code.

while k< 36

degree(k) k*10
radians(k) degree(k)*pi/180
k k 1;

Start

Define a table of degrees and
radians

Output table

End

k 1

You’ve run
out of
values in
the index
matrix

 Figure 9.6
 Flowchart for converting degrees to radians with a while loop.

 %Example 9.7
 %Create a table of degrees to
 %radians
 clear,clc
 %Use a while loop for the
 %calculations

 k = 1;
 while k≤36
 degree(k) = k*10;
 radians(k) =
 degree(k)*pi/180;
 k = k+1;
 end

 %Create a table

 table = [degree;radians]

 %Send the table to the command
 %window

 disp('Degrees to Radians')
 disp('Degrees Radians')
 fprintf('%8.0f %8.2f \n',table)

324 Chapter 9 Repetition Structures

 The command window displays the following results:

 Degrees to Radians

Degrees Radians

 10 0.17

 20 0.35

 30 0.52 etc.

5. Test the Solution
 The value for 10 degrees calculated by MATLAB ® is the same as the hand

 calculation.

 EXAMPLE 9.4
 CALCULATING FACTORIALS WITH A WHILE LOOP
 Create a new function called fact2 that uses a while loop to fi nd N !. Include an
 if statement to check for negative numbers and to confi rm that the input is a scalar.

while k<x

k k 1
a a*k

Not a scalarCheck to see if x is a
scalar

Output “Input must be a
positive integer

Output to the main
program a

Initialize a to 1
and k to 1

function output fact2(x)

End

“

You’ve run
out of
values in
the index
matrix

 Figure 9.7
 Flowchart for fi nding a factorial with a while loop.

 function output = fact2(x)
 %This function uses a while loop to
%find x!
 %The input must be a positive integer
 if(length(x)>1 | x<0)

 disp('The input must be a
positive integer')

 else
 %Initialize the running product
 a = 1;
 %Initialize the counter
 k = 1;
 while k<x

 %Increment the counter
 k = k + 1;
 %Calculate the running product
 a = a*k;

 end
 output = a;
 end

9.2 While Loops 325

1. State the Problem
 Create a function called fact2 to calculate the factorial of any number.
2. Describe the Input and Output

Input A scalar value N

 Output The value of N !

 3. Develop a Hand Example

 5! � 1 # 2 # 3 # 4 # 5 � 120

 4. Develop a MATLAB ® Solution
 First develop a fl owchart (Figure 9.7) to help you plan your code.
 5. Test the Solution
 Test the function in the command window:

fact2(5)
 ans =

 120
 fact2(-10)
 ans =

 The input must be a positive integer
 fact2([1:10])
 ans =

 The input must be a positive integer

 EXAMPLE 9.5
 THE ALTERNATING HARMONIC SERIES
 The alternating harmonic series converges to the natural log of 2:

 a
�

k�1

(-1)k�1

k � 1 �
1
2

�
1
3

�
1
4

�
1
5

� g � ln122 � 0.6931471806

 Because of this, we can use the alternating harmonic series to approximate the
ln(2). But how far out do you have to take the series to get a good approximation of
the fi nal answer? We can use a while loop to solve this problem.

 1. State the Problem
 Use a while loop to calculate the members of the alternating harmonic

sequence and the value of the series until it converges to values that vary by less
than .001. Compare the result to the natural log of 2.

 2. Describe the Input and Output

 Input The description of the alternating harmonic series

 Output The value of the truncated series, once the convergence criterion
is met.

 Plot the cumulative sum of the series elements, up to the point
where the convergence criterion is met.

 a
�

k�1

(-1)k�1

k � 1 �
1
2

�
1
3

�
1
4

�
1
5

� g

1
�

(continued)

326 Chapter 9 Repetition Structures

Start

Define first two members of the sequence
y(1) 1 and y(2) 1 2

Set the starting index number equal to 3
k 3

while the absolute value of
adjacent cumulative sums is
greater than 0.001 continue

False

Calculate the first two cumulative totals
total(1) y(1)
total(2) total(1) y(2)

Calculate the next member of the sequence

y(k)
k

(1)k 1

Calculate the next cumulative sum
total(k) total(k 1) y(k)

Increment the counter
k k 1

Print the value of
the final element in the sequence
the cumulative sum
the natural log of 2

Plot the results

End

 Figure 9.8
 Flowchart to evaluate the alternating harmonic series until it converges.

 %% Calculating the Alternating Harmonic
 %Series
 clear,clc
 % Define the first two elements in the
%series
 y(1)=1;
 y(2)=-1/2;
 %Calculate the first two cumulative
 sums
 total(1)=y(1);
 total(2)=total(1) + y(2);
 k=3;
 while (abs(total(k-1)-total(k-2))>.001)

 y(k)=(-1)^(k+1)/k;
 total(k) = total(k-1) + y(k);
 k = k+1;

 end
 fprintf('The sequence converges when
 the final element is equal to %8.3f
 \n',y(k-1))
 fprintf('At which point the value of
 the series is %5.4f \n',total(k-1))
 fprintf('This compares to the value
 of the ln(2), %5.4f \n',log(2))
 fprintf('The sequence took %3.0f
 terms to converge \n',k)
 %% Plot the results
 semilogx(total)
 title('Value of the Alternating
 Harmonic Series')
 xlabel('Number of terms')
 ylabel('Sum of the terms')

9.2 While Loops 327

3. Develop a Hand Example
 Let’s calculate the value of the alternating harmonic series for 1 to 5 terms. First

fi nd the value for each of the fi rst fi ve terms in the sequence

1.0000 -0.5000 0.3333 -0.2500 0.2000

 Now calculate the sum of the series assuming 1 to 5 terms

 1.0000 0.5000 0.8333 0.5833 0.7833

 The calculated sums are getting closer together, as we can see if we fi nd the
 difference between adjacent pairs

-0.5000 0.3333 -0.2500 0.2000

 4. Develop a MATLAB ® Solution
 First develop a fl owchart (Figure 9.8) to help you plan your code, then convert

it to a MATLAB ® program. When we run the program, the following results are
displayed in the command window.

 The sequence converges when the final element is equal to 0.001

 At which point the value of the series is 0.6936

 This compares to the value of the ln(2), 0.6931

 The sequence took 1002 terms to converge

 The series is pretty close to the ln(2), but perhaps we could get closer with
more terms. If we change the convergence criterion to 0.0001 and run the pro-
gram, we get the following results

 The sequence converges when the final element is equal to
 -0.000

 At which point the value of the series is 0.6931

 This compares to the value of the ln(2), 0.6931

 The sequence took 10001 terms to converge

 5. Test the Solution
 Compare the result of the hand solution to the MATLAB ® solution, by examin-

ing the graph (Figure 9.9). The fi rst fi ve values for the series match those dis-
played in the graph. We can also see that the series seems to be converging to
approximately 0.69, which is approximately the natural log of 2.

100 101 102 103
0.5

0.6

0.7

0.8

0.9

1
Value of the Alternating Harmonic Series

Number of terms

Su
m

 o
f

th
e

te
rm

s

 Figure 9.9
 The alternating harmonic
series converges to the
ln(2).

328 Chapter 9 Repetition Structures

 9.3 BREAK AND CONTINUE

 The break command can be used to terminate a loop prematurely (while the com-
parison in the fi rst line is still true). A break statement will cause termination of
the smallest enclosing while or for loop. Here’s an example:

 n = 0;
 while(n<10)
 n = n+1;
 a = input('Enter a value greater than 0:');
 if(a<=0)
 disp('You must enter a positive number')
 disp('This program will terminate')
 break
 end
 disp('The natural log of that number is')
 disp(log(a))
 end

 In this program, the value of n is initialized outside the loop. Each time through,
the input command is used to ask for a positive number. The number is checked,
and if it is zero or negative, an error message is sent to the command window and
the program jumps out of the loop. If the value of a is positive, the program contin-
ues and another pass through the loop occurs, until n is fi nally greater than 10.

 The continue command is similar to break ; however, instead of terminating
the loop, the program just skips to the next pass:

 n=0;
 while(n<10)

 PRACTICE EXERCISES 9.2

 Use a while loop to solve the following problems:
 1. Create a conversion table of inches to feet.
 2. Consider the following matrix of values:

 x � 345, 23, 17, 34, 85, 334
 How many values are greater than 30? (Use a counter.)
 3. Repeat Exercise 2, this time using the find command.
 4. Use a while loop to sum the elements of the matrix in Exercise 2.

Check your results with the sum function. (Use the help feature if you
don’t know or remember how to use sum .)

 5. Use a while loop to create a vector containing the fi rst 10 elements in
the harmonic series, i.e.,

 1>1 1>2 1>3 1>4 1>5... 1>10
 6. Use a while loop to create a vector containing the fi rst 10 elements in

the alternating harmonic series, i.e.,

 1>1 -1>2 1>3 -1>4 1>5 ...-1>10

 INITIALIZE
 Defi ne a starting value for
a variable that will be
changed later

9.4 Midpoint Break Loops 329

 n=n+1;
 a=input('Enter a value greater than 0:');
 if(a<=0)
 disp('You must enter a positive number')
 disp('Try again')
 continue
 end
 disp('The natural log of that number is')
 disp(log(a))
 end

 In this example, if you enter a negative number, the program lets you try
again—until the value of n is fi nally greater than 10.

 9.4 MIDPOINT BREAK LOOPS

 The loops described in the previous sections are examples of midpoint break loops .
In these constructs the loop is entered, calculations are processed, and a decision is
made at some arbitrary point in the loop whether or not to exit. Then additional
calculations are processed and the loop repeats. This strategy can be used either
with a for loop or a while loop.

 In a while structure the loop continues to repeat until the criterion specifi ed
in the fi rst line of the loop is false. For example

 while (x>.001)
 . . . do some calculations that result in updating x
 end

 When the comparison between x and 0.001 is evaluated, either a 1 (for true) or
a zero (for false) is returned. If the result is 0 the loop is terminated. One potential
problem with this structure is that if the original value of x is very small, for exam-
ple, in this case 0.0005, the loop will never execute. A way around this is to force the
result to true, and add an if statement and corresponding break structure

 while(1)
 . . . do some calculations
 if (x<=.001)
 break
 end

. . . do any additional calculations or information
 processing

 end

 The while(1) implementation allows the loop to continue executing for an
infi nite number of iterations. The decision to exit the loop is then controlled by the
if/break structure. When would this be useful? One example is error checking,
similar to the example in the previous problem. Consider another MATLAB ® pro-
gram that prompts the user to enter the number of candy bars purchased, and then
fi nds the cost to the user. If the user enters a negative number the program should
prompt the user to try again. If a positive number is entered the program completes
the calculations and exits the loop.

while(1)
num_candy_bars = input('Enter the number of candy bars ');

330 Chapter 9 Repetition Structures

if num_candy_bars<0
disp('Must be a positive number')

else
total = num_candy_bars *.75;
fprintf('The total cost is %5.2f dollars \n',total)
break

end
end

 Here’s the command window interaction when the program is executed.

Enter the number of candy bars -3
Must be a positive number
Enter the number of candy bars 5
The total cost is 3.75 dollars

 One issue with this strategy is that the loop need never end. In this program, if
the user keeps replying with a negative number, the program will continue to
prompt for a positive value. One way to get around this is to use a for loop, which
has a preset number of iterations. In this example it is three.

for k=1:3
num_candy_bars = input('Enter the number of candy bars');
if num_candy_bars<0
disp('Must be a positive number')

else
total = num_candy_bars *.75;
fprintf('The total cost is %5.2f dollars \n',total)
break
end

end

 Here’s the command window interaction.

Enter the number of candy bars -3
Must be a positive number
Enter the number of candy bars -2
Must be a positive number
Enter the number of candy bars -5
Must be a positive number

 After three iterations the loop ends.
 These may seem like trivial examples. A more complicated case is described in

 Example 9.6 .

 EXAMPLE 9.6
 Calculating the value of the alternating harmonic series in order to approximate
the value of ln(2) (as illustrated in Example 9.5) is an example of a numerical
method. Many functions that you use routinely, such as sine and cosine, are
approximated using similar series, called Taylor series or Maclaurin series. The
alternating harmonic series is an example of a series that converges, but not every

9.4 Midpoint Break Loops 331

series does. For example, simply changing the alternating negative signs in the
alternating harmonic series to positive numbers (the harmonic series versus the
alternating harmonic series) results in a series that diverges—it just keeps getting
bigger and bigger with every new term. In cases such as these, we would want to
specify a maximum number of iterations in our problem before giving up and
exiting the loop.

 A less obvious example of a series that diverges is

 1-2+3-4+5-6 ...+(n-1)-n

 which can be expressed mathematically as

 a n
k�1(-1)^(k � 1)*k

 Write a program that calculates the value of the summation. Assume that we
don’t know that it diverges, and specify an exit from the loop if two adjacent values
of the cumulative sum are less than 0.001. Also specify a maximum of 50 iterations.

1. State the Problem
 Calculate the sum of the alternating series, assuming it converges, to within 0.001.
2. Describe the Input and Output

 Input a n
1(-1)^(k+1)*k

 Output Find the cumulative sum of the series for each iteration

 Create a plot of the cumulative sums versus the number of terms
3. Develop a Hand Example
 The fi rst six terms in the series are

 1 � 2 � 3 � 4 � 5 � 6
 Thus, the fi rst six cumulative sums are

 n � 1 total � 1

 n � 2 total � 1 � 2 � �1

 n � 3 total � 1 � 2 � 3 � 2

 n � 4 total � 1 � 2 � 3 � 4 � �2

 n � 5 total � 1 � 2 � 3 � 4 � 5 � 3

 n � 6 total � 1 � 2 � 3 � 4 � 5 � 6 � �3

4. Develop a MATLAB ® Solution
 Outline your M-fi le program in a fl owchart, as shown in Figure 9.10 . Next, con-

vert the flowchart to pseudocode comments, and insert the appropriate
MATLAB ® code.
 When this program is executed the result in the command window is:

The sequence did not converge in 50 iterations

At which point the value of the series is -25.000

 The resulting plot is shown in Figure 9.11

332 Chapter 9 Repetition Structures

Start

End

break

Output results including a plot

if (abs(total(k)�total(k�1))
criterion)

y(k) � (�1)^(k�1)*k
total(k) � total(k�1) � y(k)

for k�2:criterion

Initialize the parameters
first term in the series y(1)� 1
cumulative total total(1)� 1
convergence criterion � .01

 Figure 9.10
 Flowchart for calculating the cumulative sums of the alternating numeric series.

 %% Example 9.6
 % Calculating the Alternating Numeric Series
 clear,clc
 %% Define the starting parameters
 y(1)=1;
 total(1)=y(1);
 criterion = .01;
 max_iterations = 50;
 %% Execute the loop
 for k=2:max_iterations
 y(k)=(-1)^(k+1)*k;
 total(k) = total(k-1) + y(k);
 if(abs(total(k)-total(k-1))<criterion)
 break
 end
 end
 %% Specify the output
 if k==max_iterations
 fprintf('The sequence did not converge in
 %5.0f iterations \n',max_iterations)

 fprintf('At which point the value of the
 series is %8.3f \n', total(k))

 else
 fprintf('The sequence converged in %5.0f
 iterations \n',k)

 fprintf('The final element is equal to
 %8.3f \n',y(k))

 fprintf('At which point the value of the
 series is %8.3f \n', total(k))

 end
 plot(total)
 xlabel('Number of Iterations')
 ylabel('Cumulative Sum')
 title('Summation of the Alternating Numeric
 Series')

 5. Test the Solution
 The MATLAB ® solution matches the hand calculations for the fi rst six terms

of the series. If we had not programmed in a maximum number of iterations, in
the form of a for loop structure, the program would have entered an infi nite
loop.

9.5 Nested Loops 333

 9.5 NESTED LOOPS

 It is often useful to nest loops inside other loops. This is actually how many of the
MATLAB ® built-in functions operate. For example, consider the max function. This
function looks for the maximum value for each column in a matrix. We can develop
a program to fi nd the maximum, using a simple 4 × 4 array, x .

x = [1 2 6 3;
4 8 2 1;
12 18 3 5;
6 4 2 13]

 If we use the max function

max(x)

 MATLAB ® returns the maximum value in each column

ans =
12 18 6 13

 We can achieve the same result with nested for loops. First, we’ll need to deter-
mine the dimensions of the x array, using the size function.

[rows,cols]=size(x);

 Now, we can use that information to create the external for loop, which we
program to execute once for each column in the array. Then, we defi ne a provisional

25

20

15

10

5

0
C

um
ul

at
iv

e
Su

m

�5

�10

�15

�20

�25
0 5 10 15 20 25

Number of Iterations

Summation of the Altemating Numeric Series

30 35 40 45 50

 Figure 9.11
 The cumulative sum of the
alternating numeric series
does not converge, but
rather oscillates around
zero.

 KEY IDEA
 Nested loops are used to
evaluate multidimensional
data

334 Chapter 9 Repetition Structures

value for the maximum, based on the fi rst value in each column. Finally, we can
use an internal for loop, which will execute once for each row in the array.

for k=1:cols
maximum(k)=x(1,k)
for j=1:rows
if x(j,k)>maximum(k)
maximum(k)=x(j,k);

end
end

end
maximum % Sends the results to the screen

 9.6 IMPROVING THE EFFICIENCY OF LOOPS

 In general, using a for loop (or a while loop) is less effi cient in MATLAB ® than
using array operations. We can test this assertion by timing the multiplication of the
elements in a long array. First, we create a matrix A containing 40,000 ones. The
 ones command creates an n � n matrix of ones:

ones(200);

 The result is a 200 � 200 matrix of ones (40,000 total values). Now, we can
compare the results of multiplying each element by p, using array multiplication
fi rst and then a for loop. You can time the results by using the clock function and
the function etime , which measures elapsed time. If you have a fast computer, you
may need to use a larger array. The structure of the clocking code is

t0 = clock;
. . . code to be timed
etime (clock, t0)

 The clock function polls the computer clock for the current time. The etime
function compares the current time with the initial time and subtracts the two val-
ues to give the elapsed time.

 For our problem,

clear, clc
A = ones(200); %Creates a 200 x 200 matrix of ones
t0 = clock;

B = A*pi;
time = etime(clock, t0)

 gives a result of

time =
0

 The array calculation took 0 seconds, simply meaning that it happened very
quickly. Every time you run these lines of code, you should get a different answer.
The clock and etime functions used here measure how long the CPU worked
between receiving the original and fi nal timing requests. However, the CPU is doing
other things besides our problem: At a minimum, it is performing system tasks, and
it may be running other programs in the background.

 KEY IDEA
 Loops are generally less
effi cient than vectorized
calculations

If structure

Internal loop
External for loop

9.6 Improving the Effi ciency of Loops 335

 To measure the time required to perform the same calculation with a loop, we
need to clear the memory and re-create the array of ones:

clear
A = ones(200);

 This ensures that we are comparing calculations from the same starting point.
Now, we code

t0 = clock;
for k = 1:length(A(:))

B(k) = A(k)*pi;
end

time = etime(clock, t0)

 which gives the result

time =
69.6200

 It took almost 70 seconds to perform the same calculation! (This was on an
older computer—your result will depend on the machine you use.) The number of
iterations through the for loop was determined by fi nding how many elements are
in A . This was accomplished with the length command. Recall that length
returns the largest array dimension, which is 200 for our array and isn’t what we
want. To fi nd the total number of elements, we used the colon operator (:) to rep-
resent A as a single list, 40,000 elements long, and then used length , which
returned 40,000. Each time through the for loop, a new element was added to the
 B matrix. This is the step that took all the time, since the computer must allocate
additional memory 40,000 times. We can reduce the time required for this calcula-
tion by creating the B matrix fi rst (so that the memory allocation process takes
place only once) and then replacing the values one at a time. The code is

clear
A = ones(200);
t0 = clock;
%Create a B matrix of ones
B = A;
for k = 1:length(A(:))
B(k) = A(k)*pi;
end

time = etime(clock, t0)

 which gives the result

time =
0.0200

 This is obviously a huge improvement. You could see an even bigger difference
between the fi rst example, a simple multiplication of the elements of an array, and
the last example if you created a bigger matrix. By contrast, the intermediate exam-
ple, in which we did not initialize B , would take a prohibitive amount of time to
execute.

 MATLAB ® also includes a set of commands called tic and toc that can be
used in a manner similar to the clock and etime functions to time a piece of
code. Thus, the code

336 Chapter 9 Repetition Structures

 clear
 A = ones(200);
 tic
 B = A;
 for k = 1:length(A(:))
 B(k) = A(k)*pi;
 end
 toc

 returns

 Elapsed time is 0.140000 seconds.

 The difference in execution time is expected, since the computer is busy doing
different background tasks each time the program is executed. As with clock/
etime , the tic/toc commands measure elapsed time, not the time devoted to
just this program’s execution.

 HINT
 Be sure to suppress intermediate calculations when you use a loop. Printing
those values to the screen will greatly increase the amount of execution time.
If you are brave, repeat the preceding example, but delete the semicolons
inside the loop just to check out this claim. Don’t forget that you can stop the
execution of the program with Ctrl c . Be sure the command window is the
active window when you execute Ctrl c .

 SUMMARY

 Repetition structures (loops) are used when a section of code needs to be repeated
several times. As a rule of thumb, if you fi nd yourself repeating a section of code
more than three times, it probably should be in a repetition structure. MATLAB ®
supports two types of repetition structures: the for loop and the while loop. In
addition, the break and continue commands can be used to modify either type
of loop to create a midpoint break loop.

 For loops are used mainly when the programmer knows how many times a
sequence of commands should be executed. While loops are used when the com-
mands should be executed until a condition is met. Most problems can be struc-
tured so that either for or while loops are appropriate.

 The break and continue statements are used to exit a loop prematurely.
They are usually used in conjunction with if statements. The break command
causes a jump out of a loop and execution of the remainder of the program. The
 continue command skips execution of the current pass through a loop, but allows
the loop to continue until the completion criterion is met. This type of structure is
called a midpoint break loop , and is commonly used in many applications, especially
in numerical analysis.

 Vectorization of MATLAB ® code allows it to execute much more effi ciently and
therefore more quickly. Loops, in particular, should be avoided in MATLAB ® if the

Problems 337

code can be formulated into a vectorized format. When loops are unavoidable, they
can be improved by defi ning “dummy” variables with placeholder values, such as
ones or zeros. These placeholders can then be replaced in the loop. Doing this will
result in signifi cant improvements in execution time, a fact that can be confi rmed
with timing experiments.

 The clock and etime functions are used to poll the computer clock and then
determine the time required to execute pieces of code. The time calculated is the
“elapsed” time. During this time, the computer not only has been running MATLAB ®
code, but also has been executing background jobs and housekeeping functions.
The tic and toc functions perform a similar task. Either tic/toc or clock/etime
functions can be used to compare execution time for different code options.

 Commands and Functions

 break causes the execution of a loop to be terminated

 case sorts responses

 clock determines the current time on the CPU clock

 continue terminates the current pass through a loop, but proceeds to the next pass

 end identifi es the end of a control structure

 etime fi nds elapsed time

 for generates a loop structure

 ones creates a matrix of ones

 tic starts a timing sequence

 toc stops a timing sequence

 while generates a loop structure

 converge
 diverge
 for loop
 infi nite loop

 loop
 repetition
 midpoint break loop
 nested loops

 while loop
 series
 vectorization

 KEY TERMS

 9.1 Use a for loop to sum the elements in the following vector:

 x � [1, 23, 43, 72, 87, 56, 98, 33]

 Check your answer with the sum function.
 9.2 Repeat the previous problem, this time using a while loop.
 9.3 Use a for loop to create a vector of the squares of the numbers 1 through 5.
 9.4 Use a while loop to create a vector of the squares of the numbers 1 through 5.
 9.5 Use the primes function to create a list of all the primes below 100. Now

use a for loop to multiply adjacent values together. For example, the fi rst
four prime numbers are

 2 3 5 7

 PROBLEMS

338 Chapter 9 Repetition Structures

 Your calculation would be

 2*3 3*5 5*7

 which gives

 6 15 35

 9.6 A Fibonacci sequence is composed of elements created by adding the two
previous elements. The simplest Fibonacci sequence starts with 1, 1 and
proceeds as follows:

 1, 1, 2, 3, 5, 8, 13, …

 However, a Fibonacci sequence can be created with any two starting
numbers. Fibonacci sequences appear regularly in nature. For example, the
shell of the chambered nautilus (Figure P9.6) grows in accordance with a
Fibonacci sequence.
 Prompt the user to enter the fi rst two numbers in a Fibonacci sequence and
the total number of elements requested for the sequence. Find the sequence
and store it in an array by using a for loop. Now plot your results on a
 polar graph. Use the element number for the angle and the value of the
element in the sequence for the radius.

 9.7 Repeat the preceding problem, this time using a while loop.
 9.8 One interesting property of a Fibonacci sequence is that the ratio of the

values of adjacent members of the sequence approaches a number called
“the golden ratio” or � (phi). Create a program that accepts the fi rst two
numbers of a Fibonacci sequence as user input and then calculates addi-
tional values in the sequence until the ratio of adjacent values converges
to within 0.001. You can do this in a while loop by comparing the ratio
of element k to element k – 1 and the ratio of element k – 1 to element
 k – 2 . If you call your sequence x , then the code for the while statement is

while abs(x(k)/x(k-1) - x(k-1)/x(k-2))>0.001

 9.9 Recall from trigonometry that the tangent of both p>2 and � p>2 is infi nity.
This may be seen from the fact that

 tan1u2 � sin1u2 >cos1u2
 and since

 sin1p>22 � 1

 and

 cos1p>22 � 0

 it follows that

 tan1p>22 � infinity

 Because MATLAB ® uses a fl oating-point approximation of p, it calculates
the tangent of p>2 as a very large number, but not infi nity.

 Prompt the user to enter an angle u between p>2 and -p>2, inclusive.
If it is between p>2 and -p>2, but not equal to either of those values,
calculate tan1u2 and display the result in the command window. If it is
equal to p>2 or -p>2, set the result equal to Inf and display the result in
the command window. If it is outside the specifi ed range, send the user an

 Figure P9.6
 Chambered nautilus.
(Colin Keates © Dorling
Kindersley, Courtesy of
the Natural History
Museum, London.)

Problems 339

error message in the command window and prompt the user to enter
another value. Continue prompting the user for a new value of theta until
he or she enters a valid number.

 9.10 Imagine that you are a proud new parent. You decide to start a college sav-
ings plan now for your child, hoping to have enough in 18 years to pay the
sharply rising cost of education. Suppose that your folks give you $1000 to
get started and that each month you can contribute $100. Suppose also that
the interest rate is 6% per year compounded monthly, which is equivalent
to 0.5% each month.

 Because of interest payments and your contribution, each month your
balance will increase in accordance with the formula

 New balance � old balance � interest � your contribution

 Use a for loop to fi nd the amount in the savings account each month for
the next 18 years. (Create a vector of values.) Plot the amount in the account
as a function of time. (Plot time on the horizontal axis and dollars on the
vertical axis.)

 9.11 Imagine that you have a crystal ball and can predict the percentage increases
in tuition for the next 22 years. The following vector increase shows your
predictions, in percent, for each year:

increase = [10, 8, 10, 16, 15, 4, 6, 7, 8, 10, 8, 12,
 14, 15, 8, 7, 6, 5, 7, 8, 9, 8]

 Use a for loop to determine the cost of a 4-year education, assuming that
the current cost for 1 year at a state school is $5000.

 9.12 Use an if statement to compare your results from the previous two prob-
lems. Are you saving enough? Send an appropriate message to the com-
mand window.

 9.13 Edmond Halley (the astronomer famous for discovering Halley’s comet)
invented a fast algorithm for computing the square root of a number, A .
Halley’s algorithm approximates 2A as follows:

 Start with an initial guess x1 . The new approximation is then given by

 Yn �
1
A

x2
n

 xn+1 �
xn

8
(15-yn(10-3yn))

 These two calculations are repeated until some convergence criterion, e , is met.

 � xn�1 � xn � … e

 Write a MATLAB ® function called my_sqrt that approximates the square
root of a number. It should have two inputs, the initial guess and the
convergence criterion.

 Test your function by approximating the square root of 5 and comparing
it to the value calculated with the built-in MATLAB ® function, sqrt .

 9.14 The value of cos(x) can be approximated using a Maclaurin series

 cos(x) � 1 �
x2

2!
�

x4

4!
�

x6

6!
� %

340 Chapter 9 Repetition Structures

 which can be expressed more compactly as

 a �

k�1(-1)k�1 x(k-1)*2

((k-1)*2)!

 (recall that the symbol ! stands for factorial).
 Use a midpoint break loop to determine how many terms must be

included in the summation, in order to fi nd the correct value of cos(2)
within an error of .001. Limit the number of iterations to a maximum of 10.

 9.15 The value of sin(x) can be approximated as

 sin(x) � x �
x3

3!
�

x5

5!
�

x7

7!
� ...

 Create a function called my_sin, using a midpoint break loop to approximate
the value of sin(x). Determine convergence by comparing successive values
of the summation as you add additional terms. These successive sums
should be within an absolute value of 0.001 of each other. Test your function
by evaluating the my_sin(2) and comparing it to the built-in MATLAB ® sine
function.

 9.16 A store owner asks you to write a program for use in the checkout process.
The program should:
 • Prompt the user to enter the cost of the fi rst item.
 • Continue to prompt for additional items, until the user enters 0.
 • Display the total.
 • Prompt for the dollar amount the customer submits as payment.
 • Display the change due.

 Nested Loops

 9.17 In the previous chapter, the water elevation data for Lake Powell were evalu-
ated using the find function. Repeat the calculations, using a nested loop
structure.

(a) Determine the average elevation of the water level for each year and for
the eight-year period over which the data were collected.

(b) Determine how many months each year exceed the overall average for
the eight-year period.

(c) Create a report that lists the month (number) and the year for each
of the months that exceed the overall average. For example, June is
month 6.

(d) Determine the average elevation of the water for each month for the
eight-year period.

 Faster Loops

 9.18 Whenever possible, it is better to avoid using for loops, because they are
slow to execute.

 (a) Generate a 100,000-item vector of random digits called x ; square each
element in this vector and name the result y ; use the commands tic
and toc to time the operation.

 (b) Next, perform the same operation element by element in a for loop.
Before you start, clear the values in your variables with

 clear x y

 Use tic and toc to time the operation.

Problems 341

 Depending on how fast your computer runs, you may need to stop the
calculations by issuing the Ctrl c command in the command window.

 (c) Now convince yourself that suppressing the printing of intermediate
answers will speed up execution of the code by allowing these same
operations to run and print the answers as they are calculated. You will
almost undoubtedly need to cancel the execution of this loop because
of the large amount of time it takes. Recall that Ctrl c terminates the
 program .

 (d) If you are going to use a constant value several times in a for loop, cal-
culate it once and store it, rather than calculating it each time through
the loop. Demonstrate the increase in speed of this process by adding
 (sin(0.3) + cos(pi/3))*5! to every value in the long vector in a
 for loop. (Recall that ! means factorial, which can be calculated with
the MATLAB ® function factorial .)

 (e) As discussed in this chapter, if MATLAB ® must increase the size of a vec-
tor every time through a loop, the process will take more time than if the
vector were already the appropriate size. Demonstrate this fact by repeat-
ing part (b) of this problem. Create the following vector of y -values, in
which every element is equal to zero before you enter the for loop:

y = zeros(1,100000);

 You will be replacing the zeros one at a time as you repeat the calcula-
tions in the loop.

 Challenge Problems

 9.19 (a) Create a function called polygon that draws a polygon in a polar plot.
Your function should have a single input parameter—the number of
sides.

 (b) Use a for loop to create a fi gure with four subplots, showing a triangle
in the fi rst subplot, a square in the second subplot, a pentagon in the
third subplot, and a hexagon in the fourth subplot. You should use the
function you created in part (a) to draw each polygon. Use the index
parameter from the for loop to specify the subplot in which each poly-
gon is drawn, and in an expression to determine the number of sides
used as input to the polygon function.

 9.20 Consider the following method to approximate the mathematical constant,
 e . Start by generating K uniform random integers between 1 and K . Compute
 J , the number of integers between 1 and K , which were never generated. We
then approximate e by the ratio

K
J

 Consider the following example for K = 5. Assume that the following fi ve
integers are randomly generated between 1 and 5.

 1 1 2 3 2

 The number of times the integers are generated is given by

 Integers 1 2 3 4 5
 Number of instances 2 2 1 0 0

342 Chapter 9 Repetition Structures

 9.21 Vectorize (replace loops with a single statement) the calculations in the
function created in the previous problem, by using the built-in MATLAB ®
functions hist and sum .

 HINT
 Use a rounding function to transform the array of random numbers to ran-
dom integers.

 In this example, there are two integers, namely 4 and 5, which were never
generated. This means that J = 2. Consequently, e is approximated by

5
2

� 2.5

 Write a function called eapprox that takes the value of K as input, and
which then approximates e using the method described above. Test your
function several times with different values of K , and compare the result to
the value of e calculated using the built-in MATLAB ® function.

 exp(1)

10

INTRODUCTION

 The terms array and matrix are often used interchangeably in engineering. However,
technically, an array is an orderly grouping of information, whereas a matrix is a two-
dimensional numeric array used in linear algebra. Arrays can contain numeric infor-
mation, but they can also contain character data, symbolic data, and so on. Thus, not
all arrays are matrices. Only those upon which you intend to perform linear transfor-
mations meet the strict defi nition of a matrix.

 Matrix algebra is used extensively in engineering applications. The mathematics
of matrix algebra is fi rst introduced in college algebra courses and is extended in lin-
ear algebra courses and courses in differential equations. Students start using matrix
algebra regularly in statics and dynamics classes.

 10.1 MATRIX OPERATIONS AND FUNCTIONS

 In this chapter, we introduce MATLAB® functions and operators that are intended
specifi cally for use in matrix algebra. These functions and operators are contrasted
with MATLAB®’s array functions and operators, from which they differ signifi cantly.
Much of this material may be a review, but is included for completeness.

 After reading this chapter, you
should be able to:
 • Perform the basic

 operations of matrix
 algebra

 • Solve simultaneous
 equations by using

MATLAB® matrix
 operations

• Use some of MATLAB®’s
special matrices

 Objectives

 Matrix Algebra

 C H A P T E R

344 Chapter 10 Matrix Algebra

 10.1.1 Transpose

 The transpose operator changes the rows of a matrix into columns and the col-
umns into rows. In mathematics texts, you will often see the transpose indicated
with superscript T (as in AT). Don’t confuse this notation with MATLAB® syntax,
however: In MATLAB®, the transpose operator is a single quote ('), so that the trans-
pose of matrix A is A'.

 Consider the following matrix and its transpose :

 A � ≥ 1 2 3
4 5 6
7 8 9
10 11 12

¥ AT � ≥1 4 7 10
2 3 8 11
3 6 9 12

¥

 The rows and columns have been switched. Notice that the value in position (3, 1)
of A has now moved to position (1, 3) of AT, and the value in position (4, 2) of A has
now moved to position (2, 4) of AT. In general, the row and column subscripts (also
called index numbers) are interchanged to form the transpose.

 In MATLAB®, one of the most common uses of the transpose operation is to
change row vectors into column vectors. For example:

A = [1 2 3];
A'

 returns

A = 1
2
3

 When used with complex numbers, the transpose operation returns the complex
conjugate. For example, we may defi ne a vector of negative numbers, take the
square root, and then transpose the resulting matrix of complex numbers. Thus,
the code

x = [-1:-1:-3]

 returns

x =
-1 -2 -3

 Then, taking the square root with the code

y = sqrt(x)
y =

0 + 1.0000i 0 + 1.4142i 0 + 1.7321i

 and fi nally transposing y

y'

 gives

ans =
0 - 1.0000i
0 - 1.4142i
0 - 1.7321i

 Notice that the results (y') are the complex conjugates of the elements in y .

 ARRAY
 An orderly grouping of
information

 MATRIX
 A two-dimensional numeric
array used in linear
algebra

 KEY IDEA
 The terms array and matrix
are often used
interchangeably

 TRANSPOSE
 Switch the positions of the
rows and columns

10.1 Matrix Operations and Functions 345

 10.1.2 Dot Product

 The dot product (sometimes called the scalar product) is the sum of the results you
obtain when you multiply two vectors together, element by element. Consider the
following two vectors:

A = [1 2 3];
B = [4 5 6];

 The result of the array multiplication of these two vectors is

y = A.*B
y =

4 10 18

 If you add the elements up, you get the dot product:

sum(y)
ans =

32

 A mathematics text would represent the dot product as

a
n

i�1
Ai
Bi

 which we could write in MATLAB® as

sum(A.*B)

 MATLAB® includes a function called dot to compute the dot product:

dot(A,B)
ans =

32

 It doesn’t matter whether A and B are row or column vectors, just as long as
they have the same number of elements.

 The dot product fi nds wide use in engineering applications, such as in calcu-
lating the center of gravity (Example 10.1) and in carrying out vector algebra
(Example 10.2).

 DOT PRODUCT
 The sum of the results of the
array multiplications of two
vectors

 HINT
 With dot products, it doesn’t matter if both the vectors are rows, both are
columns, or one is a row and the other a column. It also doesn’t matter what
order you use to perform the process: The result of dot(A,B) is the same as
that of dot(B,A) . This isn’t true for most matrix operations.

 EXAMPLE 10.1
 CALCULATING THE CENTER OF GRAVITY
 The mass of a space vehicle is an extremely important quantity. Whole groups of
people in the design process keep track of the location and mass of every nut and
bolt. Not only is the total mass of the vehicle important, but information about mass
is also used to determine the center of gravity of the vehicle. One reason the center

(continued)

346 Chapter 10 Matrix Algebra

Center of
Pressure

Center of Gravity

 Figure 10.1
 The center of pressure
needs to be behind the
center of gravity for
stable fl ight.

 Table 10.1 Vehicle Component Locations and Mass

 Item x , m y , m z , m Mass

 Bolt 0.1 2.0 3.0 3.50 g

 Screw 1.0 1.0 1.0 1.50 g

 Nut 1.5 0.2 0.5 0.79 g

 Bracket 2.0 2.0 4.0 1.75 g

Center of
Pressure

Center of Gravity

Figure 10.1
The center of pressure
needs to be behind the
center of gravity for
stable fl ight.

Table 10.1 Vehicle Component Locations and Mass

Item x , mx y, myy z, m Mass

Bolt 0.1 2.0 3.0 3.50 g
Screw 1.0 1.0 1.0 1.50 g

Nut 1.5 0.2 0.5 0.79 g

Bracket 2.0 2.0 4.0 1.75 g

of gravity is important is that rockets tumble if the center of pressure is forward of
the center of gravity (Figure 10.1). You can demonstrate the importance of the
center of gravity to fl ight characteristics with a paper airplane. Put a paper clip on
the nose of the paper airplane and observe how the fl ight pattern changes.

 Although fi nding the center of gravity is a fairly straightforward calculation, it
becomes more complicated when you realize that both the mass of the vehicle and
the distribution of mass change as the fuel is burned.

 The location of the center of gravity can be calculated by dividing the vehicle
into small components. In a rectangular coordinate system,

 xW � x1W1 � x2W2 � x3W3 � L

 yW � y1W1 � y2W2 � y3W3 � L

 zW � z1W1 � z2W2 � z3W3 � L

 where
x, y, and z are the coordinates of the center of gravity,
W is the total mass of the system,
x1, x2, x3,c are the x -coordinates of system components 1, 2, 3, . . . , respectively,
y1, y2, y3,c are the y -coordinates of system components 1, 2, 3, . . . , respectively,
 z1, z2, z3,c are the z -coordinates of system components 1, 2, 3, . . . , respectively, and
 W1, W2, W3, c are the weights of system components 1, 2, 3, . . . , respectively.

 In this example, we will fi nd the center of gravity of a small collection of the
components used in a complicated space vehicle (see Table 10.1). We can formu-
late this problem in terms of the dot product.

(continued)(continued)

1. State the Problem
 Find the center of gravity of the space vehicle.
2. Describe the Input and Output

Input Location of each component in an x – y – z coordinate system
Mass of each component

Output Location of the center of gravity of the vehicle

3. Develop a Hand Example
 The x -coordinate of the center of gravity is equal to

x �
a
3

i�1
ximi

m Total
�
a
3

i�1
ximi

a
3

i�1
mi

 so, from Table 10.2 ,

 x �
6.535
7.54

� 0.8667 m

 Notice that the summation of the products of the x -coordinates and the corre-
sponding masses could be expressed as a dot product.

 4. Develop a MATLAB® Solution
 The MATLAB® code

% Example 10.1

mass = [3.5, 1.5, 0.79, 1.75];

x = [0.1, 1, 1.5, 2];

x_bar = dot(x,mass)/sum(mass)

y = [2, 1, 0.2, 2];

y_bar = dot(y,mass)/sum(mass)

z = [3, 1, 0.5, 4];

z_bar = dot(z,mass)/sum(mass)

 returns the following result:

x_bar =

0.8667

y_bar =

1.6125

z_bar =

2.5723

 Table 10.2 Finding the x -Coordinate of the Center of Gravity

 Item x , m Mass, g x � m, gm

 Bolt 0.1 � 3.50 � 0.35

 Screw 1.0 � 1.50 � 1.50

 Nut 1.5 � 0.79 � 1.1850

 Bracket 2.0 � 1.75 � 3.50

 Sum 7.54 6.535

10.1 Matrix Operations and Functions 347

348 Chapter 10 Matrix Algebra

5. Test the Solution
 Compare the MATLAB® solution with the hand solution. The x -coordinate

appears to be correct, so the y- and z- coordinates are probably correct, too.
Plotting the results would also help us evaluate them:

plot3(x,y,z,'o',x_bar,y_bar,z_bar,'s')

grid on

xlabel('x-axis')

ylabel('y-axis')

zlabel('z-axis')

title('Center of Gravity')

axis([0,2,0,2,0,4])

 The resulting plot is shown in Figure 10.2 .
 Now that we know the program works, we can use it for any number of items.

The program will be the same for three components as for 3000.

0

1

2

0

1

2
0

1

2

3

4

x-axis

Center of Gravity

y-axis

z-
ax

is

Center of Gravity

 Figure 10.2
 Center of gravity of
some sample data. This
plot was enhanced with
the use of MATLAB®’s
interactive plotting
tools.

 EXAMPLE 10.2
 FORCE VECTORS
 Statics is the study of forces in systems that don’t move (and hence are static).
These forces are usually described as vectors. If you add the vectors up, you can
determine the total force on an object. Consider the two force vectors A and B
shown in Figure 10.3 .

 Each has a magnitude and a direction. One typical notation would show these
vectors as A

:
 and B

:
, but would represent the magnitude of each (their physical

u

A

B

 Figure 10.3
 Force vectors are used in the
study of both statics and
dynamics.

(continued)

length) as A and B . The vectors could also be represented in terms of their magni-
tudes along the x -, y -, and z -axes, multiplied by a unit vector 1 i:, j:, k:2. Then

 A: � Ax j:� Ay j: � Az k:

 and

 B: � Bx i: � By j: � Bz k:

 The dot product of A: and B: is equal to the magnitude of A: times the magnitude
of B:, times the cosine of the angle between them:

 A: # B: � AB cos1u2
 Finding the magnitude of a vector involves using the Pythagorean theorem. In the
case of three dimensions,

 A � 2A2
x � A2

y � A2
z

 We can use MATLAB® to solve problems like this if we defi ne the vector A: as

A = [Ax Ay Az]

 where Ax , Ay , and Az are the component magnitudes in the x -, y -, and z -directions,
respectively. As our MATLAB® problem, use the dot product to fi nd the angle
between the following two force vectors:

 A: � 5i: � 6 j: � 3k:

 B: � 1i: � 3 j: � 2k:

1. State the Problem
 Find the angle between two force vectors.

2. Describe the Input and Output

Input A: � 5i
:

� 6j
:

� 3k:
B: � 1 i: � 3 j: � 2k:

Output �, the angle between the two vectors

3. Develop a Hand Example

 A: # B: � 5 # 1 � 6 # 3 � 3 # 2 � 29

 A � 252 � 62 � 32 � 8.37

 B � 212 � 32 � 22 � 3.74

 cos1u2 � A: # B: >AB � 0.9264

 cos�11u2 � 0.386

 Thus, the angle between the two vectors is 0.386 radians or 22.12 degrees.
4. Develop a MATLAB® Solution
 The MATLAB® code

%Example 10.2

%Find the angle between two force vectors

%Define the vectors

10.1 Matrix Operations and Functions 349

350 Chapter 10 Matrix Algebra

A = [5 6 3];

B = [1 3 2];

%Calculate the magnitude of each vector

mag_A = sqrt(sum(A.^2));

mag_B = sqrt(sum(B.^2));

%Calculate the cosine of theta

cos_theta = dot(A,B)/(mag_A*mag_B);

%Find theta

theta = acos(cos_theta);

%Send the results to the command window

fprintf('The angle between the vectors is %4.3f radians

\n',theta)

fprintf('or %6.2f degrees \n',theta*180/pi)

 generates the following interaction in the command window:

The angle between the vectors is 0.386 radians
or 22.12 degrees

 5. Test the Solution
 In this case, we just reproduced the hand solution in MATLAB®. However, doing

so gives us confi dence in our solution process. We could expand our problem
to allow the user to enter any pair of vectors. Consider this example:

%Example 10.2—expanded

%Finding the angle between two force vectors

%Define the vectors

disp('Component magnitudes should be entered')

disp('Using matrix notation, i.e.')

disp('[A B C]')

A = input('Enter the x y z component magnitudes of vector A: ')

B = input('Enter the x y z component magnitudes of vector B: ')

%Calculate the magnitude of each vector

mag_A = sqrt(sum(A.^2));

mag_B = sqrt(sum(B.^2));

%Calculate the cosine of theta

cos_theta = dot(A,B)/(mag_A*mag_B);

%Find theta

theta = acos(cos_theta);

%Send the results to the command window

fprintf('The angle between the vectors is %4.3f radians

\n',theta)

fprintf('or %6.2f degrees \n',theta*180/pi)

 gives the following interaction in the command window:

Component magnitudes should be entered

Using matrix notation, i.e.

 [A B C]

Enter the x y z component magnitudes of vector A: [1 2 3]

A =

1 2 3

Enter the x y z component magnitudes of vector B: [4 5 6]

B =

4 5 6

The angle between the vectors is 0.226 radians or 12.93 degrees

 PRACTICE EXERCISES 10.1

 1. Use the dot function to fi nd the dot product of the following vectors:

 A: � 31 2 3 44

 B: � 312 20 15 74
2. Find the dot product of A: and B: by summing the array products of

 A: and B: (sum(A.*B)).
 3. A group of friends went to a local fast-food establishment. They

ordered four hamburgers at $0.99 each, three soft drinks at $1.49
each, one milk shake at $2.50, two orders of fries at $0.99 each, and
two orders of onion rings at $1.29. Use the dot product to determine
the bill.

 10.1.3 Matrix Multiplication

 Matrix multiplication is similar to the dot product. If you defi ne

A = [1 2 3]
B = [3;

4;
5]

 then

A*B
ans =
26

 gives the same result as

dot(A,B)
ans =
26

 Matrix multiplication results in an array in which each element is a dot product.
The preceding example is just the simplest case. In general, the results are found

 KEY IDEA
 Matrix multiplication results
in an array in which each
element is a dot product

10.1 Matrix Operations and Functions 351

352 Chapter 10 Matrix Algebra

by taking the dot product of each row in matrix A with each column in matrix B .
For example, if

A = [1 2 3;
4 5 6]

 and

B = [10 20 30;
40 50 60;
70 80 90]

 then the fi rst element of the resulting matrix is the dot product of row 1 in matrix
 A and column 1 in matrix B , the second element is the dot product of row 1 in
matrix A and column 2 in matrix B , and so on. Once the dot product is found for
the fi rst row in matrix A with all the columns in matrix B , we start over again with
row 2 in matrix A . Thus,

C = A*B

 returns

C =
300 360 420
660 810 960

 Consider the result in row 2, column 2, of the matrix C . We can call this result
 C(2,2) . It is the dot product of row 2 of matrix A and column 2 of matrix B :

dot(A(2,:), B(:,2))
ans =

810

 We could express this relationship in mathematical notation (instead of MATLAB®
syntax) as

 Ci, j � a
N

k�1
Ai,kBk, j

 Because matrix multiplication is a series of dot products, the number of col-
umns in matrix A must equal the number of rows in matrix B . If matrix A is an
 m � n matrix, matrix B must be n � p, and the results will be an m � p matrix.
In this example, A is a 2 � 3 matrix and B is a 3 � 3 matrix. The result is a
 2 � 3 matrix .

 One way to visualize this set of rules is to write the sizes of the two matrices next
to each other, in the order of their operation. In this example, we have

 2 � 3 3 � 3

 The two inner numbers must match, and the two outer numbers determine the size
of the resulting matrix.

 Matrix multiplication is not in general commutative, which means that, in
MATLAB®,

A * B � B * A

 We can see this in our example: When we reverse the order of the matrices, we
have

 3 � 3 2 � 3

 KEY IDEA
 Matrix multiplication is not
commutative

 COMMUTATIVE
 The order of operation
does not matter

 and it is no longer possible to take the dot product of the columns in the fi rst mat-
rix and the rows in the second matrix. If both matrices are square, we can indeed
calculate an answer for A * B and an answer for B * A, but the answers are not the
same. Consider this example:

A = [1 2 3
4 5 6
7 8 9];
B = [2 3 4
5 6 7
8 9 10];
A*B
ans =

36 42 48
81 96 111
126 150 174
B*A
ans =

42 51 60
78 96 114
114 141 168

 EXAMPLE 10.3
 USING MATRIX MULTIPLICATION TO FIND THE CENTER OF GRAVITY
 In Example 10.1 , we used the dot product to fi nd the center of gravity of a space
vehicle. We could also use matrix multiplication to do the calculation in one step,
instead of calculating each coordinate separately. Table 10.1 is repeated in this
example for clarity.

 1. State the Problem
 Find the center of gravity of the space vehicle.
 2. Describe the Input and Output

 Input Location of each component in an x–y–z coordinate system
Mass of each component

 Output Location of the center of gravity of the vehicle

 3. Develop a Hand Example
 We can create a two-dimensional matrix containing all the information about

the coordinates and a corresponding one-dimensional matrix containing

 Table 10.1 Vehicle Component Locations and Mass

 Item x , m y , m z , m Mass

 Bolt 0.1 2.0 3.0 3.50 g
 Screw 1.0 1.0 1.0 1.50 g

 Nut 1.5 0.2 0.5 0.79 g

 Bracket 2.0 2.0 4.0 1.75 g

(continued)

10.1 Matrix Operations and Functions 353

354 Chapter 10 Matrix Algebra

 10.1.4 Matrix Powers

 Raising a matrix to a power is equivalent to multiplying the matrix by itself the
requisite number of times. For example, A2 is the same as A # A, A3 is the same
as A # A # A. Recalling that the number of columns in the fi rst matrix of a

 KEY IDEA
 A matrix must be square to
be raised to a power

 PRACTICE EXERCISES 10.2

 Which of the following sets of matrices can be multiplied together?

 1. A � £2 5
2 9
6 5

§ B � £2 5
2 9
6 5

§
 2. A � £2 5

2 9
6 5

§ B � c1 3 12
5 2 9

d
 3. A � c5 1 9

7 2 2
d B � £8 5

4 2
8 9

§
 4. A � £1 9 8

8 4 7
2 5 3

§ B � £71
5
§

 Show that, for each case, A # B � B # A.

information about the mass. If there are n components, the coordinate infor-
mation should be in a 3 � n matrix and the masses should be in an n � 1
matrix. The result would then be a 3 � 1 matrix representing the x–y–z coordi-
nates of the center of gravity times the total mass.

 4. Develop a MATLAB® Solution
 The MATLAB® code

% Example 10.3

coord = [0.1 2 3

1 1 1

1.5 0.2 0.5

2 2 4]';

mass = [3.5, 1.5, 0.79, 1.75]';

location=coord*mass/sum(mass)

 sends the following results to the screen:

location =

0.8667

1.6125

2.5723

 5. Test the Solution
 The results are the same as those in Example 10.1 .

multiplication must be equal to the number of rows in the second matrix, we see
that in order to raise a matrix to a power, the matrix must be square (have the
same number of rows and columns). Consider the matrix

 A � c1 2 3
4 5 6

d
 If we tried to square this matrix, we would get an error statement because of the
rows and columns mismatch:

 2 � 3 2 � 3

 However, consider another example. The code

A = randn(3)

 creates a 3 � 3 matrix of random numbers, such as

A =
-1.3362 -0.6918 -1.5937
0.7143 0.8580 -1.4410
1.6236 1.2540 0.5711

rows and columns
must match

 KEY IDEA
 Array multiplication and
matrix multiplication are
different operations and
yield different results

 HINT
 Remember that randn produces random numbers, so your computer may
produce numbers different from those listed.

 If we square this matrix, the result is also a 3 � 3 matrix:

A^2
ans =

-1.2963 -1.6677 2.2161
-2.6811 -1.5650 -3.1978
-0.3463 0.6690 -4.0683

 Raising a matrix to a noninteger power gives a complex result:

A^1.5
ans =

-1.8446 - 0.0247i -1.5333 + 0.0153i -0.3150 - 0.0255i
-0.7552 + 0.0283i 0.0668 - 0.0176i -3.0472 + 0.0292i
1.3359 + 0.0067i 1.5292 - 0.0042i -1.5313 + 0.0069i

 Note that raising A to the matrix power of two is different from raising A to
the array power of two:

C = A.^2;

 Raising A to the array power of two produces the following results:

C =
1.7854 0.4786 2.5399
0.5102 0.7362 2.0765
2.6361 1.5725 0.3262

 and is equivalent to squaring each term.

10.1 Matrix Operations and Functions 355

356 Chapter 10 Matrix Algebra

 10.1.5 Matrix Inverse

 In mathematics, what do we mean when we say “Take the inverse”? For a function,
the inverse “undoes” the function, or gets us back where we started. For example,
 sin�1

 1x2 is the inverse function of sin(x). We can demonstrate the relationship in
MATLAB®:

asin(sin(1.5)) (Recall that the MATLAB® syntax for the inverse sine is
asin.)

ans =
1.5

 HINT
 Remember that sin�1

 1x2 does not mean the same thing as 1/sin(x). Most
current mathematics texts use the sin�1

 1x2 notation, but on your calculator
and in computer programs sin�1

 1x2 is represented as asin(x).

 Another example of functions that are inverses is ln(x) and ex
 :

log(exp(3)) (Recall that the MATLAB® syntax for the natural logarithm
is log, not ln.)

ans =
 3

 But what does taking the inverse of a number mean? One way to think about it
is that if you operated on the number 1 by multiplying it by a number, what could
you do to undo this operation and get the number 1 back? Clearly, you’d need to
divide by your number, or multiply by 1 over the number. This leads us to the con-
clusion that 1/ x and x are inverses, since

1
x

x � 1

 These are, of course, multiplicative inverses, as opposed to the function inverse we
fi rst discussed. (There are also additive inverses, such as �a and a .) Finally, what is
the inverse of a matrix? It’s the matrix you need to multiply by using matrix algebra
to get the identity matrix. The identity matrix consists of ones down the main diag-
onal and zeros in all the other locations:

 ≥1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

¥

 The inverse operation is one of the few matrix multiplications that is commutative;
that is,

 A�1A � AA�1 � 1

 In order for the preceding statement to be true, matrix A must be square, which
leads us to the conclusion that, in order for a matrix to have an inverse, it must be
square.

 We can demonstrate these concepts in MATLAB® by fi rst defi ning a matrix and
then experimenting with its behavior. The “magic matrix,” in which the sum of the

 KEY IDEA
 A function times its inverse
is equal to one

rows equals the sum of the columns, as well as the sum of each diagonal, is easy to
create, so we’ll choose it for our experiment:

A = magic(3)
A =

8 1 6
3 5 7
4 9 2

 MATLAB® offers two approaches for fi nding the inverse of a matrix. We could raise
 A to the �1 power with the code

A^-1
ans =

0.1472 -0.1444 0.0639
-0.0611 0.0222 0.1056
-0.0194 0.1889 -0.1028

 or we could use the built-in function inv :

inv(A)
ans =

0.1472 -0.1444 0.0639
-0.0611 0.0222 0.1056
-0.0194 0.1889 -0.1028

 Using either approach, we can show that multiplying the inverse of A by A gives
the identity matrix:

inv(A)*A
ans =

1.0000 0 -0.0000
0 1.0000 0
0 0.0000 1.0000

 and

A*inv(A)
ans =

1.0000 0 -0.0000
-0.0000 1.0000 0
0.0000 0 1.0000

 Determining the inverse of a matrix by hand can be diffi cult, so we’ll leave that
exercise to a course in matrix mathematics. There are matrices for which an inverse
does not exist; these are called singular matrices or ill-conditioned matrices . When
you attempt to compute the inverse of an ill-conditioned matrix in MATLAB®, an
error message is sent to the command window.

 The matrix inverse is widely used in matrix algebra, although from a computa-
tional point of view it is rarely the most effi cient way to solve a problem. This subject
is discussed at length in linear algebra courses.

 10.1.6 Determinants

 Determinants are used in linear algebra and are related to the matrix inverse. If the
determinant of a matrix is 0, the matrix does not have an inverse, and we say that it
is singular. Determinants are calculated by multiplying together the elements along

 SINGULAR MATRIX
 A matrix that does not have
an inverse

 KEY IDEA
 If the determinant is zero,
the matrix does not have
an inverse

10.1 Matrix Operations and Functions 357

358 Chapter 10 Matrix Algebra

the matrix’s left-to-right diagonals and subtracting the product of the right-to-left
diagonals. For example, for a 2 � 2 matrix

 A � cA11 A12

A21 A22
d

 the determinant is

 � A � � A11A22 � A12A21

 Thus, for

 A � c1 2
3 4

d
 � A � � 112 142 � 122 132 � -2

 MATLAB® has a built-in determinant function, det , that will fi nd the determinant
for you:

A = [1 2;3 4];
det(A)
ans =

-2

 Figuring out the diagonals for a 3 � 3 matrix

 A � £A11 A12 A13

A21 A22 A23

A31 A32 A33

§
 is a bit harder. If you copy the fi rst two columns of the matrix into columns 4 and 5,
it becomes easier to see. Multiply each left-to-right diagonal and add them up:

A11 A12 A13 A11 A12

A21 A22 A23 A21 A22

A31 A32 A33 A31 A32

 1A11A22A332 � 1A12A23A312 � 1A13A21A322
 Then multiply each right-to-left diagonal and add them up:

A11 A12 A13 A11 A12

A21 A22 A23 A21 A22

A31 A32 A35 A31 A32

 1A13A22A312 � 1A11A23A322 � 1A12A21A332
 Finally, subtract the second calculation from the fi rst. For example, we might
have

 |A| � £1 2 3
4 5 6
7 8 9

§ � (1 � 5 � 9) � (2 � 6 � 7) � (3 � 4 � 8)

 - 13 � 5 � 72 � 11 � 6 � 82 � 12 � 4 � 92 � 225 � 225 � 0

 Using MATLAB® for the same calculation yields

A = [1 2 3;4 5 6;7 8 9];
det(A)
ans =

0

 Since we know that matrices with a determinant of zero do not have inverses, let’s
see what happens when we ask MATLAB® to fi nd the inverse of A :

inv(A)
Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 1.541976e-018.
ans =

1.0e+016 *
-0.4504 0.9007 -0.4504
0.9007 -1.8014 0.9007
-0.4504 0.9007 -0.4504

 PRACTICE EXERCISES 10.3

 1. Find the inverse of the following magic matrices, both by using the
 inv function and by raising the matrix to the �1 power:
 (a) magic(3)
 (b) magic(4)
 (c) magic(5)

 2. Find the determinant of each of the matrices in Exercise 1.
 3. Consider the following matrix:

 A � £1 2 3
2 4 6
3 6 9

§
 Would you expect it to be singular or not? (Recall that singular matrices
have a determinant of 0 and do not have an inverse.)

 10.1.7 Cross Products

 Cross products are sometimes called vector products, because, unlike dot products,
which return a scalar, the result of a cross product is a vector. The resulting vector is
always at right angles (normal) to the plane defi ned by the two input vectors—a
property that is called orthogonality .

 Consider two vectors in three-space that represent both a direction and a mag-
nitude. (Force is often represented this way.) Mathematically,

 A: � Axi: � Ay j: � Azk
:

 B: � Bxi: � By j: � Bz k:

 The values Ax, Ay, Az and Bx, By, Bz represent the magnitude of the vector in the x ,
 y , and z directions, respectively. The i:, j:, k: symbols represent unit vectors in the
 x , y , and z directions. The cross product of A: and B:, A: � B:, is defi ned as

 KEY IDEA
 The result of a cross
product is a vector

 ORTHOGONAL
 At right angles

10.1 Matrix Operations and Functions 359

360 Chapter 10 Matrix Algebra

 A: � B: � 1AyBz � AzBy2 i: � 1AzBx � AxBz2j: � 1AxBy � AyBx2k:

 You can visualize this operation by creating a table

i j k

Ax Ay Az

Bx By Bz

 and then repeating the fi rst two columns at the end of the table:

i j k i j

Ax Ay Az Ax Ay

Bx By Bz Bx By

 The component of the cross product in the i direction is found by obtaining
the product AyBz and subtracting the product AzBy from it:

i j k i j

Ax Ay Az Ax Ay
Bx By Bz Bx By

 Moving across the diagram, the component of the cross product in the j direc-
tion is found by obtaining the product AzBx and subtracting the product AxBz from it:

i j k i j

Ax Ay Az Ax Ay
Bx By Bz Bx By

 Finally, the component of the cross product in the k direction is found by
obtaining the product AxBy and subtracting the product AyBx from it:

i j k i j

Ax Ay Az Ax Ay
Bx By Bz Bx By

 HINT
 You may have noticed that the cross product is just a special case of a determi-
nant whose fi rst row is composed of unit vectors.

 In MATLAB®, the cross product is found using the function cross , which
requires two inputs: the vectors A and B . Each of these MATLAB® vectors must have
three elements, since they represent the vector components in three-space. For exam-
ple, we might have

A = [1 2 3]; (which represents A:� 1i:� 2 j:� 3k:)

B = [4 5 6]; (which represents B: � 4 i:� 5 j:� 6k:)
cross(A,B)
ans =

-3 6 -3 (which represents C: � � 3 i: � 6 j:� 3k:)

 Consider two vectors in the x – y plane (with no z component):

A = [1 2 0]
B = [3 4 0]

 The magnitude of these vectors in the z direction needs to be specifi ed as zero in
MATLAB®.

 The result of the cross product must be at right angles to the plane that con-
tains the vectors A and B , which tells us that in this case it must be straight out of the
x – y plane, with only a z component.

cross(A,B)
ans =

0 0 -2

 Cross products fi nd wide use in statics, dynamics, fl uid mechanics, and electrical
engineering problems.

 EXAMPLE 10.4
 MOMENT OF A FORCE ABOUT A POINT
 The moment of a force about a point is found by computing the cross product of a
vector that defi nes the position of the force with respect to a point, with the force
vector:

 M0 � r � F

 Consider the force applied at the end of a lever, as shown in Figure 10.4 . If you
apply a force to the lever close to the pivot point, the effect is different than if you
apply a force further out on the lever. That effect is called the moment .

 Calculate the moment about the pivot point on a lever for a force described as
the vector

 F: � -100i: � 20j:� 0k:

 Assume that the lever is 12 inches long, at an angle of 45º from the horizontal. This
means that the position vector can be represented as

 r: �
1222

i:�
1222

j: � 0k:

 1. State the Problem
 Find the moment of a force vector about the pivot point of a lever.

Applied Force

F

Pivot Point

Distance

u

Force vector components

Fy

Fx

Position vector components

ry

rx

 Figure 10.4
 The force applied to a lever creates a moment about the pivot point.

10.1 Matrix Operations and Functions 361

362 Chapter 10 Matrix Algebra

2. Describe the Input and Output

 Input position vector r: �
1222

 i: �
1222

 j
:

� 0k
:

 force vector F
:

� �100 i
:

� 20 j:� 0k
:

 Output Moment about the pivot point of the lever

 3. Develop a Hand Example
 Visualize the problem as the determinant of a 3 � 3 array:

 M0 � ≥ i
:

j
:

k
:

1222

1222
0

� 100 20 0

¥

 Clearly, there can be no i: or j
:

 component in the answer. The moment must be

 M0 � a 1212
� 20 �

1212
� (-100) � kb: � 1018.23k

:

4. Develop a MATLAB® Solution
 The MATLAB® code

%Example 10.4

%Moment about a pivot point

%Define the position vector

r = [12/sqrt(2), 12/sqrt(2), 0];

%Define the force vector

F = [-100, 20, 0];

%Calculate the moment

moment=cross(r,F)

 returns the following result:

moment =

0 0 1018.23

 This corresponds to a moment vector

 M0 � 0i: � 0 j
:

� 1018.23 k
:

 Notice that the moment is at right angles to the plane defi ned by the position
and force vectors.

5. Test the Solution
 Clearly, the hand and MATLAB® solutions match, which means that we can now

expand our program to a more general solution. For example, the following
program prompts the user for the x , y , and z components of the position and
force vectors and then calculates the moment:

%Example 10.4

%Moment about a pivot point

 10.2 Solutions of Systems of Linear Equations 363

%Define the position vector

clear,clc

rx = input('Enter the x component of the position vector: ');

ry = input('Enter the y component of the position vector: ');

rz = input('Enter the z component of the position vector: ');

r = [rx, ry, rz];

disp('The position vector is')

fprintf('%8.2f i + %8.2f j + %8.2f k ft\n',r)

%Define the force vector

Fx = input('Enter the x component of the force vector: ');

Fy = input('Enter the y component of the force vector: ');

Fz = input('Enter the z component of the force vector: ');

F = [Fx, Fy, Fz];

disp('The force vector is')

fprintf('%8.2f i + %8.2f j + %8.2f k lbf\n',F)

%Calculate the moment

moment = cross(r,F);

fprintf('The moment vector about the pivot point is \n')

fprintf('%8.2f i + %8.2f j + %8.2f k ft-lbf\n',moment)

 A sample interaction in the command window is

Enter the x component of the position vector: 2

Enter the y component of the position vector: 3

Enter the z component of the position vector: 4

The position vector is

2.00 i + 3.00 j + 4.00 k ft

Enter the x component of the force vector: 20

Enter the y component of the force vector: 10

Enter the z component of the force vector: 30

The force vector is

20.00 i + 10.00 j + 30.00 k lbf

The moment vector about the pivot point is

50.00 i + 20.00 j + -40.00 k ft-lbf

 10.2 SOLUTIONS OF SYSTEMS OF LINEAR EQUATIONS

 Consider the following system of three equations with three unknowns:

3x +2y -z � 10
-x +3y +2z � 5
 x -y -z � -1

 We can rewrite this system of equations by using the following matrices:

 A � £ 3 2 1
-1 3 2
 1 -1 -1

§ X � £ xy
z
§ B � £ 10

 5
-1
§

364 Chapter 10 Matrix Algebra

 Using matrix multiplication, we can then write the system of equations

 AX � B.

 10.2.1 Solution Using the Matrix Inverse

 Probably the most straightforward way of solving this system of equations is to use
the matrix inverse. Since we know that

 A-1A � 1

 we can multiply both sides of the matrix equation AX � B by A-1 to get

 A-1AX � A-1B

 giving

 X � A-1B

 As in all matrix mathematics, the order of multiplication is important. Since A is a
 3 � 3 matrix, its inverse A-1 is also a 3 � 3 matrix. The multiplication A-1B

 3 � 3 3 � 1

 works because the dimensions match up. The result is the 3 � 1 matrix X . If we
change the order to BA-1 the dimensions would no longer match, and the operation
would be impossible.

 Since, in MATLAB®, the matrix inverse is computed with the inv function, we
can use the following set of commands to solve this problem:

A = [3 2 -1; -1 3 2; 1 -1 -1];
B = [10; 5; -1];
X = inv(A)*B

 This code returns

X =
-2.0000
5.0000
-6.0000

 Alternatively, you could represent the matrix inverse as A^-1 , so that

X = A^-1*B

 which gives the same result.

X =
-2.0000
5.0000
-6.0000

 Although this technique corresponds well with the approach taught in college alge-
bra classes when matrices are introduced, it is not very effi cient and can result in
excessive round-off errors. In general, using the matrix inverse to solve linear sys-
tems of equations should be avoided.

 10.2.2 Solution Using Matrix Left Division

 A better way of solving a system of linear equations is to use a technique called
 Gaussian elimination . This is actually the way you probably learned to solve systems of

 KEY IDEA
 Gaussian elimination is
more effi cient and less
susceptible to round-off
error than the matrix
inverse method

 EXAMPLE 10.5
 SOLVING SIMULTANEOUS EQUATIONS: AN ELECTRICAL CIRCUIT *
 In solving an electrical circuit problem, one quickly fi nds oneself mired in a large
number of simultaneous equations. For example, consider the electrical circuit
shown in Figure 10.5 .

* From Introduction to MATLAB® 7 , by Etter, Kuncicky, and Moore (Upper Saddle River, NJ: Pearson
Prentice Hall, 2005).

 It contains a single voltage source and fi ve resistors. You can analyze this circuit by
dividing it up into smaller pieces and using two basic facts about electricity:

 a voltage around a circuit must be zero (Kirchhoff’s second law—see Figure 10.6)

 voltage � current � resistance 1V � iR2
 Following the lower left-hand loop results in our fi rst equation:

 -V1 � R21i1 � i22 � R41i1 � i32 � 0

i2

i3i1
V1

R5R4

R2 R3

R1 Figure 10.5
 An electrical circuit.

 Figure 10.6
 Gustav Kirchhoff was
a German physicist,
who formulated many
of the basic laws of
circuit theory.

 10.2 Solutions of Systems of Linear Equations 365

366 Chapter 10 Matrix Algebra

 Following the upper loop results in our second equation:

 R1i2 � R31i2 � i32 � R21i2 � i12 � 0

 Finally, following the lower right-hand loop results in the last equation:

 R31i3 � i22 � R5i3 � R41i3 � i12 � 0

 Since we know all the resistances (the R values) and the voltage, we have three
equations and three unknowns. Now we need to rearrange the equations so that
they are in a form to which we can apply a matrix solution. In other words, we need
to isolate the i ’s as follows:

 1R2 � R42i1 � 1-R22i2 � 1-R42i3 � V1

 1-R22i1 � 1R1 � R2 � R32i2 � 1-R32i3 � 0

 1-R42i1 � 1-R32i2 � 1R3 � R4 � R52i3 � 0

 Create a MATLAB® program to solve these equations, using the matrix inverse
method. Allow the user to enter the fi ve values of R and the voltage from the
 keyboard.

1. State the Problem
 Find the three currents for the circuit shown.
2. Describe the Input and Output

Input Five resistances R1, R2, R3, R4, R5, and the voltage V , provided from
the keyboard

Output Three current values i1, i2, i3

 3. Develop a Hand Example
 If there is no applied voltage in a circuit, there can be no current, so if we enter

any value for the resistances and enter zero for the voltage, the answer should
be zero.

 4. Develop a MATLAB® Solution
 The MATLAB® code

%Example 10.5

%Finding Currents

clear,clc

R1 = input('Input the value of R1: ');

R2 = input('Input the value of R2: ');

R3 = input('Input the value of R3: ');

R4 = input('Input the value of R4: ');

R5 = input('Input the value of R5: ');

V = input('Input the value of voltage, V: ');

coef = [(R2+R4), -R2, -R4;

-R2, (R1 + R2 + R3), (-R3);

-R4, - R3,(R3 + R4 + R5)];

result = [V; 0; 0];

I = inv(coef)*result

 generates the following interaction in the command window:

Input the value of R1: 5

Input the value of R2: 5

Input the value of R3: 5

Input the value of R4: 5

Input the value of R5: 5

Input the value of voltage, V: 0

I =

0

0

0

5. Test the Solution
 We purposely chose to enter a voltage of zero in order to check our solution.

Circuits without a driving force (voltage) cannot have a current fl owing through
them. Now try the program with other values:

Input the value of R1: 2

Input the value of R2: 4

Input the value of R3: 6

Input the value of R4: 8

Input the value of R5: 10

Input the value of voltage, V: 10

 Together, these values give

I =

1.69

0.97

0.81

equations in college algebra. Gaussian elimination was developed by Carl Friedrich
Gauss, a German mathematician and scientist (see Figure 10.7).

 Consider our problem of three equations in x , y, and z :

3x +2y -z � 10
-x +3y +2z � 5
 x -y -z � -1

 To solve this problem by hand, we would fi rst consider the fi rst two equations in the
set and eliminate one of the variables—for example, x . To do this, we’ll need to
multiply the second equation by 3 and then add the resulting equation to the fi rst
one:

 3x +2y -z � 10
-3x +9y +6z � 15
 0 +11y -5z � 25

 10.2 Solutions of Systems of Linear Equations 367

368 Chapter 10 Matrix Algebra

 Now, we need to repeat the process for the second and third equations:

-x +3y -2z � 5
 x -y -z � -1
 0 +2y +z � 4

 At this point, we’ve eliminated one variable and reduced our problem to two equa-
tions and two unknowns:

11y +5z � 25
 2y +z � 4

 Now, we can repeat the elimination process by multiplying row 3 by -11>2:

11y +5z � 25

-
11
2

 * 2y -
11
2

z � -
11
2

* 4

0 -
1
2

z � 3

 Finally, we can solve for z :

 z � -6

 Once we know the value of z , we can substitute back into either of the two equations
in just z and y —namely,

11y +5z � 25
 2y +z � 4

 to fi nd that

 y � 5

 The last step is to substitute back into one of our original equations,

3x +2y -z � 10
-x +3y +2z � 5
 x -y -z � -1

 Figure 10.7
 Carl Friedrich Gauss
was a remarkable
mathematician and
contributed to many
other fi elds as well,
including physics,
astronomy, and electricity.

 to fi nd that

 x � -2

 The technique of Gaussian elimination is an organized approach to eliminating
variables until only one unknown exists and then substituting back until all the
unknowns are determined. In MATLAB®, we can use left division to solve the prob-
lem by Gaussian elimination. Thus,

X = A\B

 returns

X =
-2.0000
5.0000
-6.0000

 Clearly, this is the same result we obtained with the hand solution and the matrix
inverse approach.

 MATLAB® is also capable of solving problems which are either overdefi ned or
underdefi ned using left division. Consider, for example, the following problem:

3*x +2*y +5*z � 22
4*x +5*y -2*z � 8

x +y +z � 6

 This problem is appropriately defi ned with three equations and three unknowns.
When formulated as

A = [3 2 5
4 5 -2
1 1 1]

 and

B = [22; 8; 6]

 the left division operator can be used to solve for x , y , and z

X = A\B

 which results in the solution

X =
1
2
3

 Suppose, however, that we knew four equations relating x , y , and z , such as

3*x +2* y +5* z = 22
4*x +5* y –2* z = 8

x + y + z = 6
2*x –4* y -7* z = -27

 Now, we have four equations and three unknowns and the problem is overdefi ned.
We can still solve it using the left division operator. The coeffi cient matrix is
defi ned as

 GAUSSIAN
ELIMINATION
 An organized approach to
eliminating variables and
solving a set of
simultaneous equations

 10.2 Solutions of Systems of Linear Equations 369

370 Chapter 10 Matrix Algebra

A = [3 2 5
4 5 -2
1 1 1
2 -4 -7]

 and the result matrix as

B = [22; 8; 6; -27]

 When we execute the statement

X = A\B

 we get the same result, because the equations were consistent.

X =
1
2
3

 However, it is possible when gathering data that there might be small errors that
result in different numbers in the result matrix. Assume that instead the fourth
equation tells us that the result is �28, instead of �27. This means that we’ll need
to adjust the B vector

B = [22; 8; 6; -28]

 Now, when we execute

X = A\B

 the result is

X =
0.8618
2.1234
3.0328

 MATLAB® uses a least squared approach to fi nd the set of X values (which corre-
spond to x , y , z in our equations), which is the best match to the equations. If we use
these values to fi nd B

A*X

 The result is

ans =
21.9962
7.9982
6.0180

-27.9997

 The least squared approach minimizes the absolute value of the difference between
the calculated B values and the actual B values. This approach is described in a later
chapter on numerical methods.

 What if your system of equations is underdefi ned? For example, what if we only
had two equations for three unknowns?

3*x +2* y +5* z = 22
4*x +5* y –2* z = 8

 In this case we’d defi ne the coeffi cient matrix as

A = [3 2 5
4 5 -2]

 and the result matrix as

B = [22; 8]

 MATLAB® solves the problem by setting the fi rst variable equal to 0, which effectively
reduces the problem to two equations and two unknowns.

X = A\B

 which results in

X =
0
2.8966
3.2414

 This is only one of an infi nite number of possible solutions, but it does give the cor-
rect answer if we substitute back into our equation

A*X
ans =

22.0000
8.0000

 10.2.3 Solution Using the Reverse Row Echelon Function

 In a manner similar to left division we could solve the system of linear equations

3x +2y -z � 10
-x +3y +2z � 5
 x -y -z � -1

 using the reduced row echelon function, rref . Recall that we can rewrite this sys-
tem of equations by using the following matrices:

 A � £ 3 2 1
-1 3 2
 1 -1 -1

§ X � £ xy
z
§ B � £ 10

 5
-1
§

 The rref function requires an expanded matrix as input, representing the coeffi -
cients and results. For our example system of equations the input would be

C = [A,B]
C =

3 2 -1 10
-1 3 2 5
1 -1 -1 -1

rref(C)
ans =

1 0 0 -2
0 1 0 5
0 0 1 -6

 10.2 Solutions of Systems of Linear Equations 371

372 Chapter 10 Matrix Algebra

 The solution to our problem is represented by the last column in the output
array, and corresponds to the results achieved with the other methods.

 In a simple problem like this, no matter which technique we use, round-off error
and execution time are not big factors. However, some numerical techniques require
the solution of matrices with thousands or even millions of elements. Execution
times are measured in hours or days for these problems, and round-off error and
execution time become critical considerations. For such problems the matrix inverse
technique is not appropriate.

 Not all systems of linear equations have a unique solution. If there are fewer
equations than variables, the problem is underspecifi ed. If there are more equa-
tions than variables, the problem is overspecifi ed. MATLAB® includes functions
that will allow you to solve each of these systems of equations, by using numerical
best-fi t approaches or adding constraints. Consult the MATLAB® help function for
more information on these techniques.

 EXAMPLE 10.6
 MATERIAL BALANCES ON A DESALINATION UNIT:
SOLVING SIMULTANEOUS EQUATIONS
 Freshwater is a scarce resource in many parts of the world. For example, Israel sup-
ports a modern industrial society in the middle of a desert. To supplement local
water sources, Israel depends on water desalination plants along the Mediterranean
coast. Current estimates predict that the demand for freshwater in Israel will increase
to 60% by the year 2020, and most of that new water will have to come from desalina-
tion. Modern desalination plants use reverse osmosis, the process used in kidney
dialysis! Chemical engineers make wide use of material-balance calculations to
design and analyze plants such as the water desalination plants in Israel.

 Consider the hypothetical desalination unit shown in Figure 10.8 . The salty
water fl owing into the unit contains 4 wt% salt and 96 wt% water. Inside the unit, the
water is separated into two streams by a series of reverse-osmosis operations. The
stream fl owing out the top is almost pure water. The remaining concentrated solu-
tion of salty water is 10 wt% salt and 90 wt% water. Calculate the mass fl ow rates com-
ing out of the top and bottom of the desalination unit.

xH2O 0.96
xNaCl 0.04

xH2O 1.00
xNaCl 0.00

xH2O 0.90
xNaCl 0.10

Desalination
Unit

min 100 lbm

mtops ? lbm

mbottoms ? lbm

 Figure 10.8
 Water desalination is
an important source of
freshwater for desert
nations such as Israel.

 This problem requires us to perform a material balance on the reactor for both
the salt and the water. The amount of any component fl owing into the reactor must
be the same as the amount of that component fl owing out in the two exit streams.
That is,

 minA � mtopsA � mbottomsA

 which could be rewritten as

 xAmin total � xAtopsmtops � xAbottomsmbottoms

 Thus, we can formulate this problem as a system of two equations in two
unknowns:

 0.96 � 100 � 1.00mtops � 0.90mbottoms 1for water2
 0.04 � 100 � 0.00mtops � 0.10mbottoms 1for salt2

1. State the Problem
 Find the mass of freshwater produced and the mass of brine rejected from the

desalination unit.
2. Describe the Input and Output

Input Mass of 100 lb into the system
 Concentrations (mass fractions) of the input stream:

 xH2O � 0.96
 xNaCl � 0.04

 Concentrations (mass fractions) in the output streams:
 water-rich stream (tops)

 xH2O � 1.00

 brine (bottoms)

 xH2O � 0.90
 xNaCl � 0.10

Output Mass out of the water-rich stream (tops)
 Mass out of the brine (bottoms)

3. Develop a Hand Example
 Since salt (NaCl) is present only in one of the outlet streams, it is easy to solve

the following system of equations:

 10.962 11002 � 1.00mtops � 0.90mbottoms 1for water2
 10.042 11002 � 0.00mtops � 0.10mbottoms 1for salt2

 Starting with the salt material balance, we fi nd that

 4 � 0.1mbottoms
 mbottoms � 40 lbm

 Once we know the value of mbottoms we can substitute back into the water balance:

 96 � 1mtops � 10.902 1402
 mtops � 60 lb

 10.2 Solutions of Systems of Linear Equations 373

374 Chapter 10 Matrix Algebra

 4. Develop a MATLAB® Solution
 We can use matrix mathematics to solve this problem, once we realize it is of

the form

 AX � B

 where A is the coeffi cient matrix and thus the mass fractions of the water and
salt. The result matrix, B , consists of the mass fl ow rate into the system of water
and salt:

 A � c1 0.9
0 0.1

d B � c96
4
d

 The matrix of unknowns, X , consists of the total mass fl ow rates out of the top
and bottom of the desalination unit. Using MATLAB® to solve this system of
equations requires only three lines of code:

A = [1, 0.9; 0, 0.1];

B = [96; 4];

X = A\B

 This code returns

X =

60

40

 5. Test the Solution
 Notice that in this example we chose to use matrix left division. Using the

matrix inverse approach gives the same result:

X = inv(A)*B

X =

60

40

 The results from both approaches match that from the hand example, but one
additional check can be made to verify the results. We performed material bal-
ances based on water and on salt, but an additional balance can be performed
on the total mass in and out of the system:

 min � mtops � mbottoms

 min � 40 � 60 � 100

 Verifying that 100 lbm actually exits the system serves as one more confi rmation
that we performed the calculations correctly.

 Although it was easy to solve the system of equations in this problem by
hand, most real material-balance calculations include more process streams
and more components. Matrix solutions such as the one we created are an
important tool for chemical-process engineers.

 EXAMPLE 10.7
 A FORCE BALANCE ON A STATICALLY DETERMINATE TRUSS
 A statically determinate truss is one of the early problems addressed in sophomore
Statics classes. A typical problem is shown in Figure 10.9 .

32

1

F2

F3

Roller

Fapplied

y

x

Hinge

F1

u1 u2

 Figure 10.9
 A simple statically
determinate truss.

 At the hinge (point 2) the truss cannot move in either the x or the y direction. At the
roller (point 3) movement is allowed in the x direction, but not in the y direction.
This results in reactive forces at point 2 in both the x and the y directions, and at
point 3 in just the y direction. If we also separate the applied force (at point 1) into x
and y components, the freebody diagram can be draw as shown in Figure 10.10 .

32

1

F2

F3

Roller

F1 applied, y

F1 applied, x

F2 reactive, y

y

x

Hinge

F1

u1 u2

F3 reactive, y

F2 reactive, x

 Figure 10.10
 Freebody diagram for
a statically determinate
truss.

 Because we assume that the truss is not moving, the sum of the forces at each of the
nodes (1, 2, and 3) must be zero in both the x and the y directions. This gives us a
total of six equations.

 a Fat node 1, x direction � 0 � � F1 cos (u1) � F2 cos (u2) � F1 applied, x

 a Fat node 1, y direction � 0 � � F1 sin (u1) � F2 sin (u2) � F1 applied, y

 a Fat node 2, x direction � 0 � � F2reactive, x � F1 cos (u1) � F3

 a Fat node 2, y direction � 0 � � F2reactive, y � F1 sin (u)

 a Fat node 3, x direction � 0 � � F2 cos (u2) � F3

 a Fat node 3, y direction � 0 � � F2 sin (u2) � F3 reactive, y

 If the applied force is known, as well as the angles, this results in six equations and
six unknowns (F 1 , F 2 , F 3 , F 2 reactive , x , F 2 reactive , y , and F 3 reactive , y). It turns out that with
a little rearranging, we can see that this is a linear system of equations.

 10.2 Solutions of Systems of Linear Equations 375

376 Chapter 10 Matrix Algebra

 -cos(u1)*F1 +cos(u2)*F2 +0*F3 +0*F2 reactive, x +0*F2 reactive, y +0*F3 reactive, y � - F1 applied, x

 -sin(u1)*F1 -sin(u2)*F2 +0*F3 +0*F2 reactive, x +0*F2 reactive, y +0*F3 reactive, y � -F1 applied, y

cos(u1)*F1 +0*F2 +1*F3 +1*F2 reactive, x +0*F2 reactive, y +0*F3 reactive, y � 0

sin(u1)*F1 +0*F2 +0*F3 +0*F2 reactive, x +1*F2 reactive, y +0*F3 reactive, y � 0

+0*F1 -cos(u2)*F2 -1*F3 +0*F2 reactive, x +0*F2 reactive, y +0*F3 reactive, y � 0

�0*F1 +sin(u2)*F2 1*F3 +0*F2 reactive, x +0*F2 reactive, y +1*F3 reactive, y � 0

 This system can be expressed, using matrix notation as:

-cos(u1) cos(u2) 0 0 0 0
-sin(u1) -sin(u2) 0 0 0 0
 cos(u1) 0 1 1 0 0
 sin(u1) 0 0 0 1 0

0 -cos(u2) -1 0 0 0
0 sin(u2) 0 0 0 1

 *

F1

F2

F3

F2 reactive, x

F2 reactive, y

F3 reactive, y

 �

-F1 applied, x

-F1 applied, y

0
0
0
0

 Now that we’ve derived the appropriate equations, solve this system for the case
where:

 u1 � 45�,

 u2 � 45�

 and the applied load at node 1 is 1000 lbf in the negative vertical direction.

 1. State the Problem
 Find the loads experienced on the truss, shown in Figure 10.10 .
 2. Describe the Input and Output

 Input Negative vertical load at node 1 of 1000 lbf

 u1 � 45�
 u2 � 45�

 Output Force experienced in each beam of the truss, F 1 , F 2 , and F 3 ,
 the reactive forces at the hinge, F 2 reactive , x and F 2 reactive , y , and
 the reactive force at the roller, F 3 reactive , y .

 3. Develop a Hand Example
 Substituting into the matrix previously derived gives

-0.7071 +0.7071 0 0 0 0
-0.7071 -0.7071 0 0 0 0
+0.7071 0 1 1 0 0
+0.7071 0 0 0 1 0

0 -0.7071 -1 0 0 0
0 +0.7071 0 0 0 1

 *

F1

F2

F3

F2 reactive, x

F2 reactive, y

F3 reactive, y

 �

0
1000

0
0
0
0

 We could solve this equation using matrix algebra, however, an examination of
the truss in Figure 10.11 leads to a more simple solution. Notice that there is no
horizontal applied force. The reactive force resulting at node 2 must therefore
be zero. Because the geometry of the truss is symmetrical that also leads to the
conclusion that nodes 2 and 3 must also experience the same load—hence, in
order for the net vertical force to equal zero F 2 reactive , y and F 3 reactive , y , must
both be 500 lbf . We’ve now determined three of the unknowns,

 F2 reactive, x � 0

 F2 reactive, y � 0

 F3 reactive, y � 0

 Examining the set of equations we notice that the force balance in the vertical
direction at node 2 can now be solved

 a Fat node 2, y direction � 0 � +F2 reactive, y � F1 sin (u1)

 a Fat node 2, y direction � 0 � +500 � F1 sin (45�)

 F1 �
-500

sin (45�)
� -707.1 lbf similarly…

 F2 � -707.1 lbf
 Finally, we can use the balance at node 3 in the horizontal direction to give:

 a Fat node 3, x direction � 0 � � F2cos(u2) � F3

 F3 � � F2cos(u2) � 707.1*cos(45�) � 500

 4. Develop a MATLAB® Solution
 We can develop a general solution to this problem, and use the given data to

check it.

theta1=45 % angle in degrees

theta2=45 % angle in degrees

F1x=0 % horizontal load

F1y=-1000 % vertical load

A=[-cosd(theta1),cosd(theta2),0,0,0,0

-sind(theta1),-sind(theta2),0,0,0,0

cosd(theta1),0,1,1,0,0

sind(theta1),0,0,0,1,0

0,-cosd(theta2),-1,0,0,0

0,sind(theta2),0,0,0,1]

B=[F1x,-F1y,0,0,0,0]'

F2

F3

F1

45� 45�

1

1000 lbf

y

x
2F2 react

 Figure 10.11
 Freebody diagram for
a balanced truss.

 10.2 Solutions of Systems of Linear Equations 377

378 Chapter 10 Matrix Algebra

x=(A\B)' % use left division

 This code returns the result

x =

-707.11 -707.11 500.00 0 500.00 500.00

 which corresponds to the hand solution.
5. Test the Solution
 Notice that in this example we chose to use matrix left division. Using the

matrix inverse approach gives the same result:

x =(inv(A)*B)'

 returns the following to the command window

x =

-707.11 -707.11 500.00 0 500.00 500.00

 The results from both approaches match that from the hand example, which
did not depend on matrix algebra. Now, we can use the same program to ana-
lyze the truss at different conditions. For example, assume the following…

 u1 � 30�

 u2 � 60�

 and an applied load of 1000 lbf in the horizontal direction at node 1. The
MATLAB® code would be modifi ed to read…

theta1=30 % angle in degrees

theta2=60 % angle in degrees

F1x=1000 % horizontal load

F1y=0 % vertical load

A=[-cosd(theta1),cosd(theta2),0,0,0,0

-sind(theta1),-sind(theta2),0,0,0,0

cosd(theta1),0,1,1,0,0

sind(theta1),0,0,0,1,0

0,-cosd(theta2),-1,0,0,0

0,sind(theta2),0,0,0,1]

B=[F1x,-F1y,0,0,0,0]'

x=inv(A)*B

x=A\B

 giving a result of

x =

-866.03 500.00 -250.00 1000.00 433.01 -433.01

 Notice that the fourth value in the array, which corresponds to the reactive
force in the x direction at node 2 is 1000, just what we would expect.

10.3 Special Matrices 379

 10.3 SPECIAL MATRICES

 MATLAB® contains a group of functions that generate special matrices, some of
which we review in this section.

 10.3.1 Ones and Zeros

 The ones and zeros functions create matrices consisting entirely of ones and
zeros, respectively. When a single input is used, the result is a square matrix. When
two inputs are used, they specify the number of rows and columns. For example,

ones(3)

 returns

ans =
1 1 1
1 1 1
1 1 1

 and
zeros(2,3)

 returns

ans =
0 0 0
0 0 0

 If more than two inputs are specifi ed in either function, MATLAB® creates a multi-
dimensional matrix. For instance,

ones(2,3,2)
ans(:,:,1) =

1.00 1.00 1.00
1.00 1.00 1.00

ans(:,:,2) =
1.00 1.00 1.00
1.00 1.00 1.00

 creates a three-dimensional matrix with two rows, three columns, and two pages.

 10.3.2 Identity Matrix

 An identity matrix is a matrix with ones on the main diagonal and zeros everywhere
else. For example, here is an identity matrix with four rows and four columns:

 ≥1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

¥

 Note that the main diagonal contains elements in which the row number is the
same as the column number. The subscripts for elements on the main diagonal are
(1, 1), (2, 2), (3, 3), and so on.

 In MATLAB®, identity matrices can be generated with the eye function. The
arguments of the eye function are similar to those of the zeros and the ones
functions. If the argument of the function is a scalar, as in eye (6) , the function
will generate a square matrix, using the argument as both the number of rows and

380 Chapter 10 Matrix Algebra

the number of columns. If the function has two scalar arguments, as in eye(m,n) ,
the function will generate a matrix with m rows and n columns. To generate an
identity matrix that is the same size as another matrix, use the size function to
determine the correct number of rows and columns. Although most applications
use a square identity matrix, the defi nition can be extended to nonsquare matrices.
The following statements illustrate these various cases:

A = eye(3)
A =

1 0 0
0 1 0
0 0 1

B = eye(3,2)
B =

1 0
0 1
0 0

C = [1, 2, 3 ; 4, 2, 5]
C =

1 2 3
4 2 5

D = eye(size(C))
D =

1 0 0
0 1 0

 HINT

 We recommend that you do not name an identity matrix i , because i will no

longer represent 2-1 in any statements that follow.
 Recall that A * inv(A) equals the identity matrix. We can illustrate this

with the following statements:

A = [1,0,2; -1, 4, -2; 5,2,1]
A =

1 0 2
 -1 4 -2
 5 2 1
inv(A)
ans =
 -0.2222 -0.1111 0.2222
 0.2500 0.2500 0.0000
 0.6111 0.0556 -0.1111
A*inv(A)
ans =
 1.0000 0 0.0000
 -0.0000 1.0000 0.0000

-0.0000 -0.0000 1.0000

 As we discussed earlier, matrix multiplication is not in general commutative—
that is,

 AB � B

 Summary 381

 However, for identity matrices,
 AI � IA

 which we can show with the following MATLAB® code:

I = eye(3)
I =
 1 0 0
 0 1 0
 0 0 1
A*I
ans =
 1 0 2
 -1 4 -2
 5 2 1
I*A
ans =
 1 0 2
 -1 4 -2
 5 2 1

 10.3.3 Other Matrices

 MATLAB® includes a number of matrices that are useful for testing numerical tech-
niques, that serve in computational algorithms, or that are just interesting.

 Pascal Creates a Pascal matrix,
using Pascal’s triangle.

pascal(4)
ans =
 1.00 1.00 1.00 1.00
 1.00 2.00 3.00 4.00
 1.00 3.00 6.00 10.00
 1.00 4.00 10.00 20.00

 Magic Creates a Magic Matrix, in
which all the rows, all the
columns, and all the
diagonals add up to the
same value.

Magic(3)
ans =
 8.00 1.00 6.00
 3.00 5.00 7.00
 4.00 9.00 2.00

 rosser The Rosser Matrix is used as
an eigenvalue test matrix. It
requires no input.

rosser
ans = [8 × 8]

 Gallery The gallery contains over 50
different test matrices.

 The syntax for the gallery functions is different for each
function. Use help to determine which is right for your
needs.

 One of the most common matrix operations is the transpose, which changes rows
into columns and columns into rows. In mathematics texts, the transpose is indi-
cated with a superscript T , as in AT. In MATLAB®, the single quote is used as the
transpose operator. Thus,

A'

 is the transpose of A .

 SUMMARY

382 Chapter 10 Matrix Algebra

 Another common matrix operation is the dot product, which is the sum of the
array multiplications of two equal-size vectors:

 C � a
N

i�1
Ai * Bi

 The MATLAB® function for dot products is

dot(A,B)

 Similar to the dot product is matrix multiplication. Each element in the result of a
matrix multiplication is a dot product:

 Ci,j � a
N

k�1
Ai,kBk, j

 Matrix multiplication uses the asterisk operator in MATLAB®, so that

C = A*B

 indicates that the matrix A is multiplied by the matrix B in accordance with the
rules of matrix algebra. Matrix multiplication is not commutative—that is,

 AB � BA
 Raising a matrix to a power is similar to multiple multiplication steps:

 A3 � AAA
 Since a matrix must be square in order to be multiplied by itself, only square matri-
ces can be raised to a power. When matrices are raised to noninteger powers, the
result is a matrix of complex numbers.

 A matrix times its inverse is the identity matrix:

 AA�1 � I
 MATLAB® provides two techniques for determining a matrix inverse: the inv
function,

inv_of_A = inv(A)

 and raising the matrix to the -1 power, given by

inv_of_A = A^-1

 If the determinant of a matrix is zero, the matrix is singular and does not have an
inverse. The MATLAB® function used to fi nd the determinant is

det(A)

 In addition to computing dot products, MATLAB® contains a function that calcu-
lates the cross product of two vectors in three-space. The cross product is often
called the vector product because it returns a vector:

 C � A � B
 The cross product produces a vector that is at right angles (normal) to the two
input vectors, a property called orthogonality. Cross products can be thought of as
the determinant of a matrix composed of the unit vectors in the x , y , and z direc-
tions and the two input vectors:

 C �

i: j
:

k:

Ax Ay Az

Bx By Bz

 The MATLAB® syntax for calculating a cross product uses the cross function:

C = cross(A,B)

 One common use of the matrix inverse is to solve systems of linear equations. For
example, the system

 3x �2y �z � 10
 �x �3y �2z � 5
 x �y �z � �1

 can be expressed with matrices as
AX � B

 To solve this system of equations with MATLAB®, you could multiply B by the inverse
of A :

X = inv(A)*B

 However, this technique is less effi cient than Gaussian elimination, which is
accomplished in MATLAB® by using left division:

X = A\B

 The left division technique can also be used to solve both overdefi ned and
underdefi ned systems of equations. When the system is overdefi ned a least squared
approach is used to fi nd the best fi t result. When the system is underdefi ned one or
more of the variables is set equal to 0, and the remaining variables calculated.

 MATLAB® includes a number of special matrices that can be used to make cal-
culations easier or to test numerical techniques. For example, the ones and zeros
functions can be used to create matrices of ones and zeros, respectively. The pas-
cal and magic functions are used to create Pascal matrices and magic matrices,
respectively, which have no particular computational use but are interesting math-
ematically. The gallery function contains over 50 matrices especially formulated to
test numerical techniques.

 MATLAB® SUMMARY

 The following MATLAB® summary lists and briefl y describes all the special charac-
ters, commands, and functions that are defi ned in this chapter:

 Special Characters

 ' indicates a matrix transpose
 * matrix multiplication
 \ matrix left division
 ̂ matrix exponentiation

 Commands and Functions

 cross computes the cross product
 det computes the determinant of a matrix
 dot computes the dot product
 eye generates an identity matrix
 gallery contains sample matrices
 inv computes the inverse of a matrix
 magic creates a “magic” matrix
 ones creates a matrix containing all ones
 pascal creates a pascal matrix
 rref uses the reduced row echelon format scheme for solving a series of linear equations
 size determines the number of rows and columns in a matrix
 zeros creates a matrix containing all zeros

 Summary 383

384 Chapter 10 Matrix Algebra

 cross product
 determinant
 dot product
 Gaussian elimination
 identity matrix

 inverse
 matrix multiplication
 normal
 orthogonal
 singular

 system of equations
 transpose
 unit vector

 KEY TERMS

 Dot Products

 10.1 Compute the dot product of the following pairs of vectors, and then show that

 A # B � B # A

 (a) A � 31 3 54 , B � 3 � 3 � 2 44
 (b) A � 30 � 1 � 4 � 84 , B � 34 � 2 � 3 244

 10.2 Compute the total mass of the components shown in Table 10.3 , using a dot
product.

 PROBLEMS

 Table 10.3 Component Mass Properties

 Component Density, g/cm 3 Volume, cm 3

 Propellant 1.2 700

 Steel 7.8 200

 Aluminum 2.7 300

 Table 10.4 Shopping List

 Item Number Needed Cost

 Milk 2 gallons $3.50 per gallon

 Eggs 1 dozen $1.25 per dozen

 Cereal 2 boxes $4.25 per box

 Soup 5 cans $1.55 per can

 Cookies 1 package $3.15 per package

 10.4 Bomb calorimeters are used to determine the energy released during
chemical reactions. The total heat capacity of a bomb calorimeter is defi ned
as the sum of the products of the mass of each component and the specifi c
heat capacity of each component, or

 CP � a
n

i�1
miCi

 where
 mi � mass of component i , g
 Ci � heat capacity of component, i , J/g K
 CP � total heat capacity, J/K

 10.3 Use a dot product and the shopping list in Table 10.4 to determine your
total bill at the grocery store.

Problems 385

 Find the total heat capacity of a bomb calorimeter, using the thermal data
in Table 10.5 .

 Table 10.5 Thermal Data

 Component Mass, g Heat Capacity, J/gK

 Steel 250 0.45

 Water 100 4.2

 Aluminum 10 0.90

 10.5 Organic compounds are composed primarily of carbon, hydrogen, and oxy-
gen and for that reason are often called hydrocarbons. The molecular
weight (MW) of any compound is the sum of the products of the number of
atoms of each element (Z) and the atomic weight (AW) of each element
present in the compound.

 MW � a
n

i�1
AWi

Zi

 The atomic weights of carbon, hydrogen, and oxygen are approximately 12,
1, and 16, respectively. Use a dot product to determine the molecular weight
of ethanol 1C2H5OH2, which has two carbon, one oxygen, and six hydrogen
atoms.

 10.6 It is often useful to think of air as a single substance with a molecular weight
(molar mass) determined by a weighted average of the molecular weights of
the different gases present. With little error, we can estimate the molecular
weight of air using in our calculation only nitrogen, oxygen, and argon. Use
a dot product and Table 10.6 to approximate the molecular weight of air.

 Table 10.6 Composition of Air

 Compound Fraction in Air Molecular Weight, g/mol

 Nitrogen, N2 0.78 28

 Oxygen, O2 0.21 32

 Argon, Ar 0.01 40

 Matrix Multiplication

 10.7 Compute the matrix product A*B of the following pairs of matrices:

 (a) A � c12 4
3 -5

d B � c2 12
0 0

d
 (b) A � c1 3 5

2 4 6
d B � £ -2 4

3 8
12 -2

§
 Show that A*B is not the same as B*A .

 10.8 You and a friend are both going to a grocery store. Your lists are shown in
 Table 10.7 .

386 Chapter 10 Matrix Algebra

 The items cost as follows:

 Table 10.7 Ann and Fred’s Shopping List

 Item Number Needed by Ann Number Needed by Fred

 Milk 2 gallons 3 gallons

 Eggs 1 dozen 2 dozen

 Cereal 2 boxes 1 box

 Soup 5 cans 4 cans

 Cookies 1 package 3 packages

 Table 10.8 Thermal Properties of a Bomb Calorimeter

 Experiment No. Mass of Water, g Mass of Steel, g Mass of Aluminum, g

 1 110 250 10

 2 100 250 10

 3 101 250 10

 4 98.6 250 10

 5 99.4 250 10

 Component Heat Capacity, J/gK

 Steel 0.45
 Water 4.2

 Aluminum 0.90

 Item Cost

 Milk $3.50 per gallon

 Eggs $1.25 per dozen

 Cereal $4.25 per box

 Soup $1.55 per can

 Cookies $3.15 per package

 Find the total bill for each shopper.
 10.9 A series of experiments was performed with a bomb calorimeter. In each

experiment, a different amount of water was used. Calculate the total heat
capacity for the calorimeter for each of the experiments, using matrix mul-
tiplication, the data in Table 10.8 , and the information on heat capacity that
follows the table.

 10.10 The molecular weight (MW) of any compound is the sum of the products of
the number of atoms of each element (Z) and the atomic weight (AW) of
each element present in the compound, or

 MW � a
n

i�1
AWi

Zi

 The compositions of the fi rst fi ve straight-chain alcohols are listed in Table 10.9 .
Use the atomic weights of carbon, hydrogen, and oxygen (12, 1, and 16,
respectively) and matrix multiplication to determine the molecular weight
(more correctly called the molar mass) of each alcohol.

 Matrix Exponentiation

 10.11 Given the array

 A � c -1 3
4 2

d
 (a) Raise A to the second power by array exponentiation. (Consult help if

necessary.)
 (b) Raise A to the second power by matrix exponentiation.
 (c) Explain why the answers are different.

 Table 10.9 Composition of Alcohols

 Name Carbon Hydrogen Oxygen

 Methanol 1 4 1

 Ethanol 2 6 1

 Propanol 3 8 1

 Butanol 4 10 1

 Pentanol 5 12 1

 10.12 Create a 3 � 3 array called A by using the pascal function:

pascal(3)

 (a) Raise A to the third power by array exponentiation.
 (b) Raise A to the third power by matrix exponentiation.
 (c) Explain why the answers are different.

 Determinants and Inverses

 10.13 Given the array A � 3-13; 4 24 , compute the determinant of A both by
hand and by using MATLAB®.

 10.14 Recall that not all matrices have an inverse. A matrix is singular (i.e., it
doesn’t have an inverse) if its determinant equals 0 (i.e., � A � � 0). Use the
determinant function to test whether each of the following matrices has an
inverse:

 A � c2 -1
4 5

d , B � c4 2
2 1

d , C � £2 0 0
1 2 2
5 -4 0

§
 If an inverse exists, compute it.

 Cross Products

 10.15 Compute the moment of force around the pivot point for the lever shown
in Figure P10.15 . You’ll need to use trigonometry to determine the x and y
components of both the position vector and the force vector. Recall that the
moment of force can be calculated as the cross product

 M0 � r � F

 A force of 200 lbf is applied vertically at a position 20 feet along the lever.
The lever is positioned at an angle of 60° from the horizontal.

Applied Force F 200 lbf

Pivot Point

20 feet

u 60

 Figure P10.15
 Moment of force acting on a
lever about the origin.

Problems 387

388 Chapter 10 Matrix Algebra

 10.16 Determine the moment of force about the point where a bracket is attached
to a wall. The bracket is shown in Figure P10.16 . It extends 10 inches out
from the wall and 5 inches up. A force of 35 lbf is applied to the bracket at
an angle of 55° from the vertical. Your answer should be in ft-lbf, so you’ll
need to do some conversions of units.

Wall

Force
Vector

Position
Vector

10 inches

5 inches

F = 35 lbf

u 55

 Figure P10.16
 A bracket attached to a
wall.

 10.17 A rectangular shelf is attached to a wall by two brackets 12 inches apart at
points A and B , as shown in Figure P10.17 . A wire with a 10-lbf weight
attached to it is hanging from the edge of the shelf at point C . Determine
the moment of force about point A and about point B caused by the weight
at point C .

 You can formulate this problem by solving it twice, once for each
bracket, or by creating a 2 � 3 matrix for the position vector and another
 2 � 3 matrix for the force vector. Each row should correspond to a different
bracket. The cross function will return a 2 � 3 result, each row
corresponding to the moment about a separate bracket.

10 lbf

A
B

C

12 inches
2 inches

4 inches

 Figure P10.17
 Calculation of moment of
force in three dimensions.

 Solving Linear Systems of Equations

 10.18 Solve the following systems of equations, using both matrix left division and
the inverse matrix method:

 (a) � 2x � y � 3 x � y � 10

 (b) 5x � 3y � z � 10
 3x � 2y � z � 4
 4x � y � 3z � 12

 (c) 3x � y � z � w � 24

 x � 3y � 7z � w � 12

 2x � 2y � 3z � 4w � 17

 x � y � z � w � 0

 10.19 In general, matrix left division is faster and more accurate than the matrix
inverse. Using both techniques, solve the following system of equations and
time the execution with the tic and toc functions:

3x1 � 4x2 � 2x3 � x4 � x5 � 7x6 � x7 � 42
2x1 � 2x2 � 3x3 � 4x4 � 5x5 � 2x6 � 8x7 � 32
x1 � 2x2 � 3x3 � x4 � 2x5 � 4x6 � 6x7 � 12

5x1 � 10x2 � 4x3 � 3x4 � 9x5 � 2x6 � x7 � -5

3x1 � 2x2 � 2x3 � 4x4 � 5x5 � 6x6 � 7x7 � 10
-2x1 � 9x2 � x3 � 3x4 � 3x5 � 5x6 � x7 � 18
x1 � 2x2 � 8x3 � 4x4 � 2x5 � 4x6 � 5x7 � 17

 If you have a new computer, you may fi nd that this problem executes so
quickly that you won’t be able to detect a difference between the two
techniques. If so, see if you can formulate a larger problem to solve.

 10.20 In Example 10.5 , we demonstrated that the circuit shown in Figure 10.5
could be described by the following set of linear equations:

 1R2 � R42i1 � 1-R22i2 � 1-R42i3 � V1

 1-R22i1 � 1R1 � R2 � R32i2 � 1-R32i3 � 0

 1-R42i1 � 1-R32i2 � 1R3 � R4 � R52i3 � 0

 We solved this set of equations by the matrix inverse approach. Redo the
problem, but this time use the left-division approach.

 10.21 Consider a separation process in which a stream of water, ethanol, and
methanol enters a process unit. Two streams leave the unit, each with vary-
ing amounts of the three components (see Figure P10.21).

 Determine the mass fl ow rates into the system and out of the top and
 bottom of the separation unit.

xH2O 0.50
xEthanol x
xMethanol 1 0.5 x

xH2O 0.65
xEthanol 0.25
xMethanol 0.10

xH2O 0.20
xEthanol 0.35
xMethanol 0.45

min 100

mtops ?

mbottoms ?

 Figure P10.21
 Separation process with
three components.

Problems 389

390 Chapter 10 Matrix Algebra

 (a) First set up material-balance equations for each of the three components:
 Water

 10.52 11002 � 0.2mtops � 0.65mbottoms

 50 � 0.2mtops � 0.65mbottoms

 Ethanol

 100x � 0.35mtops � 0.25mbottoms

 0 � � 100x � 0.35mtops � 0.25mbottoms

 Methanol

 10011 � 0.5 � x2 � 0.45mtops � 0.1mbottoms

 50 � 100x � 0.45mtops � 0.1mbottoms
 (b) Arrange the equations you found in part (a) into a matrix representation:

 A � £ 0 0.2 0.65
-100 0.35 0.25
100 0.45 0.1

§ B � £50
0
50
§

 (c) Use MATLAB® to solve the linear system of three equations.
 10.22 Consider the statically determinate truss shown in Figure P10.22.

 The applied force has a magnitude of 1000 lbf at an angle of 30° from the
horizontal, as shown in the fi gure. The inner angles, u1 and u2 are 45° and
65° respectively. Determine the values of the forces in each member of the
truss, and the reactive forces experienced at the hinge and the roller (nodes
2 and 3).

32

1

F2

F3

Roller

Fapplied

y

x

Hinge

F1

u1 u2

30�

 Figure P10.22
 A statically determinate
truss.

 Challenge Problem

 10.23 Create a MATLAB® function M-fi le called my_matrix_solver to solve a sys-
tem of linear equations, using nested for loops instead of MATLAB®’s
built-in operators or functions. Your function should accept a coeffi cient
matrix and a result matrix, and should return the values of the variables.
For example, if you wish to solve the following matrix equation for X

 AX � B

 your function should accept A and B as input, and return X as the result.
Test your function with the system of equations from the previous problem.

11

 INTRODUCTION

 In MATLAB ® , scalars, vectors, and two-dimensional matrices are used to store data. In
reality, all these are two dimensional. Thus, even though

 A = 1;

 creates a scalar,

 B = 1:10;

 creates a vector, and

 C = [1,2,3;4,5,6];

 creates a two-dimensional matrix, they are all still two-dimensional arrays. Notice in
 Figure 11.1 that the size of each of these variables is listed as a two-dimensional matrix
 1 � 1 for A, 1 � 10 for B, and 2 � 3 for C. The class listed for each is also the
same: Each is a “double,” which is short for double-precision fl oating-point number.
(To ensure that you see all the columns shown in Figure 11.1 right click on the title
bar and select the appropriate parameters. You can also access this menu by selecting
View from the menu bar.)

 After reading this chapter, you
should be able to:
 • Understand the different

kinds of data used in
MATLAB ®

 • Create and use both
numeric and character
arrays

 • Create multidimensional
arrays and access data in
those arrays

 • Create and use cell and
structure arrays

 Objectives

 Other Kinds
of Arrays

 C H A P T E R

392 Chapter 11 Other Kinds of Arrays

 MATLAB ® includes the capability to create multidimensional matrices and to
store data that are not doubles, such as characters. In this chapter, we’ll introduce
the data types supported by MATLAB ® and explore how they can be stored and
used by a program.

 11.1 DATA TYPES

 The primary data type (also called a class) in MATLAB ® is the array or matrix . Within
the array, MATLAB ® supports a number of different secondary data types. Because
MATLAB ® was written in C, many of those data types parallel the data types sup-
ported in C. In general, all the data within an array must be the same type. However,
MATLAB ® also includes functions to convert between data types, and array types to
store different kinds of data in the same array (cell and structure arrays).

 The kinds of data that can be stored in MATLAB ® are listed in Figure 11.2 .
They include numerical data, character data, logical data, and symbolic data types.
Each can be stored either in arrays specifi cally designed for that data type or in
arrays that can store a variety of data. Cell arrays and structure arrays fall into the
latter category (Figure 11.3).

 11.1.1 Numeric Data Types

 Double-Precision Floating-Point Numbers
 The default numeric data type in MATLAB ® is the double-precision fl oating-point
number, as defi ned by IEEE Standard 754. (IEEE, the Institute of Electrical and

 Figure 11.1
 MATLAB ® supports a
variety of array types.

 IEEE
 Institute of Electrical and
Electronics Engineers

11.1 Data Types 393

Electronics Engineers, is the professional organization for electrical engineers.)
Recall that when we create a variable such as A , as in

A = 1;

 the variable is listed in the workspace window and the class is “double,” as shown in
 Figure 11.1 . Notice that the array requires 8 bytes of storage space. Each byte is equal
to 8 bits, so the number 1 requires 64 bits of storage space. Also in Figure 11.1 ,
notice how much storage space is required for variables B and C :

B = 1:10; C=[1,2,3; 4,5,6];

Kinds of Data Stored in MATLAB® Matrices

NumericCharacter Logical
Symbolic Objects—
Symbolic Toolbox

Integer Floating Point

multiple
signed
integer
types

multiple
unsigned
integer
types

single
precision

double
precision

complex real

 Figure 11.2
 Many different kinds of
data can be stored in
MATLAB ®.

MATLAB® Data Types (Array Types)

Character
Arrays

Floating Point

single
precision

double
precision

Logical
Arrays

Numeric
Arrays

Symbolic
Arrays

Cell
Arrays

Structure
Arrays

Other types, including user-
defined and JAVA types

Cell and structure arrays can
store different types of data in
the same array

Integer

multiple
signed
integer
types

multiple
unsigned
integer
types

 Figure 11.3
 MATLAB ® supports multiple
data types, all of which are
arrays.

394 Chapter 11 Other Kinds of Arrays

 The variable B requires 80 bytes, 8 for each of the 10 values stored, and C
requires 48 bytes, again 8 for each of the 6 values stored.

 You can use the realmax and realmin functions to determine the maximum
possible value of a double-precision fl oating-point number:

realmax
ans =

1.7977e+308

realmin
ans =

2.2251e-308

 If you try to enter a value whose absolute value is greater than realmax , or if
you compute a number that is outside this range, MATLAB ® will assign a value of
 	 infinity:

x = 5e400
x =

Inf

 Similarly, if you try to enter a value whose absolute value is less than realmin ,
MATLAB ® will assign a value of zero:

x = 1e-400
x =

0

 Single-Precision Floating-Point Numbers
 Single-precision fl oating-point numbers are new to MATLAB ® 7. They use only half
the storage space of a double-precision number and thus store only half the infor-
mation. Each value requires only 4 bytes, or 4 � 8 � 32 bits, of storage space, as
shown in the workspace window in Figure 11.1 when we defi ne D as a single-precision
number:

D = single(5)
D =

5

 We need to use the single function to change the value 5 (which is double
precision by default) to a single-precision number. Similarly, the double function
will convert a variable to a double, as in

double(D)

 which changes the variable D into a double.
 Since single-precision numbers are allocated only half as much storage space,

they cannot cover as large a range of values as double-precision numbers. We can
use the realmax and realmin functions to show this:

realmax('single')
ans =

3.4028e+038

realmin('single')
ans =

1.1755e–038

 KEY IDEA
 MATLAB ® supports multiple
data types

 KEY IDEA
 Single-precision numbers
require half the storage
room of double-precision
numbers

 Engineers will rarely need to convert to single-precision numbers, because
today’s computers have plenty of storage space for most applications and will exe-
cute most of the problems we pose in extremely short amounts of time. However, in
some numerical analysis applications, you may be able to improve the run time of a
long problem by changing from double to single precision. Note, though, that this
has the disadvantage of making round-off error more of a problem.

 We can demonstrate the effect of round-off error in single-precision versus dou-
ble-precision problems with an example. Consider the series

 a a1
1
 �

1
2
 �

1
3
 �

1
4
 �

1
5
 �

1
6
 � % �

1
n
 � % b

 A series is the sum of a sequence of numbers, and this particular series is called
the harmonic series , represented with the following shorthand notation:

 a
�

n�1

1
n

 The harmonic series diverges; that is, it just keeps getting bigger as you add
more terms together. You can represent the fi rst 10 terms of the harmonic sequence
with the following commands:

n = 1:10;
harmonic = 1./n

 You can view the results as fractions if you change the format to rational:

format rat
harmonic =
1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10

 Or you can use the short format, which shows decimal representations of the
numbers:

format short
harmonic =
1.0000 0.5000 0.3333 0.2500 0.2000 0.1667 0.1429

0.1250 0.1111 0.1000

 No matter how the values are displayed on the screen, they are stored as double-
precision fl oating-point numbers inside the computer. By calculating the partial
sums (also called cumulative sums), we can see how the value of the sum of these
numbers changes as we add more terms:

partial_sum = cumsum(harmonic)
partial_sum =
Columns 1 through 6
1.0000 1.5000 1.8333 2.0833 2.2833 2.4500

Columns 7 through 10
2.5929 2.7179 2.8290 2.9290

 The cumulative sum (cumsum) function calculates the sum of the values in
the array up to the element number displayed. Thus, in the preceding calcula-
tion, the value in column 3 is the partial sum of the values in columns 1 through
3 of the input array (in this case, the array named harmonic). No matter how big
we make the harmonic array, the partial sums continue to increase.

 KEY IDEA
 Double-precision numbers
are appropriate for most
engineering applications

11.1 Data Types 395

396 Chapter 11 Other Kinds of Arrays

 The only problem with this process is that the values in harmonic keep getting
smaller and smaller. Eventually, when n is big enough, 1./n is so small that the com-
puter can’t distinguish it from zero. This happens much more quickly with single-
precision than with double-precision representations of numbers. We can
demonstrate this property with a large array of n -values:

n = 1:1e7;
harmonic = 1./n;
partial_sum = cumsum(harmonic);

 (This may take your computer a while to calculate, especially if you have an
older machine.) All these calculations are performed with double-precision num-
bers, because double precision is the default data type in MATLAB ® . Now we’d like
to plot the results, but there are really too many numbers (10 million, in fact). We
can select every thousandth value with the following code:

m = 1000:1000:1e7;
partial_sums_selected = partial_sum(m);
plot(partial_sums_selected)

 Now we can repeat the calculations, but change to single-precision values. You
may need to clear your computer memory before this step, depending on how
much memory is available on your system. The code is

n = single(1:1e7);
harmonic = 1./n;
partial_sum = cumsum(harmonic);
m = 1000:1000:1e7;
partial_sums_selected = partial_sum(m);
hold on
plot(partial_sums_selected,':')

 The results are presented in Figure 11.4 . The solid line represents the partial
sums calculated with double precision. The dashed line represents the partial sums
calculated with single precision. The single-precision calculation levels off, because
we reach the point where each successive term is so small that the computer sets it
equal to zero. We haven’t reached that point yet for the double-precision values.

 KEY IDEA
 Round-off error is a bigger
problem in single-precision
than in double-precision
calculations

0 2000 4000 6000 8000 10,000
6

8

10

12

14

16

18
Comparison of Double- and Single-Precision Calculations

Number of steps*1000

Su
m

 o
f t

he
 H

ar
m

on
ic

 S
er

ie
s

 Figure 11.4
 Round-off error degrades
the harmonic series
calculation for single-
precision faster than for
double-precision numbers .

 Integers
 New to MATLAB ® are several integer-number types. Traditionally, integers are used
as counting numbers. For example, there can’t be 2.5 people in a room, and you
can’t specify element number 1.5 in an array. Eight different types of integers are
supported by MATLAB ® . They differ in how much storage space is allocated for the
type and in whether the values are signed or unsigned. The more storage space, the
larger the value of an integer number you can use. The eight types are shown in
 Table 11.1 .

 Since 8 bits is 1 byte, when we assign E as an int8 with the code

E = int8(10)
E =

10

 it requires only 1 byte of storage, as shown in Figure 11.1 .
 You can determine the maximum value of any of the integer types by using the

 intmax function. For example, the code

intmax('int8')
ans =

127

 indicates that the maximum value of an 8-bit signed integer is 127.
 The four signed-integer types allocate storage space to specify whether the

number is plus or minus. The four unsigned-integer types assume that the number
is positive and thus do not need to store that information, leaving more room to
store numerical values.

 The code

intmax('uint8')
ans =

255

 reveals that the maximum value of an 8-bit unsigned integer is 255.
 One place where integer arrays fi nd use is to store image information. These

arrays are often very large, but a limited number of colors are used to create the
picture. Storing the information as unsigned-integer arrays reduces the storage
requirement dramatically.

 Complex Numbers
 The default storage type for complex numbers is double; however, twice as much
storage room is needed, because both the real and imaginary components must be
stored:

F = 5+3i;

 KEY IDEA
 Integer data are often used
to store image data

 Table 11.1 MATLAB ® Integer Types

 8-bit signed integer int8 8-bit unsigned integer uint8

 16-bit signed integer int16 16-bit unsigned integer uint16

 32-bit signed integer int32 32-bit unsigned integer uint32

 64-bit signed integer int64 64-bit unsigned integer uint64

11.1 Data Types 397

398 Chapter 11 Other Kinds of Arrays

 Thus, 16 bytes 1= 128 bits2 are required to store a double complex number.
Complex numbers can also be stored as singles or integers (see Figure 11.1), as the
following code illustrates:

G = int8(5+3i);

 PRACTICE EXERCISES 11.1

 1. Enter the following list of numbers into arrays of each of the numeric
data types [1, 4, 6; 3, 15, 24; 2, 3, 4]:
 (a) Double-precision fl oating point—name this array A
 (b) Single-precision fl oating point—name this array B
 (c) Signed integer (pick a type)—name this array C
 (d) Unsigned integer (pick a type)—name this array D

 2. Create a new matrix E by adding A to B :

 E � A � B

 What data type is the result?
 3. Defi ne x as an integer data type equal to 1 and y as an integer data

type equal to 3.
 (a) What is the result of the calculation x/y ?
 (b) What is the data type of the result?
 (c) What happens when you perform the division when x is defi ned

as the integer 2 and y as the integer 3?
 4. Use intmax to determine the largest number you can defi ne for each

of the numeric data types. (Be sure to include all eight integer data
types.)

 5. Use MATLAB ® to determine the smallest number you can defi ne for
each of the numeric data types. (Be sure to include all eight integer
data types.)

 11.1.2 Character and String Data

 In addition to storing numbers, MATLAB ® can store character information. Single
quotes are used to identify a string and to differentiate it from a variable name.
When we type the string

H ='Holly';

 a 1 � 5 character array is created. Each letter is a separate element of the array, as
is indicated by the code

H(5)
ans =

y

 Any string represents a character array in MATLAB ® . Thus,

K = 'MATLAB is fun'

 becomes a 1 � 13 character array. Notice that the spaces between the words are
counted as characters. Notice also that the name column in Figure 11.1 displays a

 KEY IDEA
 Each character, including
spaces, is a separate
element in a character
array

symbol containing the letters “ab,” which indicates that H and K are character arrays.
Each character in a character array requires 2 bytes of storage space.

 All information in computers is stored as a series of zeros and ones. There are two
major coding schemes to do this: ASCII and EBCDIC. Most small computers use the
ASCII coding scheme, whereas many mainframes and supercomputers use EBCDIC.
You can think of the series of zeros and ones as a binary, or base-2, number. In this
sense, all computer information is stored numerically. Every base-2 number has a
decimal equivalent. The fi rst several numbers in each base are shown in Table 11.2 .

 Every ASCII (or EBCDIC) character stored has both a binary representation
and a decimal equivalent. When we ask MATLAB ® to change a character to a dou-
ble, the number we get is the decimal equivalent in the ASCII coding system. Thus,
we may have

double('a')
ans =

97

 Conversely, when we use the char function on a double, we get the character
represented by that decimal number in ASCII—for example,

char (98)
ans =

b

 If we try to create a matrix containing both numeric and character informa-
tion, MATLAB ® converts all the data to character information:

['a',98]
ans =

ab

 (The character b is equivalent to the number 98.) Not all numbers have a char-
acter equivalent. If this is the case they are represented as a blank in the resulting
character array

['a',3]
ans =

a

 Although this result looks like it has only one character in the array, check the
workspace window. You’ll fi nd that the size is a 1 � 3 character array.

 ASCII
American Standard Code
for Information—a
standard code for
exchanging information
between computers

 EBCDIC
Extended Binary Coded
Decimal Interchange
Code—a standard code for
exchanging information
between computers

 Table 11.2 Binary-to-Decimal Conversions

 Base 2 (binary) Base 10 (decimal)

 1 1

 10 2

 11 3

 100 4

 101 5

 110 6

 111 7

 1000 8

 BINARY
 A coding scheme using
only zeros and ones

11.1 Data Types 399

400 Chapter 11 Other Kinds of Arrays

 If we try to perform mathematical calculations with both numeric and charac-
ter information, MATLAB ® converts the character to its decimal equivalent:

'a' + 3
ans =

100

 Since the decimal equivalent of 'a' is 97, the problem is converted to

 97 � 3 � 100

 PRACTICE EXERCISES 11.2

 1. Create a character array consisting of the letters in your name.
 2. What is the decimal equivalent of the letter g ?
 3. Upper- and lowercase letters are 32 apart in decimal equivalent.

(Uppercase comes fi rst.) Using nested functions, convert the string
“matlab” to the uppercase equivalent, “MATLAB .”

 11.1.3 Symbolic Data

 The symbolic toolbox uses symbolic data to perform symbolic algebraic calcula-
tions. One way to create a symbolic variable is to use the sym function:

L = sym('x^2-2')
L =
x^2-2

 The storage requirements of a symbolic object depend on how large the object
is. Notice, however, in Figure 11.1 , that L is a 1 � 1 array. Subsequent symbolic
objects could be grouped together into an array of mathematical expressions. The
symbolic-variable icon shown in the left-hand column of Figure 11.1 is a cube.

 11.1.4 Logical Data

 Logical arrays may look like arrays of ones and zeros because MATLAB ® (as well as
other computer languages) uses these numbers to denote true and false:

M = [true,false,true]
M =

1 0 1

 We don’t often create logical arrays this way. Usually, they are the result of logi-
cal operations. For example,

x = 1:5;
y = [2,0,1,9,4];
z = x>y

 returns

z =
0 1 1 0 1

 KEY IDEA
 Computer programs use the
number 0 to mean false
and the number 1 to mean
true

11.2 Multidimensional Arrays 401

 We can interpret this to mean that x 7 y is false for elements 1 and 3, and true
for elements 2, 3, and 5. These arrays are used in logical functions and usually are
not even seen by the user. For example,

find(x>y)

ans =
2 3 5

 tells us that elements 2, 3, and 5 of the x array are greater than the corresponding
elements of the y array. Thus, we don’t have to analyze the results of the logical opera-
tion ourselves. The icon representing logical arrays is a check mark (Figure 11.1).

 11.1.5 Sparse Arrays

 Both double-precision and logical arrays can be stored either in full matrices or as
sparse matrices. Sparse matrices are “sparsely populated,” which means that many
or most of the values in the array are zero. (Identity matrices are examples of sparse
matrices.) If we store double-precision sparse arrays in the full-matrix format, every
data value takes 8 bytes of storage, be it a zero or not. The sparse-matrix format
stores only the nonzero values and remembers where they are—a strategy that saves
a lot of computer memory.

 For example, defi ne a 1000 � 1000 identity matrix, which is a one-million-
element matrix:

N = eye(1000);

 At 8 bytes per element, storing this matrix takes 8 MB. If we convert it to a
sparse matrix, we can save some space. The code to do this is

P = sparse(N);

 Notice in the workspace window that array P requires only 16,004 bytes! Sparse
matrices can be used in calculations just like full matrices. The icon representing a
sparse array is a group of diagonal lines (Figure 11.1).

 11.2 MULTIDIMENSIONAL ARRAYS

 When the need arises to store data in multidimensional (more than two-dimensional)
arrays, MATLAB ® represents the data with additional pages. Suppose you would like
to combine the following four two-dimensional arrays into a three-dimensional array:

x = [1,2,3;4,5,6];
y = 10*x;
z = 10*y;
w = 10*z;

 You need to defi ne each page separately:

my_3D_array(:,:,1) = x;
my_3D_array(:,:,2) = y;
my_3D_array(:,:,3) = z;
my_3D_array(:,:,4) = w;

 Read each of the previous statements as all the rows, all the columns, page 1,
and so on.

 When you call up my_3D_array , using the code

my_3D_array

 KEY IDEA
 MATLAB ® supports arrays
in more than two
dimensions

402 Chapter 11 Other Kinds of Arrays

 the result is

my_3D_array
my_3D_array(:,:,1) =

1 2 3
4 5 6

my_3D_array(:,:,2) =
10 20 30
40 50 60

my_3D_array(:,:,3) =
100 200 300
400 500 600

my_3D_array(:,:,4) =
1000 2000 3000
4000 5000 6000

 An alternative approach is to use the cat function. When you concatenate a list
you group the members together in order, which is what the cat function does.
The fi rst fi eld in the function specifi es which dimension to use to concatenate the
arrays, which follow in order. For example, to create the array we used in the previ-
ous example the syntax is

cat(3,x,y,z,w)

 A multidimensional array can be visualized as shown in Figure 11.5 . Even
higher-dimensional arrays can be created in a similar fashion.

rows

columns

pages

 Figure 11.5
 Multidimensional arrays
are grouped into pages.

 HINT
 The squeeze function can be used to eliminate singleton dimensions in
multidimensional arrays. For example, consider the three-dimensional array
with the following dimensions

3 � 1 � 4

 This represents an array with three rows, one column, and four pages. It
could be stored more effi ciently as a two-dimensional array by squeezing out
the singleton column dimension

b = squeeze(a)

 to give a new array with the dimensions

3 � 4

 11.3 Character Arrays 403

 11.3 CHARACTER ARRAYS

 We can create two-dimensional character arrays only if the number of elements in
each row is the same. Thus, a list of names such as the following won’t work, because
each name has a different number of characters:

Q = ['Holly';'Steven';'Meagan';'David';'Michael';'Heidi']
??? Error using ==> vertcat
All rows in the bracketed expression must have the same number
of columns.

 The char function “pads” a character array with spaces, so that every row has
the same number of elements:

Q = char('Holly','Steven','Meagan','David','Michael','Heidi')
Q =
Holly
Steven
Meagan
David
Michael
Heidi

 Q is a 6 � 7 character array. Notice that commas are used between each
string in the char function.

 Not only alphabetic characters can be stored in a MATLAB ® character array.
Any of the symbols or numbers found on the keyboard can be stored as characters.
We can take advantage of this feature to create tables that appear to include both
character and numeric information, but really are composed of just characters.

 For example, let’s assume that the array R contains test scores for the students
in the character array Q :

R = [98;84;73;88;95;100]

R =
 98
84
73
88
95
100

 If we try to combine these two arrays, we’ll get a strange result, because they are
two different data types:

table = [Q,R]

table =

 PRACTICE EXERCISES 11.3

 1. Create a three-dimensional array consisting of a 3 � 3 magic square,
a 3 � 3 matrix of zeros, and a 3 � 3 matrix of ones.

 2. Use triple indexing such as A(m,n,p) to determine what number is in
row 3, column 2, page 1 of the matrix you created in Exercise 1.

 3. Find all the values in row 2, column 3 (on all the pages) of the matrix.
 4. Find all the values in all the rows and pages of column 3 of the matrix.

404 Chapter 11 Other Kinds of Arrays

Holly b
Steven T
Meagan I
David X
Michael_
Heidi d

 The double-precision values in R were used to defi ne characters on the basis of
their ASCII equivalent. When doubles and chars are used in the same array,
MATLAB® converts all the information to chars. This is confusing, since, when we
combine characters and numeric data in mathematical computations, MATLAB ®
converts the character information to numeric information.

 The num2str (number to string) function allows us to convert the double R
matrix to a matrix composed of character data:

S = num2str(R)
S =
98
84
73
88
95
100

 R and S look alike, but if you check the workspace window (Figure 11.6), you’ll
see that R is a 6 � 1 double array and S is the 6 � 3 char array shown below.

 space 9 8

 space 8 4

 space 7 3

 space 8 8

 space 9 5

 1 0 0

 Now we can combine Q , the character array of names, with S , the character array
of scores:

 Figure 11.6
 Character and numeric
data can be combined in a
single array by changing
the numeric values to
characters with the
 num2str function.

11.3 Character Arrays 405

table = [Q,S]

table =
Holly 98
Steven 84
Meagan 73
David 88
Michael 95
Heidi 100

 We show the results in the monospace font, which is evenly spaced. You can
control the font that MATLAB ® uses; if you choose a proportional font, such as
Times New Roman, your columns won’t line up.

 We could also use the disp function to display the results:

disp([Q,S])
Holly 98
Steven 84
Meagan 73
David 88
Michael 95
Heidi 100

 HINT
 Put a space after your longest string, so that when you create a padded char-
acter array, there will be a space between the character information and the
numeric information you’ve converted to character data.

 KEY IDEA
 Combine character and
numeric arrays using the
 num2str function to
create data fi le names

 A useful application of character arrays and the num2str function is the crea-
tion of fi le names. On occasion you may want to save data into .dat or .mat fi les,
without knowing ahead of time how many fi les will be required. One solution would
be to name your fi les using the following pattern:

my_data1.dat
my_data2.dat
my_data3.dat etc.

 Imagine that you load a fi le of unknown size, called some_data , into MATLAB ®
and want to create new fi les, each composed of a single column from some_data :

load some_data

 You can determine how big the fi le is by using the size function:

[rows,cols] = size(some_data)

 If you want to store each column of the data into its own fi le, you’ll need a fi le
name for each column. You can do this in a for loop, using the function form of
the save command:

for k = 1:cols
file_name = ['my_data',num2str(k)]

406 Chapter 11 Other Kinds of Arrays

data = some_data(:,k) '
save(file_name,'data')

end

 The loop will execute once for each column. You construct the fi le name by
creating an array that combines characters and numbers with the statement

file_name = ['my_data',num2str(k)];

 This statement sets the variable file_name equal to a character array, such as
 my_data1 or my_data2 , depending on the current pass through the loop. The
 save function accepts character input. In the line

save(file_name,'data')

 file_name is a character variable, and 'data' is recognized as character infor-
mation because it is inside single quotes. If you run the preceding for loop on a
fi le that contains a 5 � 3 matrix of random numbers, you get the following result:

rows =
5

cols =
3

file_name =
my_data1
data =

-0.4326 -1.6656 0.1253 0.2877 -1.1465
file_name =
my_data2
data =

1.1909 1.1892 -0.0376 0.3273 0.1746
file_name =
my_data3
data =

-0.1867 0.7258 -0.5883 2.1832 -0.1364

 The current folder now includes three new fi les.

 PRACTICE EXERCISES 11.4

 1. Create a character matrix called names of the names of all the planets.
Your matrix should have nine rows.

 2. Some of the planets can be classifi ed as rocky midgets and others as gas
giants. Create a character matrix called type , with the appropriate
designation on each line.

 3. Create a character matrix of nine spaces, one space per row.
 4. Combine your matrices to form a table listing the names of the planets

and their designations, separated by a space.
 5. Use the Internet to fi nd the mass of each of the planets, and store the

information in a matrix called mass . (Or use the data from Example
 11.2 .) Use the num2str function to convert the numeric array into a
character array, and add it to your table.

11.3 Character Arrays 407

 EXAMPLE 11.1
 CREATING A SIMPLE SECRET CODING SCHEME
 Keeping information private in an electronic age is becoming more and more dif-
fi cult. One approach is to encode information, so that even if an unauthorized
person sees the information, he or she won’t be able to understand it. Modern cod-
ing techniques are extremely complicated, but we can create a simple code by tak-
ing advantage of the way character information is stored in MATLAB ® . If we add a
constant integer value to character information, we can transform the string into
something that is diffi cult to interpret.

1. State the Problem
 Encode and decode a string of character information.
2. Describe the Input and Output

Input Character information entered from the command window
Output Encoded information

3. Develop a Hand Example
 The lowercase letter a is equivalent to the decimal number 97. If we add 5 to a

and convert it back to a character, it becomes the letter f .
4. Develop a MATLAB ® Solution

%Example 11.1
%Prompt the user to enter a string of character information.
A=input('Enter a string of information to be encoded: ')
encoded=char(A+5);
disp('Your input has been transformed!');
disp(encoded);
disp('Would you like to decode this message?');
response=menu('yes or no?','YES','NO');
switch response

case 1
disp(char(encoded-5));

case 2
disp('OK - Goodbye');

end

 5. Test the Solution
 Run the program and observe what happens. The program prompts you for

input, which must be entered as a string (inside single quotes):

Enter a string of information to be encoded:

'I love rock and roll'

 Once you hit the return key, the program responds

Your input has been transformed!

N%qt{j%wthp%fsi%wtqq

Would you like to decode this message?

408 Chapter 11 Other Kinds of Arrays

 Because we chose to use a menu option for the response, the menu window
pops up. When we choose YES, the program responds with

I love rock and roll

 If we choose NO, it responds with

OK - Goodbye

Because we chose to use a menu option for the response, the menu window
pops up. When we choose YES, the program responds with

I love rock and roll

If we choose NO, it responds with

OK - Goodbye

 11.4 CELL ARRAYS

 Unlike the numeric, character, and symbolic arrays, the cell array can store differ-
ent types of data inside the same array. Each element in the array is also an array.
For example, consider these three different arrays:

A = 1:3;
B = ['abcdefg'];
C = single([1,2,3;4,5,6]);

 We have created three separate arrays, all of a different data type and size. A is
a double, B is a char, and C is a single. We can combine them into one cell array by
using curly brackets as our cell-array constructor (the standard array constructors
are square brackets):

my_cellarray = {A,B,C}

 returns

my_cellarray =
[1x3 double] 'abcdefg' [2x3 single]

 To save space, large arrays are listed just with size information. You can show
the entire array by using the celldisp function:

celldisp(my_cellarray)
my_cellarray{1} =

1 2 3
my_cellarray{2} =
abcdefg
my_cellarray{3} =

1 2 3

 The indexing system used for cell arrays is the same as that used in other arrays.
You may use either a single index or a row-and-column indexing scheme. There are
two approaches to retrieving information from cell arrays: You can use parentheses,
as in

my_cellarray(1)
ans =

[1x3 double]

 KEY IDEA
 Cell arrays can store
information using various
data types

11.5 Structure Arrays 409

 which returns a result as new cell array. An alternative is to use curly brackets,
as in

my_cellarray{1}
ans =

1 2 3

 In this case the answer is a double. To access a particular element inside
an array stored in a cell array, you must use a combination of curly brackets and
parentheses:

my_cellarray{3}(1,2)
ans =

2

 Cell arrays can become quite complicated. The cellplot function is a useful
way to view the structure of the array graphically, as shown in Figure 11.7 .

cellplot(my_cellarray)

 Cell arrays are useful for complicated programming projects or for database
applications. A use in common engineering applications would be to store various
kinds of data from a project in one variable name that can be disassembled and
used later.

 11.5 STRUCTURE ARRAYS

 Structure arrays are similar to cell arrays. Multiple arrays of differing data types can
be stored in structure arrays, just as they can in cell arrays. Instead of using content
indexing, however, each matrix stored in a structure array is assigned a location
called a field . For example, using the three arrays from the previous section on cell
arrays,

A = 1:3;
B = ['abcdefg'];
C = single([1,2,3;4,5,6]);

 we can create a simple structure array called my_structure :

my_structure.some_numbers = A

a b c d e f g

 Figure 11.7
 The Cellplot function
provides a graphical
representation of the
structure of a cell array.

 KEY IDEA
 Structure arrays can store
information using various
data types

410 Chapter 11 Other Kinds of Arrays

 which returns

my_structure =
some_numbers: [1 2 3]

 The name of the structure array is my_structure . It has one fi eld, called
 some_numbers . We can now add the content in the character matrix B to a second
fi eld called some_letters:

my_structure.some_letters = B
my_structure =

some_numbers: [1 2 3]
some_letters: 'abcdefg'

 Finally, we add the single-precision numbers in matrix C to a third fi eld called
 some_more_numbers:

my_structure.some_more_numbers = C
my_structure =

some_numbers: [1 2 3]
some_letters: 'abcdefg'
some_more_numbers: [2x3 single]

 Notice in the workspace window (Figure 11.8) that the structure matrix (called
a struct) is a 1 * 1 array that contains all the information from all three dissimilar
matrices. The structure has three fi elds, each containing a different data type:

 some_numbers double-precision numeric data

 some_letters character data

 some_more_numbers single-precision numeric data

 We can add more content to the structure, and expand its size, by adding more
matrices to the fi elds we’ve defi ned:

my_structure(2).some_numbers = [2 4 6 8]
my_structure =
1x2 struct array with fields:

some_numbers
some_letters
some_more_numbers

 Figure 11.8
 Structure arrays can
contain many different
types of data .

11.5 Structure Arrays 411

 You can access the information in structure arrays by using the matrix name,
fi eld name, and index numbers. The syntax is similar to what we have used for
other types of matrices. An example is

my_structure(2)
ans =

some_numbers: [2 4 6 8]
some_letters: []

some_more_numbers: []

 Notice that some_letters and some_more_numbers are empty matrices,
because we didn’t add information to those fi elds.

 To access just a single fi eld, add the fi eld name:

my_structure(2).some_numbers
ans =

2 4 6 8

 Finally, if you want to know the content of a particular element in a fi eld, you
must specify the element index number after the fi eld name:

my_structure(2).some_numbers(2)
ans =

4

 The disp function displays the contents of structure arrays. For example,

disp(my_structure(2).some_numbers(2))

 returns

4

 You can also use the array editor to access the content of a structure array (and
any other array, for that matter). When you double-click the structure array in the
workspace window, the array editor opens (Figure 11.9). If you double-click one of
the elements of the structure in the array editor, the editor expands to show you the
contents of that element (Figure 11.10).

 Figure 11.9
 The array editor reports the
size of an array in order to
save space.

412 Chapter 11 Other Kinds of Arrays

 Structure arrays are of limited use in engineering calculations , but they are
widely used in large computer programs to pass information between functions. The
GUIDE program in MATLAB ® , which is used to design graphical user interfaces,
uses this approach. They are also extremely useful in applications such as database

management . Since large amounts of engineering data are often stored in a data-
base, the structure array is extremely useful for data analysis. The examples that
 follow will give you a better idea of how to manipulate and use structure arrays.

 Figure 11.10
 Double-clicking on a
component in the array
editor allows us to see the
data stored in the array.

 EXAMPLE 11.2
 STORING PLANETARY DATA WITH STRUCTURE ARRAYS
 Structure arrays can be used much like a database. You can store numeric informa-
tion, as well as character data or any of the other data types supported by MATLAB ® .
Create a structure array to store information about the planets. Prompt the user to
enter the data.

 1. State the Problem
 Create a structure array to store planetary data and input the information from

 Table 11.3 .

 Table 11.3 Planetary Data

 Planet Name
 Mass, in Earth

Multiples
 Length of Year, in

Earth Years
 Mean Orbital
Velocity, km/s

 Mercury 0.055 0.24 47.89

 Venus 0.815 0.62 35.03

 Earth 1 1 29.79

 Mars 0.107 1.88 24.13

 Jupiter 318 11.86 13.06

 Saturn 95 29.46 9.64

 Uranus 15 84.01 6.81

 Neptune 17 164.8 5.43

 Pluto 0.002 247.7 4.74

11.5 Structure Arrays 413

2. Describe the Input and Output

 Input

Output A structure array storing the data

3. Develop a Hand Example
 Developing a hand example for this problem would be diffi cult. Instead, a fl ow-

chart would be useful.
4. Develop a MATLAB ® Solution

%% Example 11.2
clear,clc
k = 1;
response = menu('Would you like to enter planetary
data?','yes','no');
while response==1

disp('Remember to enter strings in single quotes')
planetary(k).name = input('Enter a planet name in single

quotes: ');
planetary(k).mass = input('Enter the mass in multiples of

earth''s mass: ');
planetary(k).year = input('Enter the length of the

planetary year in Earth years: ');
planetary(k).velocity = input('Enter the mean orbital

velocity in km/sec: ');
%Review the input
planetary(k)
increment = menu('Was the data correct?','Yes','No');
switch increment

case 1
increment = 1;

case 2
increment = 0;

end
k = k+increment;
response = menu('Would you like to enter more planetary

data?','yes','no');
end
%%
planetary %output the information stored in planetary

 Here’s a sample interaction in the command window when we run the program
and start to enter data:

Remember to enter strings in single quotes
Enter a planet name in single quotes: 'Mercury'
Enter the planetary mass in multiples of Earth's mass: 0.055
Enter the length of the planetary year in Earth years: 0.24
Enter the mean orbital velocity in km/sec: 47.89
ans =

name: 'Mercury'
mass: 0.0550
year: 0.2400
velocity: 47.8900

414 Chapter 11 Other Kinds of Arrays

5. Test the Solution
 Enter the data, and compare your array with the input table. As part of the pro-

gram, we reported the input values back to the screen so that the user could
check for accuracy. If the user responds that the data are not correct, the infor-
mation is overwritten the next time through the loop. We also used menus instead
of free responses to some questions, so that there would be no ambiguity regard-
ing the answers. Notice that the structure array we built, called planetary , is
listed in the workspace window. If you double-click on planetary , the array
editor pops up and allows you to view any of the data in the array (Figure 11.11).
You can also update any of the values in the array editor.

 Figure 11.11
 The array editor allows
you to view (and
change) data in the
structure array.

 We’ll be using this structure array in Example 11.3 to perform some calcula-
tions. You’ll need to save your results as

save planetary_information planetary

 This command sequence saves the structure array planetary into the fi le
 planetary_information.mat.

 EXAMPLE 11.3
 EXTRACTING AND USING DATA FROM STRUCTURE ARRAYS
 Structure arrays have some advantages for storing information. First, they use fi eld
names to identify array components. Second, information can be added to the array
easily and is always associated with a group. Finally, it’s hard to accidentally scram-
ble information in structure arrays. To demonstrate these advantages, use the data
you stored in the planetary_information fi le to complete the following tasks:

 • Identify the fi eld names in the array, and list them.
 • Create a list of the planet names.
 • Create a table representing the data in the structure array. Include the fi eld

names as column headings in the table.
 • Calculate and report the average of the mean orbital velocity values.

11.5 Structure Arrays 415

 • Find the biggest planet and report its size and name.
 • Find and report the orbital period of Jupiter.

1. State the Problem
 Create a program to perform the tasks listed.
2. Describe the Input and Output

Input planetary_information.mat , stored in the current folder

 Output Create a report in the command window

 3. Develop a Hand Example
 You can complete most of the designated tasks by accessing the information in

the planetary structural array through the array editor
 4. Develop a MATLAB ® Solution

%Example 11.3

clear,clc

load planetary_information

%Identify the field names in the structure array

planetary %recalls the contents of the structure

 %array named planetary

pause(2)

%Create a list of planets in the file

disp('These names are OK, but they''re not in an array');

planetary.name

pause(4)

fprintf('\n') %Creates an empty line in the output

%Using square brackets puts the results into an array

disp('This array isn''t too great');

disp('Everything runs together');

names = [planetary.name]

pause(4)

fprintf('\n') %Creates an empty line in the output

%Using char creates a padded list, which is more useful

disp('By using a padded character array we get what we

 want');

names = [char(planetary.name)]

pause(4)

%Create a table by first creating character arrays of all

%the data

disp('These arrays are character arrays too');

mass = num2str([planetary.mass]')

fprintf('\n') %Creates an empty line in the output

pause(4)

year = num2str([planetary.year]')

fprintf('\n') %Creates an empty line in the output

pause(2)

velocity = num2str([planetary(:).velocity]')

fprintf('\n') %Creates an empty line in the output

416 Chapter 11 Other Kinds of Arrays

pause(4)

fprintf('\n') %Creates an empty line in the output

%Create an array of spaces to separate the data

spaces = [' ']';

%Use disp to display the field names

disp('The overall result is a big character array');

fprintf('\n') %Creates an empty line in the output

disp('Planet mass year velocity');

table = [names,spaces,mass,spaces,year,spaces,velocity];

disp(table);

fprintf('\n') %Creates an empty line in the output

pause(2)

%Find the average planet mean orbital velocity

MOV = mean([planetary.velocity]);

fprintf('The mean orbital velocity is %8.2f km/sec\n',MOV)

pause(1)

%Find the planet with the maximum mass

max_mass = max([planetary.mass]);

fprintf('The maximum mass is %8.2f times the earth''s

 \n',max_mass)

pause(1)

%Jupiter is planet #5

%Find the orbital period of Jupiter

planet_name = planetary(5).name;

planet_year = planetary(5).year;

fprintf(' %s has a year %6.2f times the earth''s

 \n',planet_name,planet_year)

 Most of this program consists of formatting commands. Before you try to analyze
the code, run the program in MATLAB ® and observe the results.

 5. Test the Solution
 Compare the information extracted from the array with that available from the array

editor. Using the array editor becomes unwieldy as the data stored in planetary
increases. It is easy to add new fi elds and new information as they become avail-
able. For example, we could add the number of moons to the existing structure:

planetary(1).moons = 0;

planetary(2).moons = 0;

planetary(3).moons = 1;

planetary(4).moons = 2;

planetary(5).moons = 60;

planetary(6).moons = 31;

planetary(7).moons = 27;

planetary(8).moons = 13;

planetary(9).moons = 1;

 This code adds a new fi eld called moons to the structure. We can report the
number of moons for each planet to the command window with the command

disp([planetary.moons]);

 Summary 417

 MATLAB ® ’s primary data structure is the array. Within the array, MATLAB® allows the
user to store a number of different types of data. The default numeric data type is the
double-precision fl oating-point number, usually referred to as a double. MATLAB®
also supports single-precision fl oating-point numbers, as well as eight different types of
integers. Character information, too, is stored in arrays. Characters can be grouped
together into a string, although the string represents a one-dimensional array in which
each character is stored in its own element. The char function allows the user to
 create two-dimensional character arrays from strings of different sizes by “padding”
the array with an appropriate number of blank spaces. In addition to numeric and
character data, MATLAB ® includes a symbolic data type.

 All these kinds of data can be stored as two-dimensional arrays. Scalar and vec-
tor data are actually stored as two-dimensional arrays—they just have a single row or
column. MATLAB® also allows the user to store data in multidimensional arrays.
Each two-dimensional slice of a three-dimensional or higher array is called a page.

 In general, all data stored in a MATLAB ® array must be of the same type. If
character and numeric data are mixed, the numeric data are changed to character
data on the basis of their ASCII-equivalent decimal values. When calculations are
attempted on combined character and numeric data, the character data are con-
verted to their ASCII equivalents.

 MATLAB® offers two array types that can store multiple types of data at the same
time: the cell array and the structure array. Cell arrays use curly brackets, {and} as
array constructors. Structure arrays depend on named fi elds. Both cell and structure
arrays are particularly useful in database applications.

 MATLAB® SUMMARY

 The following MATLAB ® summary lists and briefl y describes all the special charac-
ters, commands, and functions that are defi ned in this chapter:

Special Characters

 { } cell-array constructor

 ' ' string data (character information)

 character array

 numeric array

 symbolic array

 logical array

 sparse array

 cell array

 structure array

 Commands and Functions

 celldisp displays the contents of a cell array

 char creates a padded character array

(Continued)

 SUMMARY

418 Chapter 11 Other Kinds of Arrays

 Commands and Functions

 cumsum fi nds the cumulative sum of the members of an array

 double changes an array to a double-precision array

 eye creates an identity matrix

 format rat converts the display format to rational numbers (fractions)

 int16 16-bit signed integer

 int32 32-bit signed integer

 int64 64-bit signed integer

 int8 8-bit signed integer

 intmax determines the largest integer that can be stored in MATLAB ®

 intmin determines the smallest integer that can be stored in MATLAB ®

 num2str converts a numeric array to a character array

 realmax determines the largest real number that can be expressed in MATLAB ®

 realmin determines the smallest real number that can be expressed in MATLAB ®

 single changes an array to a single-precision array

 sparse converts a full-format matrix to a sparse-format matrix

 squeeze removes singleton dimensions from multidimensional arrays

 str2num converts a character array to a numeric array

 uint16 16-bit unsigned integer

 uint32 32-bit unsigned integer

 uint64 64-bit unsigned integer

 uint8 8-bit unsigned integer

 ASCII
 base 2
 cell
 character
 class
 complex numbers
 data type

 double precision
 drawers
 EBCDIC
 fl oating-point numbers
 integer
 logical data
 pages

 rational numbers
 single precision
 string
 structure
 symbolic data

 KEY TERMS

 Numeric Data Types

 11.1 Calculate the sum (not the partial sums) of the fi rst 10 million terms in the
harmonic series

1
1

 +
1
2

 +
1
3

 +
1
4

 +
1
5
 +

1
6
 � c+

1
n

� c

 using both double-precision and single-precision numbers. Compare the
results. Explain why they are different.

 PROBLEMS

Problems 419

 11.2 Defi ne an array of the fi rst 10 integers, using the int8 type designation. Use
these integers to calculate the fi rst 10 terms in the harmonic series. Explain
your results.

 11.3 Explain why it is better to allow MATLAB ® to default to double-precision
fl oating-point number representations for most engineering calculations
than to specify single and integer types.

 11.4 Complex numbers are automatically created in MATLAB ® as a result of cal-
culations. They can also be entered directly, as the addition of a real and an
imaginary number, and can be stored as any of the numeric data types. Defi ne
two variables: a single- and a double-precision complex number, as

 doublea � 5 � 3i
 singlea � single(5 � 3i)

 Raise each of these numbers to the 100th power. Explain the difference in
your answers.

 Character Data

 11.5 Use an Internet search engine to fi nd a list showing the binary equivalents
of characters in both ASCII and EBCDIC. Briefl y outline the differences in
the two coding schemes.

 11.6 Sometimes it is confusing to realize that numbers can be represented as both
numeric data and character data. Use MATLAB ® to express the number 85
as a character array.

 (a) How many elements are in this array?
 (b) What is the numeric equivalent of the character 8?
 (c) What is the numeric equivalent of the character 5?

 Multidimensional Arrays

 11.7 Create each of the following arrays:

 A � c1 2
3 4

d , B � c10 20
30 40

d , C � c3 16
9 12

d
 (a) Combine them into one large 2 � 2 � 3 multidimensional array called

 ABC .
 (b) Extract each column 1 into a 2 � 3 array called Column_A1B1C1 .
 (c) Extract each row 2 into a 3 � 2 array called Row_A2B2C2 .
 (d) Extract the value in row 1, column 2, page 3.

 11.8 A college professor would like to compare how students perform on a test
she gives every year. Each year, she stores the data in a two-dimensional
array. The fi rst and second year’s data are as follows:

 Year 1 Question 1 Question 2 Question 3 Question 4

 Student 1 3 6 4 10

 Student 2 5 8 6 10

 Student 3 4 9 5 10

 Student 4 6 4 7 9

 Student 5 3 5 8 10

420 Chapter 11 Other Kinds of Arrays

 Year 2 Question 1 Question 2 Question 3 Question 4

 Student 1 2 7 3 10

 Student 2 3 7 5 10

 Student 3 4 5 5 10

 Student 4 3 3 8 10

 Student 5 3 5 2 10

 (a) Create a two-dimensional array called year1 for the fi rst year’s data,
and another called year2 for the second year’s data.

 (b) Combine the two arrays into a three-dimensional array with two pages,
called testdata .

 (c) Use your three-dimensional array to perform the following calculations:

 • Calculate the average score for each question, for each year, and store
the results in a two-dimensional array. (Your answer should be either
a 2 � 4 array or a 4 � 2 array.)

 • Calculate the average score for each question, using all the data.
 • Extract the data for Question 3 for each year, and create an array with

the following format:

 Question 3, Year 1 Question 3, Year 2

 Student 1

 Student 2

 and so on

 11.9 If the teacher described in the preceding problem wants to include the
results from a second and third test in the array, she would have to create a
four-dimensional array. (The fourth dimension is sometimes called a drawer .)
All the data are included in a fi le called test_results.mat consisting
of six two-dimensional arrays similar to those described in Problem 11.8.
The array names are

test1year1
test2year1
test3year1
test1year2
test2year2
test3year2

 Organize these data into a four-dimensional array that looks like the following:

 dimension 1 (row) student

 dimension 2 (column) question

 dimension 3 (page) year

 dimension 4 (drawer) test

 (a) Extract the score for Student 1, on Question 2, from the fi rst year, on Test 3.
 (b) Create a one-dimensional array representing the scores from the fi rst

student, on Question 1, on the second test, for all the years.

Problems 421

 (c) Create a one-dimensional array representing the scores from the sec-
ond student, on all the questions, on the fi rst test, for Year 2.

 (d) Create a two-dimensional array representing the scores from all the stu-
dents, on Question 3, from the second test, for all the years.

 Character Arrays

 11.10 (a) Create a padded character array with fi ve different names.
 (b) Create a two-dimensional array called birthdays to represent the

birthday of each person. For example, your array might look something
like this:

birthdays=
6 11 1983
3 11 1985
6 29 1986
12 12 1984
12 11 1987

 (c) Use the num2str function to convert birthdays to a character array.
 (d) Use the disp function to display a table of names and birthdays.

 11.11 Imagine that you have the following character array, which represents the
dimensions of some shipping boxes:

box_dimensions =

box1 1 3 5
box2 2 4 6
box3 6 7 3
box4 1 4 3

 You need to fi nd the volumes of the boxes to use in a calculation to deter-
mine how many packing “peanuts” to order for your shipping department.
Since the array is a 4 � 12 character array, the character representation of
the numeric information is stored in columns 6 to 12. Use the str2num func-
tion to convert the information into a numeric array, and use the data to cal-
culate the volume of each box. (You’ll need to enter the box_dimensions
array as string data, using the char function.)

 11.12 Consider the fi le called thermocouple.dat as shown in the table on the
next page:

 (a) Create a program that:

 • Loads thermocouple.dat into MATLAB ® .
 • Determines the size (number of rows and columns) of the fi le.
 • Extracts each set of thermocouple data and stores it into a separate

fi le. Name the various fi les thermocouple1.mat, thermocou-
ple2. mat , etc.

 (b) Your program should be able to accept a two-dimensional fi le of any
size. Do not assume that there are only three columns; let the program
determine the array size and assign appropriate fi le names.

 Thermocouple 1 Thermocouple 2 Thermocouple 3

 84.3 90.0 86.7

 86.4 89.5 87.6

422 Chapter 11 Other Kinds of Arrays

 Thermocouple 1 Thermocouple 2 Thermocouple 3

 85.2 88.6 88.3

 87.1 88.9 85.3

 83.5 88.9 80.3

 84.8 90.4 82.4

 85.0 89.3 83.4

 85.3 89.5 85.4

 85.3 88.9 86.3

 85.2 89.1 85.3

 82.3 89.5 89.0

 84.7 89.4 87.3

 83.6 89.8 87.2

 11.13 Create a program that encodes text entered by the user and saves it into a
fi le. Your code should add 10 to the decimal equivalent value of each char-
acter entered.

 11.14 Create a program to decode a message stored in a data fi le by subtracting 10
from the decimal equivalent value of each character.

 Cell Arrays

 11.15 Create a cell array called sample_cell to store the following individual
arrays:

 A � £ 1 3 5
3 9 2
11 8 2

§ (a double-precision fl oating-point array)

 B � c fred ralph
ken susan

d (a padded character array)

 C � ≥

4
6
3
1

¥ (an int8 integer array)

 (a) Extract array A from sample_cell .
 (b) Extract the information in array C , row 3, from sample_cell .
 (c) Extract the name fred from sample_cell . Remember that the name

 fred is a 1 � 4 array, not a single entity.

 11.16 Cell arrays can be used to store character information without padding the
character arrays. Create a separate character array for each of the strings

 aluminum
 copper
 iron
 molybdenum
 cobalt
 and store them in a cell array.

Problems 423

 11.17 Consider the following information about metals:

 Metal

Symbol

 Atomic
Number

 Atomic
 Weight

 Density,
 g/cm3

 Crystal
Structure

 Aluminum Al 13 26.98 2.71 FCC

 Copper Cu 29 63.55 8.94 FCC

 Iron Fe 26 55.85 7.87 BCC

 Molybdenum Mo 42 95.94 10.22 BCC

 Cobalt Co 27 58.93 8.9 HCP

 Vanadium V 23 50.94 6.0 BCC

 (a) Create the following arrays:

 • Store the name of each metal into an individual character array, and
store all these character arrays into a cell array.

 • Store the symbol for all these metals into a single padded character
 array.

 • Store the atomic number into an int8 integer array.
 • Store the atomic weight into a double-precision numeric array.
 • Store the density into a single-precision numeric array.
 • Store the structure into a single padded character array.

 (b) Group the arrays you created in part (a) into a single cell array.
 (c) Extract the following information from your cell array:

 • Find the name, atomic weight, and structure of the fourth element in
the list.

 • Find the names of all the elements stored in the array.
 • Find the average atomic weight of the elements in the table. (Remem-

ber, you need to extract the information to use in your calculation
from the cell array.)

 Structure Arrays

 11.18 Store the information presented in Problem 11.17 in a structure array. Use
your structure array to determine the element with the maximum density.

 11.19 Create a program that allows the user to enter additional information into
the structure array you created in Problem 11.18. Use your program to add
the following data to the array:

 Metal

Symbol

 Atomic
Number

 Atomic
 Weight

 Density,
 g/cm3

 Crystal
 Structure

 Lithium Li 3 6.94 0.534 BCC

 Germanium Ge 32 72.59 5.32 Diamond cubic

 Gold Au 79 196.97 19.32 FCC

 11.20 Use the structure array you created in Problem 11.19 to fi nd the element
with the maximum atomic weight.

424 Chapter 12 Symbolic Mathematics

12

 INTRODUCTION

 MATLAB ® has a number of different data types, including both double-precision and
single-precision numeric data, character data, logical data, and symbolic data, all of
which are stored in a variety of different arrays. In this chapter, we will explore how
symbolic arrays allow MATLAB ® users to manipulate and use symbolic data.

 MATLAB ® ’s symbolic capability is based on the MuPad software, originally pro-
duced by SciFace Software (based on research done at the University of Paderborn,
Germany). SciFace was purchased by the Mathworks (publishers of MATLAB ®) in
2008. The MuPad engine is part of the symbolic toolbox, which is included with the
Student Edition of MATLAB ® . It is available for purchase separately for the Professional
Edition of MATLAB ® . There are two ways to use MuPad inside the MATLAB ® software.
You can access it directly and create a MuPad notebook by typing

mupad

 at the command prompt. The MuPad notebook interface opens as a MATLAB ® fi gure
window, as shown in Figure 12.1 . If you are familiar with other symbolic algebra pro-
grams such as MAPLE the syntax will probably look familiar.

 After reading this chapter, you
should be able to:
 • Create and manipulate

symbolic variables
 • Factor and simplify mathe-

matical expressions

 • Solve symbolic expressions
 • Solve systems of equations
 • Determine the symbolic

derivative of an expression
 • Integrate an expression

 Objectives

 Symbolic
Mathematics

 C H A P T E R

12.1 Symbolic Algebra 425

 Mupad can also be used to create symbolic objects inside MATLAB ® itself. This
offers the advantage of a familiar interface, and the ability to interact with
MATLAB ® ’s other functions. Earlier versions of MATLAB ® (before 2007b) used the
MAPLE symbolic algebra program as the engine for the symbolic math toolbox.
Most of the symbolic manipulations performed in this chapter should work with
these earlier versions of MATLAB ® ; however, some of the results will be represented
in the command window in a different order. If your version of MATLAB ® is 2007b
or later, the Mupad interface should be functional; however, problems can occur if
Maple is also installed on your computer. The standard installation of Maple adds a
Maple toolbox to MATLAB ® , which supersedes the Symbolic Toolbox. You can
determine if this has occurred on your system, by checking the help feature, which
lists the installed toolboxes. If the Maple toolbox is installed, you won’t be able to
use the MuPad interface.

 MATLAB ® ’s symbolic toolbox allows us to manipulate symbolic expressions to
simplify them, to solve them symbolically, and to evaluate them numerically. It also
allows us to take derivatives, to integrate, and to perform linear algebraic manipula-
tions. More advanced features include LaPlace transforms, Fourier transforms, and
variable-precision arithmetic.

 12.1 SYMBOLIC ALGEBRA

 Symbolic mathematics is used regularly in math, engineering, and science classes. It
is often preferable to manipulate equations symbolically before you substitute val-
ues for variables. For example, consider the equation

 y �
21x � 322

x2 � 6x � 9

 Mupad can also be used to create symbolic objects inside MATLAB ® itself. This
offers the advantage of a familiar interface, and the ability to interact with
MATLAB ® ’s other functions. Earlier versions of MATLAB ® (before 2007b) used the
MAPLE symbolic algebra program as the engine for the symbolic math toolbox.
Most of the symbolic manipulations performed in this chapter should work with
these earlier versions of MATLAB ® ; however, some of the results will be represented
in the command window in a different order. If your version of MATLAB ® is 2007b
or later, the Mupad interface should be functional; however, problems can occur if
Maple is also installed on your computer. The standard installation of Maple adds a
Maple toolbox to MATLAB ® , which supersedes the Symbolic Toolbox. You can
determine if this has occurred on your system, by checking the help feature, which
lists the installed toolboxes. If the Maple toolbox is installed, you won’t be able to
use the MuPad interface.

 MATLAB ® ’s symbolic toolbox allows us to manipulate symbolic expressions to
simplify them, to solve them symbolically, and to evaluate them numerically. It also
allows us to take derivatives, to integrate, and to perform linear algebraic manipula-
tions. More advanced features include LaPlace transforms, Fourier transforms, and
variable-precision arithmetic.

 12.1 SYMBOLIC ALGEBRA

 Symbolic mathematics is used regularly in math, engineering, and science classes. It
is often preferable to manipulate equations symbolically before you substitute val-
ues for variables. For example, consider the equation

 y �
21x � 322

x2 � 6x � 9

 Figure 12.1
 The MuPad interface in
MATLAB ® .

 KEY IDEA
 The symbolic toolbox is an
optional component of the
professional version, but is
standard with the student
version of MATLAB.

426 Chapter 12 Symbolic Mathematics

 At fi rst glance, y appears to be a fairly complicated function of x . However, if
you expand the quantity 1x � 322

 , it becomes apparent that you can simplify the
equation to

 y �
2*1x � 322

x2 � 6x � 9
�

2 *1x2 � 6x � 921x2 � 6x � 92 � 2

 You may or may not want to perform this simplifi cation, because, in doing so,
you lose some information. For example, for values of x equal to -3, y is undefi ned,
since x � 3 becomes 0, as does x2 � 6x � 9. Thus,

 y �
21-3 � 322

9 � 18 � 9
� 2

0
0

� undefined

 MATLAB ® ’s symbolic algebra capabilities allow you to perform this simplifi ca-
tion or to manipulate the numerator and denominator separately.

 Relationships are not always constituted in forms that are so easy to solve. For
instance, consider the equation

 k � k0 e�Q > RT

 If we know the values of k0, Q , R , and T , it’s easy to solve for k . It’s not so easy if
we want to fi nd T and we know the values of k , k0, R , and Q . We have to manipulate
the relationship to get T on the left-hand side of the equation:

 ln(k) � ln(k0)-
Q

RT

 lna k
k0
b � -

Q

RT

 lna k0

k
b �

Q

RT

 T �
Q

R ln1k0>k2

 Although solving for T was awkward manually, it’s easy with MATLAB ® ’s sym-
bolic capabilities.

 12.1.1 Creating Symbolic Variables

 Before we can solve any equations, we need to create some symbolic variables.
Simple symbolic variables can be created in two ways. For example, to create the
symbolic variable x , type either

x = sym('x')

 or

syms x

 Both techniques set the character 'x' equal to the symbolic variable x . More
complicated variables can be created by using existing symbolic variables, as in the
expression

y = 2*(x + 3)^2/(x^2 + 6*x + 9)

 Notice in the workspace window (Figure 12.2) that both x and y are listed as
symbolic variables and that the array size for each is 1 � 1.

 KEY IDEA
 MATLAB ® makes it easy
to solve equations
symbolically

 KEY IDEA
 Expressions are different
from equations

12.1 Symbolic Algebra 427

 The syms command is particularly convenient, because it can be used to create
multiple symbolic variables at the same time, as with the command

syms Q R T k0

 These variables could be combined mathematically to create another symbolic
variable, k :

k = k0*exp(-Q/(R*T))

 Notice that in both examples we used the standard algebraic operators, not the
array operators, such as .* or .^ . This makes sense when we observe that array
 operators specify that corresponding elements in arrays are used in the associated
calculations—a situation that does not apply here.

 The sym function can also be used to create either an entire expression or an
entire equation. For example ,

E = sym('m*c^2')

 creates a symbolic variable named E . Notice that m and c are not listed in the work-
space window (Figure 12.3); they have not been specifi cally defi ned as symbolic
variables. Instead, the input to sym was a character string, identifi ed by the single
quotes inside the function.

 Figure 12.2
 Symbolic variables are
identifi ed in the workspace
window. They require a
variable amount of storage.

 EXPRESSION
 A set of mathematical
operations

 EQUATION
 An expression set equal to
a value or another
expression

 Figure 12.3
 Unless a variable is
explicitly defi ned, it is not
listed in the workspace
window.

428 Chapter 12 Symbolic Mathematics

 In this example, we set the expression m * c^2 equal to the variable E . We can
also create an entire equation and give it a name. For example, we can defi ne the
ideal gas law

ideal_gas_law = sym('P*V = n*R*Temp')

 At this point, if you’ve been typing in the examples as you read along,
your workspace window should look like Figure 12.4 . Notice that only ideal_
gas_law is listed as a symbolic variable, since P , V , n , R , and Temp have not
been explicitly defi ned, but were part of the character string input to the sym
function.

 KEY IDEA
 The symbolic toolbox uses
standard algebraic
operators

 Figure 12.4
 The variable ideal_gas_
law is an equation, not an
expression.

 HINT
 One ideosyncracy of the implementation of MuPad inside MATLAB ® is that a
number of commonly used variables are reserved. They can be overwritten,
however, if you try to use them inside expressions or equations you may run
into problems. Try to avoid these names:

D, E, I, O, beta, zeta, theta, psi, gamma, Ci, Si, Ei

 HINT
 Notice that when you use symbolic variables, MATLAB ® does not indent the
result, unlike the format used for numeric results. This can help you keep
track of variable types without referring to the workspace window.

12.1 Symbolic Algebra 429

 PRACTICE EXERCISES 12.1

 1. Create the following symbolic variables, using either the sym or syms
command:

x, a, b, c, d

 2. Verify that the variables you created in Exercise 1 are listed in the
workspace window as symbolic variables. Use them to create the
following symbolic expressions :

ex1 = x^2-1
ex2 = (x+1)^2
ex3 = a*x^2-1
ex4 = a*x^2 + b*x + c
ex5 = a*x^3 + b*x^2 + c*x + d
ex6 = sin(x)

 3. Create the following symbolic expressions , using the sym function:

EX1 = sym('X^2 - 1 ')
EX2 = sym(' (X + 1)^2 ')
EX3 = sym('A*X ^2 - 1 ')
EX4 = sym('A*X ^2 + B*X + C ')
EX5 = sym('A*X ^3 + B*X ^2 + C*X + F ')
EX6 = sym('sin(X) ')

 4. Create the following symbolic equations , using the sym function:

eq1 = sym(' x^2=1 ')
eq2 = sym(' (x+1)^2=0 ')
eq3 = sym(' a*x^2=1 ')
eq4 = sym('a*x^2 + b*x + c=0 ')
eq5 = sym('a*x^3 + b*x^2 + c*x + d=0 ')
eq6 = sym('sin(x)=0 ')

 5. Create the following symbolic equations , using the sym function:

EQ1 = sym('X^2 = 1 ')
EQ2 = sym('(X +1)^2=0 ')
EQ3 = sym('A*X ^2 =1 ')
EQ4 = sym('A*X ^2 + B*X + C = 0 ')
EQ5 = sym('A*X ^3 + B*X ^2 + C*X + F = 0 ')
EQ6 = sym(' sin(X) = 0 ')

 Notice that only the explicitly defi ned variables, expressions, and equa-
tions are listed in the workspace window. Also notice that instead of D in
the places where it should logically occur, we’ve used F. The reason is that
D (and E for that matter) is a reserved name, and can cause problems
if used in expressions or equations. Save the variables, expressions, and
equations you created in this practice to use in later practice exercises in
the chapter.

430 Chapter 12 Symbolic Mathematics

 12.1.2 Manipulating Symbolic Expressions and Symbolic Equations

 First, we need to remind ourselves how expressions and equations differ. Equations
are set equal to something; expressions are not. The variable ideal_gas_law has
been set equal to an equation. If you type in

ideal_gas_law

 MATLAB ® will respond

ideal_gas_law =
P*V = n*R*Temp

 However, if you type in

E

 MATLAB ® responds

E=
m*c^2

 or if you type in

y

 MATLAB ® responds

y =
2*(x+3)^2/(x^2+6*x+9)

 The variables E and y are expressions , but the variable ideal_gas_law is an equation .
Most of the time you will be working with symbolic expressions .

 MATLAB ® has a number of functions designed to manipulate symbolic variables,
including functions to separate an expression into its numerator and denominator, to
expand or factor expressions, and to simplify expressions in a number of ways.

 Extracting Numerators and Denominators
 The numden function extracts the numerator and denominator from an expres-
sion. For example, if you’ve defi ned y as

y = 2*(x+3)^2/(x^2+6*x+9)

 then you can extract the numerator and denominator with

[num,den] = numden(y)

 MATLAB ® creates two new variables, num and den (of course, you could name
them whatever you please):

num =
2*(x+3)^2
den =
x^2+6*x+9

 We can recombine these expressions or any symbolic expressions by using
standard algebraic operators:

num*den
ans =
2*(x+3)^2*(x^2+6*x+9)

12.1 Symbolic Algebra 431

num/den
ans =
2*(x+3)^2/(x^2+6*x+9)
num+den
ans =
2*(x+3)^2+x^2+6*x+9

 Expanding Expressions, Factoring Expressions, and Collecting Terms
 We can use the expressions we have defi ned to demonstrate the use of the expand ,
 factor , and collect functions. Thus,

expand(num)

 returns

ans =
2*x^2+12*x+18

 and

factor(den)

 returns

ans =
(x+3)^2

 The collect function collects like terms and is similar to the expand function:

collect(num)
ans =
2*x^2 + 12*x + 18

 This works regardless of whether each individual variable in an expression has
or has not been defi ned as a symbolic variable. Defi ne a new variable z :

z = sym('3*a-(a+3)*(a-3)^2')

 In this case, both expand and factor give the same result:

factor(z)
ans =
-a^3 + 3*a^2 + 12*a – 27
expand(z)
ans =
-a^3 + 3*a^2 + 12*a – 27

 The result obtained by using collect is also the same:

collect(z)
ans =
-27-a^3+3*a^2+12*a

 You can use both factor and expand with equations as well as with expressions.
The collect function requires an expression. With equations, each side of the equa-
tion is treated as a separate expression. To illustrate, we can defi ne an equation w :

w = sym('x^3-1 = (x-3)*(x+3)')
expand(w)
ans =
x^3-1 = x^2-9

432 Chapter 12 Symbolic Mathematics

factor(w)
ans =
(x-1)*(x^2+x+1) = (x-3)*(x+3)
collect(w)
??? Error using ==> mupadmex

 Note that an error was generated when we tried to use the collect function with
 w , because w is an equation, not an expression.

 Simplifi cation Functions
 We can think of the expand , factor , and collect functions as ways to simplify
an expression or equation. However, what constitutes a “simple” equation is not
always obvious. The simplify function simplifi es each part of an expression or
equation, using MuPad’s built-in simplifi cation rules. For example, assume again
that z has been defi ned as

z = sym('3*a-(a+3)*(a-3)^2')

 Then, the command

simplify(z)

 returns

ans =
3*a-(a-3)^2*(a+3)

 If the equation w has been defi ned as

w = sym('x^3-1 = (x-3)*(x+3)')

 then

simplify(w)

 returns

ans =
x^3 + 8 = x^2

 Notice again that this works regardless of whether each individual variable in
an expression has or has not been defi ned as a symbolic variable: The expression z
contains the variable a , which has not been explicitly defi ned and is not listed in the
workspace window.

 The simple function is slightly different. It tries a number of different simpli-
fi cation techniques and reports the result that is shortest. All the attempts are
reported to the screen. For example,

simple(w)

 gives the following results:

simplify:
x^3-1 = x^2 - 9
radsimp:
x^3-1 = (x-3)*(x+3)
simplify(100):
x in RootOf(X90^3 - X90^2 + 8, X90)
combine(sincos):
x^3-1 = (x-3)*(x+3)

 KEY IDEA
 MATLAB ® defi nes the
simplest representation of
an expression as the
shortest version of the
expression

12.1 Symbolic Algebra 433

combine(sinhcosh):
x^3-1 = (x-3)*(x+3)
combine(ln):
x^3-1 = (x-3)*(x+3)
factor:
x^3-1 = x^2-9
expand:
x^3-1 = x^2-9
combine:
x^3-1 = (x-3)*(x+3)
rewrite(exp):
x^3-1 = (x-3)*(x+3)
rewrite(sincos):
x^3-1 = (x-3)*(x+3)
rewrite(sinhcosh):
x^3-1 = (x-3)*(x+3)
rewrite(tan):
x^3-1 = (x-3)*(x+3)
mwcos2sin:
x^3-1 = (x-3)*(x+3)
ans =
x^3-1 = x^2–9

 Notice that although a large number of results are displayed, there is only one
answer:

ans =
x^2-1 = x^2-9

 Both simple and simplify work on expressions as well as equations.
 Table 12.1 lists some of the MATLAB ® functions used to manipulate expressions

and equations.

 KEY IDEA
 Many, but not all, symbolic
functions work for both
expressions and equations

 HINT
 A shortcut to create a symbolic polynomial is the poly2sym function. This
function requires a vector as input and creates a polynomial, using the vector
for the coeffi cients of each term of the polynomial.

a = [1,3,2]
a =

1 3 2
b = poly2sym(a)
b =
x^2+3*x+2

 Similarly, the sym2poly function converts a polynomial into a vector of coef-
fi cient values:

c = sym2poly(b)
c =

1 3 2

434 Chapter 12 Symbolic Mathematics

 Table 12.1 Functions Used to Manipulate Expressions and Equations

 expand(S) Multiplies out all the portions
of the expression or equation

 syms x
expand((x-5)*(x+5))
ans =
x^2-25

 factor(S) Factors the expression
or equation

 syms x
factor(x^3-1)
ans =
(x-1)*(x^2+x+1)

 collect(S) Collects like terms S=2*(x+3)^2+x^2+6*x+9
collect(S)
S =
27+3*x^2+18*x

 simplify(S) Simplifi es in accordance with
MuPad’s simplifi cation rules

 syms a
simplify(exp(log(a)))
 ans =
a

 simple(S) Simplifi es to the shortest
representation of the expression
or equation

 syms x
simple(sin(x)^2+
 cos(x)^2)
ans =
1

 numden(S) Finds the numerator of an
expression; this function is not
valid for equations

 syms x
numden((x-5)/(x+5))
 ans =
x-5

 [num,den]=numden(S) Finds both the numerator and
the denominator of an expression;
this function is not valid for
equations

 syms x
[num,den] = numden((x-5)/
(x+5))
 num =
x-5
den =
 x+5

 PRACTICE EXERCISES 12.2

 Use the variables defi ned in Practice Exercises 12.1 in these exercises.

 1. Multiply ex1 by ex2 , and name the result y1 .
 2. Divide ex1 by ex2 , and name the result y2 .
 3. Use the numden function to extract the numerator and denominator

from y1 and y2 .
 4. Multiply EX1 by EX2 , and name the result Y1 .
 5. Divide EX1 by EX2 , and name the result Y2 .
 6. Use the numden function to extract the numerator and denominator

from Y1 and Y2 .
 7. Try using the numden function on one of the equations you’ve defi ned.

Does it work?
 8. Use the factor , expand , collect , and simplify functions on y1 ,

 y2 , Y1 , and Y2 .
 9. Use the factor , expand , collect , and simplify functions on the

expressions ex1 and ex2 and on the corresponding equations eq1
and eq2 . Explain any differences you observe.

12.2 Solving Expressions and Equations 435

 12.2 SOLVING EXPRESSIONS AND EQUATIONS

 A highly useful function in the symbolic toolbox is solve . It can be used to deter-
mine the roots of expressions, to fi nd numerical answers when there is a single vari-
able, and to solve for an unknown symbolically. The solve function can also solve
systems of equations, both linear and nonlinear. When paired with the substitution
function (subs), the solve function allows the user to fi nd analytical solutions to
a variety of problems.

 12.2.1 The Solve Function

 When used with an expression, the solve function sets the expression equal to
zero and solves for the roots. For example (assuming that x has already been
defi ned as a symbolic variable), if

E1 = x-3

 then

solve(E1)

 returns

ans =
3

 Solve can be used either with an expression name or by creating a symbolic
expression directly in the solve function. Thus,

solve('x^2-9')

 returns

ans =
-3
3

 Notice that ans is a 2 � 1 symbolic array. If x has been previously defi ned as a
symbolic variable, then single quotes are not necessary . If not, the entire expression
must be enclosed within single quotes.

 You can readily solve symbolic expressions with more than one variable. For
example, for the quadratic expression ax2 � bx � c,

solve('a*x^2+b*x +c')

 returns

ans =
-(b + (b^2-4*a*c)^(1/2))/(2*a)
-(b - (b^2-4*a*c)^(1/2))/(2*a)

 MATLAB ® preferentially solves for x . If there is no x in the expression,
MATLAB ® fi nds the variable closest to x . If you want to specify the variable to solve
for, just include it in the second fi eld. For instance, to solve the quadratic expres-
sion for a , the command

solve('a*x^2+b*x +c', 'a')

 returns

ans =
-(c+b*x)/x^2

 KEY IDEA
 MATLAB ® solves
preferentially for x

436 Chapter 12 Symbolic Mathematics

 Again, if a has been specifi cally defi ned as a symbolic variable, it is not neces-
sary to enclose it in single quotes:

syms a b c x
solve(a*x*x^2+b*x+c, b)
ans =
-(a*x^3+c)/x

 To solve an expression set equal to something besides zero, you must use one of
two approaches. If the equation is simple, you can transform it into an expression
by subtracting the right-hand side from the left-hand side. For example,

 5x2 � 6x � 3 � 10

 could be reformulated as

 5x2 � 6x � 7 � 0

solve('5*x^2+6*x-7')
ans =
-(2*11^(1/2))/5-3/5
(2*11^(1/2))/5-3/5

 If the equation is more complicated, you may prefer to defi ne a new equation,
as in

E2 = sym('5*x^2 + 6*x +3 = 10')
solve(E2)

 which returns

ans =
-(2*11^(1/2))/5-3/5
(2*11^(1/2))/5-3/5

 Notice that in both cases the results are expressed as simply as possible, using
fractions (i.e., rational numbers). In the workspace, ans is listed as a 2 � 1 symbolic
matrix. You can use the double function to convert a symbolic representation to a
double-precision fl oating-point number:

double(ans)
ans =
0.7266
-1.9266

 KEY IDEA
 Even when the result of
the solve function is a
number, it is still stored as
a symbolic variable

 HINT
 Because MATLAB ® ’s symbolic capability is based on MuPad, we need to
understand how MuPad handles calculations. MuPad recognizes two types of
numeric data: integers and fl oating point. Floating-point numbers are approx-
imations and use decimal points, whereas integers are exact and are repre-
sented without decimal points. In calculations using integers, MuPad forces
an exact answer resulting in fractions. If there are decimal points (fl oating-
point numbers) in MuPad calculations, the result will also be an approxima-
tion and will contain decimal points. MuPad defaults to 32 signifi cant fi gures,
so 32 digits are shown in the results. Consider an example using solve . If the
expression uses fl oating-point numbers, we get the following result:

12.2 Solving Expressions and Equations 437

 The solve function is particularly useful with symbolic expressions having
multiple variables:

E3 = sym('P = P0*exp(r*t)')
solve(E3,'t')
ans =
log(P/P0)/r

 If you have previously defi ned t as a symbolic variable, it does not need to be in
single quotes. (Recall that the log function is a natural log.)

 It is often useful to redefi ne a variable, such as t , in terms of the other variables:

t = solve(E3,'t')
t =
log(P/P0)/r

 PRACTICE EXERCISES 12.3

 Use the variables and expressions you defi ned in Practice Exercises 12.1 to
solve these exercises:

 1. Use the solve function to solve all four versions of expression/
equation 1: ex1 , EX1 , eq1 , and EQ1 .

 2. Use the solve function to solve all four versions of expression/
equation 2: ex2 , EX2 , eq2 , and EQ2 .

 3. Use the solve function to solve ex3 , and eq3 for both x and a .
 4. Use the solve function to solve EX3 , and EQ3 for both X and A . Recall

that neither X nor A has been explicitly defi ned as a symbolic variable.
 5. Use the solve function to solve ex4 , and eq4 for both x and a .
 6. Use the solve function to solve EX4 , and EQ4 for both X and A . Recall

that neither X nor A has been explicitly defi ned as a symbolic variable.
 7. All four versions of expression/equation 4 represent the quadratic

equation—the general form of a second-order polynomial. The
solution for x is usually memorized by students in early algebra classes.
Expression/equation 5 in these exercises is the general form of a third-
order polynomial. Use the solve function to solve these expressions/
equations, and comment on why students do not memorize the general
solution of a third-order polynomial.

 8. Use the solve function to solve ex6 , EX6 , eq6 , and EQ6 . On the basis
of your knowledge of trigonometry, comment on this solution.

solve('5.0*x^2.0+6.0*x-7.0')
ans =
.72664991614215993964597309466828
-1.9266499161421599396459730946683

 If the expression uses integers, the results are fractions:

solve('5*x^2+6*x-7')
ans =
-(2*11^(1/2))/5-3/5
(2*11^(1/2))/5-3/5

438 Chapter 12 Symbolic Mathematics

 USING SYMBOLIC MATH
 MATLAB ® ’s symbolic capability allows us to let the computer do the math.
 Consider the equation for reaction rate constants:

 k � k0 expa -Q

RT
b

 Solve this equation for Q , using MATLAB ® .

 1. State the Problem

 Find the equation for Q.

 2. Describe the Input and Output

 Input Equation for the reaction rate constant, k

 Output Equation for Q

 3. Develop a Hand Example

 k � k0 expa -Q

RT
b

k
k0

� expa -Q

RT
b

 lna k
k0
b �

-Q

RT

 Q � RT lna k0

k
b

 Notice that the minus sign caused the values inside the natural logarithm to be
inverted.

 4. Develop a MATLAB ® Solution
 First, defi ne a symbolic equation and give it a name (recall that it’s OK to use an

equation as the function input argument):

X = sym('k = k0*exp(-Q/(R*T))')
X =
k = k0/exp(Q/(R*T))

 Now, we can ask MATLAB ® to solve our equation. We need to specify that
MATLAB ® is to solve for Q , and Q needs to be in single quotes, because it has
not been separately defi ned as a symbolic variable:

solve(X,'Q')
ans =
-R*T*log(k/k0)

EXAMPLE 12.1

12.2 Solving Expressions and Equations 439

 Alternatively, we could defi ne our answer as Q :

Q = solve(X,'Q')
Q =
-R*T*log(k/k0)

5. Test the Solution
 Compare the MATLAB ® solution with the hand solution. The only difference is

that we pulled the minus sign outside the logarithm instead of inverting the
ratio of k / k 0. Notice that MATLAB ® (as well as most computer programs) rep-
resents ln as log (log10 is represented as log10).

 Now that we know this strategy works, we can solve for any of the variables.
For example, we could have

T = solve(X,'T')
T =
-Q/(R*log(k/k0))

 HINT
 The findsym command is useful in determining which variables exist in a
symbolic expression or equation. In the previous example, the variable X was
defi ned as

X = sym('k = k0*exp(-Q/(R*T))')

 The findsym function identifi es all the variables, whether explicitly defi ned
or not:

findsym(X)
ans =
k, k0, Q, R, T

 12.2.2 Solving Systems of Equations

 Not only can the solve function solve single equations or expressions for any of
the included variables, it can also solve systems of equations. Take, for example,
these three symbolic equations:

one = sym('3*x + 2*y -z = 10');
two = sym('-x + 3*y + 2*z = 5');
three = sym('x - y - z = -1');

 To solve for the three embedded variables x , y , and z , simply list all three equa-
tions in the solve function:

answer = solve(one,two,three)
answer =

x: [1x1 sym]
y: [1x1 sym]
z: [1x1 sym]

 KEY IDEA
 The solve function can
solve both linear and
nonlinear systems of
equations

440 Chapter 12 Symbolic Mathematics

 These results are puzzling. Each answer is listed as a 1 � 1 symbolic variable,
but the program doesn’t reveal the values of those variables. In addition, answer is
listed in the workspace window as a 1 � 1 structure array. To access the actual val-
ues, you’ll need to use the structure array syntax:

answer.x
ans =
-2
answer.y
ans =
5
answer.z
ans =
-6

 To force the results to be displayed without using a structure array and the asso-
ciated syntax, we must assign names to the individual variables. Thus, for our exam-
ple, we have

[x,y,z] = solve(one,two,three)
x =
-2
y =
5
z =
-6

 The results are assigned alphabetically. For instance, if the variables used in
your symbolic expressions are q , x , and p , the results will be returned in the order
 p , q , and x , independently of the names you have assigned for the results.

 Notice in our example that x , y , and z are still listed as symbolic variables, even
though the results are numbers. The result of the solve function is a symbolic
variable, either ans or a user-defi ned name. If you want to use that result in a
MATLAB ® expression requiring a double-precision fl oating-point input, you can
change the variable type with the double function. For example,

double(x)

 changes x from a symbolic variable to a corresponding numeric variable.

 HINT
 Using the solve function for multiple equations has both advantages and
disadvantages over using linear algebra techniques. In general, if a problem
can be solved by means of matrices, the matrix solution will take less com-
puter time. However, linear algebra is limited to fi rst-order equations. The
 solve function may take longer, but it can solve nonlinear problems and
problems with symbolic variables. Table 12.2 lists some uses of the solve
function.

 KEY IDEA
 The results of the symbolic
 solve function are listed
alphabetically

12.2 Solving Expressions and Equations 441

 Table 12.2 Using the Solve Function

 PRACTICE EXERCISES 12.4

 Consider the following system of linear equations to use in Exercises 12.1
through 12.5:

 5x � 6y � 3z � 10
 3x � 3y � 2z � 14
2x � 4y � 12z � 24

 solve(S) Solves an expression with a
single variable

 solve('x-5')
 ans =
5

 solve(S) Solves an equation with a
single variable

 solve('x^2-2 = 5')
ans =
 7^(1/2)
 - 7^(1/2)

 solve(S) Solves an equation whose
solutions are complex numbers

 solve('x^2 = -5')
 ans =
 i*5^(1/2)
 -i*5^(1/2)

 solve(S) Solves an equation with more
than one variable for x or the
closest variable to x

 solve('y = x^2+2')
 ans =
 (y-2)^(1/2)
-(y-2)^(1/2)

 solve(S,y) Solves an equation with more
than one variable for a
specifi ed variable

 solve('y+6*x',x)
ans =
-1/6*y

 solve(S1,S2,S3) Solves a system of equations
and presents the solutions as
a structure array

 one = sym('3*x+2*y-z =10');
two = sym('-x+3*y+2*z =5');
three = sym('x - y- z = - 1');
 solve(one,two,three)
ans =

 x: [1x1 sym]
 y: [1x1 sym]
z: [1x1 sym]

 [A,B,C]= solve
(S1,S2,S3)

 Solves a system of equations
and assigns the solutions to
user-defi ned variable names;
displays the results
alphabetically

 one = sym('3*x+2*y -z =10');
two = sym('-x+3*y+2*z =5');
three = sym('x - y- z = -1');
 [x,y,z] = solve(one,two,
three)
x =-2
y = 5
z = -6

442 Chapter 12 Symbolic Mathematics

 1. Solve this system of equations by means of the linear algebra techniques
discussed in Chapter 10 .

 2. Defi ne a symbolic equation representing each equation in the given
system of equations. Use the solve function to solve for x , y , and z .

 3. Display the results from Exercise 2 by using the structure array syntax.
 4. Display the results from Exercise 2 by specifying the output names.
 5. Add decimal points to the numbers in your equation defi nitions and

 solve them again. How do your answers change?
 6. Consider the following nonlinear system of equations:

 x2 � 5y � 3z3 � 15
4x � y2 � z � 10
x � y � z � 15

 Solve the nonlinear system with the solve function. Use the double
function on your results to simplify the answer.

 KEY IDEA
 If a variable is not listed
as a symbolic variable in
the workspace window, it
must be enclosed in single
quotes when used in the
 subs function

 12.2.3 Substitution

 Particularly for engineers or scientists, once we have a symbolic expression, we
often want to substitute values into it. Consider the quadratic equation again:

E4 = sym('a*x^2+b*x+c')

 There are a number of substitutions we might want to make. For example, we
might want to change the variable x into the variable y . To accomplish this, the
 subs function requires three inputs: the expression to be modifi ed, the variable to
be modifi ed, and the new variable to be inserted. To substitute y for all the x ’s, we
would use the command

subs(E4,'x','y')

 which returns

ans =
a*(y)^2+b*(y)+c

 The variable E4 has not been changed; rather, the new information is stored in
 ans , or it could be given a new name, such as E5 :

E5 = subs(E4,'x','y')
E5 =
a*(y)^2+b*(y)+c

 Recalling E4 , we see that it remains unchanged:

E4
E4 =
a*x^2+b*x+c

 To substitute numbers, we use the same procedure:

subs(E4,'x',3)
ans =
9*a+3*b+c

12.2 Solving Expressions and Equations 443

 As with other symbolic operations, if the variables have been previously explic-
itly defi ned as symbolic, the single quotes are not required. For example,

syms a b c x
subs(E4,x,4)

 returns

ans =
16*a+4*b+c

 We can make multiple substitutions by listing the variables inside curly brack-
ets, defi ning a cell array:

subs(E4,{a,b,c,x},{1,2,3,4})
ans =

27

 We can even substitute in numeric arrays. For example, fi rst we create a new
expression containing only x :

E6 = subs(E4,{a,b,c},{1,2,3})

 This gives us

E6 =
x^2+2*x+3

 Now we defi ne an array of numbers and substitute them into E6 :

numbers = 1:5;
subs(E6,x,numbers)
ans =

6 11 18 27 38

 PRACTICE EXERCISES 12.5

 1. Using the subs function, substitute 4 into each expression/equation
defi ned in Practice Exercises 12.1 for x (or X). Comment on your
results.

 2. Defi ne a vector v of the even numbers from 0 to 10. Substitute this vector
into all four versions of expression/equation 1: ex1 , EX1 , eq1 , and
 EQ1 . Does this work for all four versions? Comment on your results.

 3. Substitute the following values into all four versions of expression/
equation 4— ex4 , EX4 , eq4 , and EQ4 (this is a two-step process because
 x is a vector):

a � 3 A � 3
b � 4 or B � 4
c � 5 C � 5
x � 1:0.5:5 X � 1:0.5:5

 4. Check your results for Exercise 3 in the workspace window. What kind
of a variable is your result—double or symbolic?

444 Chapter 12 Symbolic Mathematics

EXAMPLE 12.2
 USING SYMBOLIC MATH TO SOLVE A BALLISTICS PROBLEM
 We can use the symbolic math capabilities of MATLAB ® to explore the equations
representing the trajectory of an unpowered projectile, such as the cannonball
shown in Figure 12.5 .

Range

vertical
distance

horizontal distance

 Figure 12.5
 The range of a projectile depends on the initial velocity and the launch
angle.

 We know from elementary physics that the distance a projectile travels horizontally is

 dx � v0t cos1u2
 and the distance traveled vertically is

 dy � v0t sin(u) �
1
2

gt2

 where

v0 � velocity at launch,
t � time,
u � launch angle, and
g � acceleration due to gravity.

 Use these equations and MATLAB ® ’s symbolic capability to derive an equation for
the distance the projectile has traveled horizontally when it hits the ground (the
range).

 1. State the Problem
 Find the range equation.

 2. Describe the Input and Output

 Input Equations for horizontal and vertical distances

 Output Equation for range

 3. Develop a Hand Example

 dy � v0t sin1u2 -
1
2

gt2 � 0

 Rearrange to give

 v0t sin1u2 �
1
2

gt2

12.2 Solving Expressions and Equations 445

 Divide by t and solve:

 t �
2v0 sin1u2

g

 Now substitute this expression for t into the horizontal-distance formula to obtain

 dx � v0t cos1u2

 range � v0 a2v0 sin1u2
g

bcos1u2
 We know from trigonometry that 2 sin u cos u is the same as sin12u2, which
would allow a further simplifi cation if desired.

4. Develop a MATLAB ® Solution
 First defi ne the symbolic variables:

syms v0 t theta g

 Next defi ne the symbolic expression for the vertical distance traveled:

Distancey = v0 * t *sin(theta) - 1/2*g*t^2;

 Now defi ne the symbolic expression for the horizontal distance traveled:

Distancex = v0 * t *cos(theta);

 Solve the vertical-distance expression for the time of impact, since the vertical
 distance � 0 at impact:

impact_time = solve(Distancey,t)

 This returns two answers:

impact_time =
[0]
[2*v0*sin(theta)/g]

 This result makes sense, since the vertical distance is zero at launch and again at
impact. Substitute the impact time into the horizontal-distance expression. Since
we are interested only in the second time, we’ll need to use impact_time(2) :

impact_distance = subs(Distancex,t,impact_time(2))

 The substitution results in an equation for the distance the projectile has
traveled when it hits the ground:

impact_distance =
2*v0^2*sin(theta)/g*cos(theta)

 5. Test the Solution
 Compare the MATLAB ® solution with the hand solution. Both approaches give
the same result.

 MATLAB ® can simplify the result, although it is already pretty simple. We
chose to use the simple command to demonstrate all the possibilities. The
command

simple(impact_distance)

(continued)

446 Chapter 12 Symbolic Mathematics

 gives the following results:

simplify: (v0^2*sin(2*theta))/g
radsimp: (2*v0^2*cos(theta)*sin(theta))/g
simplify(100): (v0^2*sin(2*theta))/g
combine(sincos): (v0^2*sin(2*theta))/g
combine(sinhcosh): (2*v0^2*cos(theta)*sin(theta))/g
combine(ln): (2*v0^2*cos(theta)*sin(theta))/g
factor: (2*v0^2*cos(theta)*sin(theta))/g
expand: (2*v0^2*cos(theta)*sin(theta))/g
combine: (2*v0^2*cos(theta)*sin(theta))/g
rewrite(exp): (2*v0^2*((1/exp(theta*i))/2
 +exp(theta*i)/2)*(((1/exp(theta*i))*i)/
 2-(exp(theta*i)*i)/2))/g
rewrite(sincos): (2*v0^2*cos(theta)*sin(theta))/g
rewrite(sinhcosh): (2*v0^2*cosh(-theta*i)*sinh
 (-theta*i)*i)/g
rewrite(tan): -(4*v0^2*tan(theta/2)*(tan(theta/2)^
 2-1))/(g*(tan(theta/2)^2 + 1)^2)
mwcos2sin: -(2*v0^2*sin(theta)*(2*sin(theta/2)^
 2-1))/g
collect(v0): ((2*cos(theta)*sin(theta))/g)*v0^2

ans =
(v0^2*sin(2*theta))/g

 12.3 SYMBOLIC PLOTTING

 The symbolic toolbox includes a group of functions that allow you to plot symbolic
functions. The most basic is ezplot .

 12.3.1 The Ezplot Function

 Consider a simple function of x , such as

y = sym('x^2-2')

 To plot this function, use

ezplot(y)

 The resulting graph is shown in Figure 12.6 . The ezplot function defaults to
an x range from -2p to +2p. MATLAB ® created this plot by choosing values of x
and calculating corresponding values of y , so that a smooth curve is produced.
Notice that the expression plotted is automatically displayed as the title of an
 ezplot .

 The user who does not want to accept the default values can specify the mini-
mum and maximum values of x in the second fi eld of the ezplot function:

ezplot(y,[-10,10])

 The values are enclosed in square brackets, indicating that they are elements in
the array that defi nes the plot extremes. You can also specify titles, axis labels, and
annotations, just as you do for other MATLAB ® plots. For example, to add a title
and labels to the plot, use

12.3 Symbolic Plotting 447

title('Second Order Polynomial')
xlabel('x')
ylabel('y')

 The ezplot function also allows you to plot implicit functions of x and y , as
well as parametric functions. For instance, consider the implicit equation

 x2 � y2 � 1

 which you may recognize as the equation for a circle of radius 1. You could solve
for y, but it’s not necessary with ezplot . Any of the commands

ezplot('x^2 + y^2 = 1',[-1.5,1.5])
ezplot('x^2 + y^2 -1',[-1.5,1.5])

 and

z = sym('x^2 + y^2 -1')
ezplot(z,[-1.5,1.5])

 can be used to create the graph of the circle shown on the left-hand side in
 Figure 12.7 .

 Another way to defi ne an equation is parametrically; that is, defi ne separate
equations for x and for y in terms of a third variable. A circle can be defi ned para-
metrically as

 x � sin1t2
 y � cos1t2

 To plot the circle parametrically with ezplot , list fi rst the symbolic expression
for x and then that for y :

ezplot('sin(t)','cos(t)')

 The results are shown on the right-hand side of Figure 12.7 .
 Although annotation is done the same way for symbolic plots as for standard

numeric plots, in order to plot multiple lines on the same graph, you’ll need to use
the hold on command. To adjust colors, line styles, and marker styles, use the inter-
active tools available in the plotting window. For example, to plot sin(x), sin(2 x), and
sin(3 x) on the same graph, fi rst defi ne some symbolic expressions:

y1 = sym('sin(x)')
y2 = sym('sin(2*x)')
y3 = sym('sin(3*x)')

5 0 5

0

10

20

30

40

x

x2

10 5 0 5 10

0

50

100

x

Second-Order Polynomial

y

2 Figure 12.6
 Symbolic expressions can
be plotted with ezplot . In
the left-hand graph, the
default title is the plotted
expression and the default
range is -2p to +2p. In
the right-hand graph, titles,
labels, and other
annotations are added to
 ezplot with the use of
standard MATLAB ®
annotation functions.

 PARAMETRIC
EQUATIONS
 Equations that defi ne x and
 y in terms of another
variable, typically t

448 Chapter 12 Symbolic Mathematics

 Then plot each expression:

ezplot(y1)
hold on
ezplot(y2)
ezplot(y3)

 The results are shown in Figure 12.8 . To change the line colors, line styles, or
marker styles, you’ll need to select the arrow on the menu bar (circled in the fi gure)
and then select the line you’d like to edit. Once you’ve selected the line, right-click
to activate the editing menu. When you’ve done plotting, don’t forget to issue the

hold off

 command.

x

y

x2 y2 1 0

1 0 1
1.5

1

0.5

0

0.5

1

1.5

1 0.5 0 0.5 1

0.5

0

0.5

1

x

y

x sin(x), y cos(x) Figure 12.7
 The ezplot function can
be used to graph both
implicit and parametric
functions, in addition to
functions of a single
variable.

Editing
Icon

 Figure 12.8
 Use the interactive plotting
tools to adjust line style,
color, and markers.

12.3 Symbolic Plotting 449

 HINT
 Most symbolic functions will allow you to enter either a symbolic variable that
represents a function or the function itself enclosed in single quotes. For
example,

y = sym('x^2-1')
ezplot(y)

 is equivalent to

ezplot('x^2-1')

 Be sure to add titles and axis labels to all your plots.
 1. Use ezplot to plot ex1 from -2p to +2p.
 2. Use ezplot to plot EX1 from -2p to +2p.
 3. Use ezplot to plot ex2 from -10 to +10.
 4. Use ezplot to plot EX2 from -10 to +10.
 5. Why can’t we plot equations with only one variable?
 6. Use ezplot to plot ex6 from -2p to +2p.
 7. Use ezplot to plot cos(x) from -2p to +2p. Don’t define an

expression for cos(x); just enter it into ezplot as a character string:

ezplot('cos(x)')

 8. Use ezplot to create an implicit plot of x ^2 � y^4 � 5.
 9. Use ezplot to plot sin(x) and cos(x) on the same graph. Use the

interactive plotting tools to change the color of the sine graph.
 10. Use ezplot to create a parametric plot of x � sin1t2 and y � 3 cos1t2.

 PRACTICE EXERCISES 12.6

 12.3.2 Additional Symbolic Plots

 Additional symbolic plotting functions that mirror the functions used in numeric
MATLAB ® plotting options are listed in Table 12.3 .

 To demonstrate how the three-dimensional surface plotting functions (ezmesh ,
 ezmeshc , ezsurf , and ezsurfc) work, fi rst defi ne a symbolic version of the
 peaks function:

z1 = sym('3*(1-x)^2*exp(-(x^2) - (y+1)^2)')
z2 = sym('- 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2)')
z3 = sym('- 1/3*exp(-(x+1)^2 - y^2)')
z = z1+z2+z3

 We broke this function into three parts to make it easier to enter into
the computer. Notice that no “dot” operators are used in these expressions, since

450 Chapter 12 Symbolic Mathematics

 Table 12.3 Symbolic Plotting Functions

 subplot(2,2,1)
 ezmesh(z)
 title('ezmesh')

 subplot(2,2,2)
 ezmeshc(z)
 title('ezmeshc')

 subplot(2,2,3)

 The plots resulting from these commands are
shown in Figure 12.9 . When we created the
same plots via a standard MATLAB ® approach,
it was necessary to defi ne an array of both x -
and y -values, mesh them together, and calculate
the values of z on the basis of the two-
dimensional arrays.
 The symbolic plotting capability contained in the
symbolic toolbox makes creating these graphs
much easier.

 ezsurf(z)
 title('ezsurf')
 subplot(2,2,4)
 ezsurfc(z)
 title('ezsurfc')

 All these graphs can be annotated by using the
standard MATLAB ® functions, such as title,
xlabel, text , etc.

10

ezmesh

10

2 2

0

2
20

y x
0

10

ezmeshc

10

2 2

0

2
20

y x
0

10

ezsurf

10

2 2

0

2
20

y x
0

10

ezsurfc

10

2 2

0

2
20

y x
0

 Figure 12.9
 Examples of three-
dimensional symbolic
surface plots.

they are all symbolic. The ezplot functions work similarly to their numeric
counterparts:

 ezplot Function plotter If z is a function of x : ezplot(z)
 ezmesh Mesh plotter If z is a function of x and y : ezmesh(z)
 ezmeshc Combined mesh and contour plotter If z is a function of x and y : ezmeshc(z)
 ezsurf Surface plotter If z is a function of x and y : ezsurf(z)
 ezsurfc Combined surface and contour plotter If z is a function of x and y : ezsurfc(z)
 ezcontour Contour plotter If z is a function of x and y : ezcontour(z)
 ezcontourf Filled contour plotter If z is a function of x and y : ezcontourf(z)
 ezplot3 Three-dimensional parametric curve

plotter
 If x is a function of t , if y is a function of t , and if
 z is a function of t : ezplot3(x,y,z)

 ezpolar Polar coordinate plotter If r is a function of u : ezpolar(r)

KEY IDEA
Most of the MATLAB®
plotting functions for arrays
have corresponding
functions for symbolic
applications

12.3 Symbolic Plotting 451

 The two-dimensional plots and contour plots are also similar to their numeric
counterparts. For example, these contour plots are a two-dimensional representa-
tion of the three-dimensional peaks function and are shown in Figure 12.10 a and b.

subplot(2,2,1)
ezcontour(z)
title ('ezcontour')
subplot(2,2,2)
ezcontourf(z)
title('ezcontourf')

 To demonstrate the use of ezpolar we need a new function to graph. For
example, when sin(x) is plotted in polar coordinates the result is a circle, as shown
in Figure 12.10 c.

subplot(2,2,3)
z = sym('sin(x)')
ezpolar(z)
title('ezpolar')

 Any of these functions (ezmesh, ezsurf, ezmeshc, ezsurfc, and ezcontour) can
also handle parameterized functions (one function for x , one for y , and one for z).
For example, the following code produces the torus shown in Figure 12.10 d.

subplot(2,2,4)
x=sym('4+(3+cos(v))*sin(u)')
y=sym('4 + (3 + cos(v))*cos(u)')
z=sym('4+sin(v)')
ezsurf(x,y,z)
title('A Parameterized ezsurf Plot')

5

4

3
10

0 0
5

105

2

0y y

x

ezcontour

�2

�2 20

(a) (b)

(c) (d)

90

ezpolar A parameterized ezsurf plot

r � sin(x)

1 60

0.5

330

300270240

210

180

150

120

0 z

y
x

30

2

0

x

ezcontour

�2

�2 20

 Figure 12.10
 A variety of symbolic plots.

452 Chapter 12 Symbolic Mathematics

 Create a symbolic expression for Z � sin(1X 2 � Y 2).

 1. Use ezmesh to create a mesh plot of Z . Be sure to add a title and axis labels.
 2. Use ezmeshc to create a combination mesh plot and contour plot of

 Z . Be sure to add a title and axis labels.
 3. Use ezsurf to create a surface plot of Z . Be sure to add a title and axis

labels.
 4. Use ezsurfc to create a combination surface plot and contour plot of

 Z . Be sure to add a title and axis labels.
 5. Use ezcontour to create a contour plot of Z . Be sure to add a title

and axis labels.
 6. Use ezcontourf to create a fi lled contour plot of Z . Be sure to add a

title and axis labels.
 7. Use ezpolar to create a polar plot of x sin(x). Don’t defi ne a symbolic

expression, but enter this expression directly into ezpolar :

ezpolar('x*sin(x)')

 Be sure to add a title.
 8. The ezplot3 function requires us to defi ne three variables as a function

of a fourth. To do this, fi rst defi ne t as a symbolic variable, and then let

 x � t
 y � sin1t2
 z � cos1t2

 Use ezplot3 to plot this parametric function from 0 to 30.
 You may have problems creating ezplot3 graphs inside subplot

windows, because of a MATLAB ® program idiosyncrasy. Later versions
may fi x this problem.

 PRACTICE EXERCISES 12.7

EXAMPLE 12.3
 USING SYMBOLIC PLOTTING TO ILLUSTRATE A BALLISTICS PROBLEM
 In Example 12.2 , we used MATLAB ® ’s symbolic capabilities to derive an equation
for the distance a projectile travels before it hits the ground. The horizontal-
distance formula

 dx � v0t cos1u2
 and the vertical-distance formula

 dy � v0t sin1u2 �
1
2

gt2

 where
v0 � the velocity at launch,
t � time,
u � launch angle, and
g � acceleration due to gravity,

12.3 Symbolic Plotting 453

 were combined to give

 range � v0a2v0 sin1u2
g

b cos1u2
 Using MATLAB ® ’s symbolic plotting capability, create a plot showing the range
traveled for angles from 0 to p > 2. Assume an initial velocity of 100 m/s and an
acceleration due to gravity of 9.8 m > s2.

 1. State the Problem
 Plot the range as a function of launch angle.

 2. Describe the Input and Output

 Input Symbolic equation for range

 v0 � 100 m>s

 g � 9.8 m>s2

 Output Plot of range versus angle

 3. Develop a Hand Example

 range � v0a2v0 sin1u2
g

b cos1u2
 We know from trigonometry that 2 sin u cos u equals sin12u2. Thus, we can
simplify the result to

 range �
v2

0

g
 sin12u2

 With this equation, it is easy to calculate a few data points:

 Angle Range, m

 0 0

 p>6 884

 p>4 1020
 p>3 884

 p>2 0

 The range appears to increase with increasing angle and then decrease back to
zero when the cannon is pointed straight up.

4. Develop a MATLAB ® Solution
 First, we need to modify the equation from Example 12.2 to include the launch
velocity and the acceleration due to gravity. Recall that

impact_distance =
2*v0^2*sin(theta)/g*cos(theta)

 Use the subs function to substitute the numerical values into the equation:

impact_100 = subs(impact_distance,{v0,g},{100, 9.8})
(continued)

454 Chapter 12 Symbolic Mathematics

 This returns

impact_100 =
100000/49*sin(theta)*cos(theta)

 Finally, plot the results and add a title and labels:

ezplot(impact_100,[0, pi/2])
title('Maximum Projectile Distance Traveled')
xlabel('angle, radians')
ylabel('range, m')

 This generates Figure 12.11 .

5. Test the Solution
 The MATLAB ® solution agrees with the hand solution. The range is zero when

the cannon is pointed straight up and zero when it is pointed horizontally. The
range appears to peak at an angle of about 0.8 radian, which corresponds
roughly to 45°.

0 0.5 1 1.5

0

200

400

600

800

1000

angle, radians

Maximum Projectile Distance Traveled

ra
ng

e,
 m

 Figure 12.11
 Projectile range.

 12.4 CALCULUS

 MATLAB ® ’s symbolic toolbox allows the user to differentiate symbolically and to
perform integrations. This makes it possible to fi nd analytical solutions, instead of
numeric approximations, for many problems.

 12.4.1 Differentiation

 Differential calculus is studied extensively in fi rst-semester calculus. The derivative can
be thought of as the slope of a function or as the rate of change of the function. For
example, consider a race car. The velocity of the car can be approximated by the
change in distance divided by the change in time. Suppose that, during a race, the car
starts slowly and reaches its fastest speed at the fi nish line. Of course, to avoid running

12.4 Calculus 455

into the stands, the car must then slow down until it fi nally stops. We might model the
position of the car with a sine wave, as shown in Figure 12.12 . The relevant equation is

 d � 20 � 20 sinap1t � 102
20

b

 The graph in Figure 12.12 was created with ezplot and symbolic mathematics.
 First, we defi ne a symbolic expression for distance:

dist = sym('20+20*sin(pi*(t-10)/20)')

 Once we have the symbolic expression, we can substitute it into the ezplot
function and annotate the resulting graph:

ezplot(dist,[0,20])
title('Car Position')
xlabel('time, s')
ylabel('Distance from Starting Line')
text(10,20,'Finish Line')

 MATLAB ® includes a function called diff to fi nd the derivative of a symbolic
expression. (The word differential is another term for the derivative.) The velocity is
the derivative of the position, so to fi nd the equation of the velocity of the car, we’ll
use the diff function:

velocity = diff(dist)
velocity =
pi*cos((pi*(t-10))/20)

 We can use the ezplot function to plot the velocity:

ezplot(velocity,[0,20])
title('Race Car Velocity')
xlabel('time, s')
ylabel('velocity, distance/time')
text(10,3,'Finish Line')

0 5 10 15 20

0

5

10

15

20

25

30

35

40

time, s

Car Position

D
is

ta
nc

e
fr

om
 S

ta
rt

in
g

L
in

e
Finish Line

 Figure 12.12
 Position of a race car. The
car speeds up until it
reaches the fi nish line. Then
it slows to a stop. (The
dotted line indicating the
fi nish line was added after
the graph was created.)

456 Chapter 12 Symbolic Mathematics

 The results are shown in Figure 12.13 .
 The acceleration of the race car is the change in the velocity divided by the

change in time, so the acceleration is the derivative of the velocity function:

acceleration = diff(velocity)
acceleration =
-(pi^2*sin((pi*(t-10))/20))/20

 The plot of acceleration (Figure 12.14) was also created with the use of the
symbolic plotting function:

ezplot(acceleration,[0,20])
title('Race Car Acceleration')
xlabel('time, s')

0 5 10 15 20

0

0.5

1

1.5

2

2.5

3

time, s

Race Car Velocity

ve
lo

ci
ty

, d
is

ta
nc

e/
ti

m
e

Finish Line

 Figure 12.13
 The maximum velocity is
reached at the fi nish line.

0 5 10 15 20
0.6

0.4

0.2

0

0.2

0.4

0.6

time, s

Race Car Acceleration

ac
ce

le
ra

ti
on

, v
el

oc
it

y/
ti

m
e

Finish Line

 Figure 12.14
 The race car is accelerating
up to the fi nish line and
then is decelerating. The
acceleration at the fi nish
line is zero.

12.4 Calculus 457

ylabel('acceleration, velocity/time')
text(10,0,'Finish Line')

 The acceleration is the fi rst derivative of the velocity and the second derivative
of the position. MATLAB ® offers several slightly different techniques to fi nd both
fi rst derivatives and n th derivatives (see Table 12.4).

 If we have a more complicated equation with multiple variables, such as

y = sym('x^2+t-3*z^3')

 MATLAB ® will calculate the derivative with respect to x , the default variable:

diff(y)
ans =
2*x

 Our result is the rate of change of y as x changes (if we keep all the other vari-
ables constant). This is usually depicted as 0y>0x and is called a partial derivative . If
we want to see how y changes with respect to another variable, such as t , we must
specify it in the diff function (remember that if t has been previously defi ned as a
symbolic variable, we don’t need to enclose it in single quotes):

diff(y,'t')
ans =
1

 Similarly, to see how y changes with z when everything else is kept constant, we
use

diff(y,'z')
ans =
-9*z^2

 DERIVATIVE
 The instantaneous rate of
change of one variable
with respect to a second
variable

 Table 12.4 Symbolic Differentiation

 diff(f) Returns the derivative of the
expression f with respect to
the default independent
variable

y=sym('x^3+z^2')

diff(y)

ans =

3*x^2

 diff(f,'t') Returns the derivative of the
expression f with respect to
the variable t

y=sym('x^3+z^2')

diff(y,'z')

ans =

2*z

 diff(f,n) Returns the n th derivative of
the expression f with respect
to the default independent
variable

y=sym('x^3+z^2')

diff(y,2)

ans =

6*x

 diff(f,'t',n) Returns the n th derivative of
the expression f with respect
to the variable t

y=sym('x^3+z^2')

diff(y,'z',2)

ans =

2

458 Chapter 12 Symbolic Mathematics

 To fi nd higher-order derivatives, we can either nest the diff function or spec-
ify the order of the derivative in the diff function. Either of the statements

diff(y,2)

 and

diff(diff(y))

 returns the same result:

ans =
2

 Notice that although the result appears to be a number, it is a symbolic variable.
In order to use it in a MATLAB ® calculation, you’ll need to convert it to a double-
precision fl oating-point number.

 If we want to take a higher derivative of y with respect to a variable that is not
the default, we need to specify both the degree of the derivative and the variable.
For example, to fi nd the second derivative of y with respect to z , we type

diff(y,'z',2)
ans =
-18*z

 KEY IDEA
 Integration is the opposite
of taking the derivative

 PRACTICE EXERCISES 12.8

 1. Find the fi rst derivative with respect to x of the following expressions:

 x2 � x � 1

 sin(x)

 tan(x)

 ln(x)

 2. Find the fi rst partial derivative with respect to x of the following
expressions:

 ax2 � bx � c

 x0.5 � 3y

 tan1x � y2
 3x � 4y � 3xy

 3. Find the second derivative with respect to x for each of the expressions
in Exercises 12.1 and 12.2.

 4. Find the fi rst derivative with respect to y for the following expressions:

 y2 � 1

 2y � 3x2

 ay � bx � cz

 5. Find the second derivative with respect to y for each of the expressions
in Problem 12.4.

12.4 Calculus 459

 USING SYMBOLIC MATH TO FIND THE OPTIMUM LAUNCH ANGLE
 In Example 12.3 , we used the symbolic plotting capability of MATLAB ® to create a
graph of range versus launch angle, based on the range formula derived in Example
 12.2 , namely

 range � v0a2v0 sin1u2
g

b cos1u2
 where

 v0 � velocity at launch, which we chose to be 100 m/s,
u � launch angle, and
g � acceleration due to gravity, which we chose to be 9.8 m > s2.

 Use MATLAB ® ’s symbolic capability to fi nd the angle at which the maximum range
occurs and to fi nd the maximum range.

1. State the Problem
 Find the angle at which the maximum range occurs.
 Find the maximum range.

2. Describe the Input and Output

Input Symbolic equation for range

v0 � 100 m > s

 g � 9.8 m >s2

Output The angle at which the maximum range occurs
 The maximum range

3. Develop a Hand Example
 From the graph in Figure 12.15 , the maximum range appears to occur at a
launch angle of approximately 0.7 or 0.8 radian, and the maximum height
appears to be approximately 1000 m.

0 0.5 1 1.5

0

200

400

600

800

1000

angle, radians

Maximum Projectile Distance Traveled

ra
ng

e,
 m

 Figure 12.15
 The projectile range as a function of launch angle.

EXAMPLE 12.4

460 Chapter 12 Symbolic Mathematics

4. Develop a MATLAB ® Solution
 Recall that the symbolic expression for the impact distance with v0 and g

defi ned as 100 m/s and 9.8 m > s2, respectively, is

impact_100 =
100000/49*sin(theta)*cos(theta)

 From the graph, we can see that the maximum distance occurs when the slope
is equal to zero. The slope is the derivative of impact_100 , so we need to set
the derivative equal to zero and solve. Since MATLAB ® automatically assumes
that an expression is equal to zero, we have

max_angle = solve(diff(impact_100))

 which returns the angle at which the maximum height occurs:

max_angle =
[1/4*pi]

 Now the result can be substituted into the expression for the range:

max_distance = subs(impact_100,theta,max_angle)

 Finally, the result should be changed to a double precision number

double(max_distance)
ans =
1.0204e+003

 12.4.2 Integration

 Integration can be thought of as the opposite of differentiation (fi nding a deriva-
tive) and is even sometimes called the antiderivative. It is commonly visualized as
the area under a curve. For example, work done by a piston–cylinder device as it
moves up or down can be calculated by taking the integral of P with respect to V —
that is,

 W � 1
2

1 PdV

 In order to do the calculation, we need to know how P changes with V . If, for
example, P is a constant, we could create the plot shown in Figure 12.16 .

 The work consumed or produced as we move the piston is the area under the
curve from the initial volume to the fi nal volume. For example, if we moved the piston
from 1 cm3 to 4 cm3, the work would correspond to the area shown in Figure 12.17

 As you may know from a course in integral calculus (usually Calculus II), the
integration is quite simple:

 W � 1
2

1 P dV � P 1
2

1 dV � PV � 2
1 � PV2 - PV1 � P �V

 If

 P � 100 psia, and �V � 3 cm3

12.4 Calculus 461

 then

 W � 3 cm3 � 100 psia

 The symbolic toolbox allows us to easily take integrals of some very complicated
functions. For example, if we want to fi nd an indefi nite integral (an integral for
which we don’t specify the boundary values of the variable), we can use the int
function. First, we need to specify a function:

y = sym('x^3 + sin(x)')

 To fi nd the indefi nite integral, we type

int(y)
ans =
1/4*x^4-cos(x)

0 1 2 3 4 5
99

99.5

100

100.5

101

Volume, cm3

Pressure Profile in a Piston Cylinder Device

P
re

ss
ur

e,
 p

si
a

gas

 Figure 12.16
 Pressure profi le in a
piston–cylinder device. In
this example, the pressure
is constant.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

70

80

90

100

110

Volume, cm3

P
re

ss
ur

e,
 p

si
a

Pressure Profile in a Piston Cylinder Device

Work

 Figure 12.17
 The work produced in a
piston–cylinder device is
the area under the curve.

462 Chapter 12 Symbolic Mathematics

 The int function uses x as the default variable. For example, if we defi ne a
function with two variables, the int function will fi nd the integral with respect to x
or the variable closest to x :

y = sym('x^3 +sin(t)')
int(y)
ans =
1/4*x^4+sin(t)*x

 If we want to take the integral with respect to a user-defi ned variable, that vari-
able needs to be specifi ed in the second fi eld of the int function:

int(y,'t')
ans =
x^3*t-cos(t)

 To fi nd the defi nite integral, we need to specify the range of interest. Consider
this expression:

y = sym('x^2')

 If we don’t specify the range of interest, we get

int(y)
ans =
1/3*x^3

 We could evaluate this from 2 to 3 by using the subs function:

yy = int(y)
yy =
1/3*x^3
subs(yy,3)-subs(yy,2)
ans =

6.3333

 Notice that the result of the subs function is a double-precision fl oating-point
number.

 A simpler approach to evaluating an integral between two points is to specify
the bounds in the int function:

int(y,2,3)
ans =
19/3

 Notice, however, that the result is a symbolic number. To change it to a double we
can use the double function.

double(ans)
ans =

6.3333

 If we want to specify both the variable and the bounds, we need to list them all:

y = sym('sin(x)+cos(z)')
int(y,'z',2,3)
ans =
sin(x)+sin(3)-sin(2)

12.4 Calculus 463

 Bounds can be numeric, or they can be symbolic variables:

int(y,'z','b','c')
ans =
sin(x)*c+sin(c)-sin(x)*b-sin(b)

 Table 12.5 lists the MATLAB ® functions having to do with integration.

 Table 12.5 Symbolic Integration

 int(f) Returns the integral of the
expression f with respect to
the default independent
variable

y = sym('x^3+z^2')

int(y)

ans =

1/4*x^4+z^2*x

 int(f,'t') Returns the integral of the
expression f with respect
to the variable t

y = sym('x^3+z^2')

int(y,'z')

ans =

x^3*z+1/3*z^3

 int(f,a,b) Returns the integral, with
respect to the default variable,
of the expression f between
the numeric bounds a and b

y = sym('x^3+z^2')

int(y,2,3)

ans =

65/4+z^2

 int(f,'t',a,b) Returns the integral, with
respect to the variable t , of
the expression f between the
numeric bounds a and b

y = sym('x^3+z^2')

int(y,'z',2,3)

ans =

x^3+19/3

 int(f,'t',a,b) Returns the integral, with
respect to the variable t , of
the expression f between the
symbolic bounds a and b

y = sym('x^3+z^2')

int(y,'z','a','b')
ans =

x^3*(b-a)+1/3*b^3-1/3*a^3

 PRACTICE EXERCISES 12.9

 1. Integrate the following expressions with respect to x :

 x2 � x � 1

 sin(x)

 tan(x)

 ln(x)

 2. Integrate the following expressions with respect to x :

 ax2 � bx � c

 x0.5 � 3y

 tan1x � y2
 3x � 4y � 3xy

464 Chapter 12 Symbolic Mathematics

 3. Perform a double integration with respect to x for each of the
expressions in Exercises 1 and 2.

 4. Integrate the following expressions with respect to y :

 y2 � 1

 2y � 3x2

 ay � bx � cz

 5. Perform a double integration with respect to y for each of the expressions
in Exercise 12.4.

 6. Integrate each of the expressions in Exercise 1 with respect to x from 0 to 5.

 EXAMPLE 12.5
 USING SYMBOLIC MATH TO FIND WORK PRODUCED
IN A PISTON–CYLINDER DEVICE
 Piston–cylinder devices are used in a wide range of scientifi c instrumentation and
engineering devices. Probably, the most pervasive is the internal combustion engine
(Figure 12.18), which typically uses four to eight cylinders.

 The work produced by a piston–cylinder device depends on the pressure inside
the cylinder and the amount the piston moves, resulting in a change in volume

inside the cylinder. Mathematically,

 W = 1PdV

 In order to integrate this equation, we need to understand how the pressure
changes with the volume. We can model most combustion gases as air and assume
that they follow the ideal gas law

 PV � nRT

 where

P � pressure, kPa,
 V � volume, m3,
 n � number of moles, kmol,
 R � universal gas constant, 8.314 kPa m3

 > kmol K, and
T � temperature, K.

 Figure 12.18
 Internal combustion
engine.

12.4 Calculus 465

 If we assume that there is 1 mole of gas at 300 K and that the temperature stays con-
stant during the process, we can use these equations to calculate the work either
done on the gas or produced by the gas as it expands or contracts between two
known volumes.

1. State the Problem
 Calculate the work done per mole in an isothermal (constant-temperature)
 piston–cylinder device as the gas expands or contracts between two known
 volumes.

2. Describe the Input and Output

 Input
Temperature � 300 K
Universal gas constant � 8.314 kPa m3

 > kmol K � 8.314 kJ > kmol K
 Arbitrary values of initial and fi nal volume; for this example, we’ll use

 initial volume � 1 m3

 final volume � 5 m3
Output
 Work produced by the piston–cylinder device, in kJ.

3. Develop a Hand Example
 First, we’ll need to solve the ideal gas law for P :

 PV � nRT

 P � nRT > V

 Since n , R , and T are constant during the process, we can now perform the
integration:

 W �L
nRT

V
 dV � nRTL

dV
V

� nRT lnaV2

V1
b

 Substituting the values, we fi nd that

 W � 1 kmol � 8.314 kJ>kmol K � 300 K � lnaV2

V1
b

 If we use the arbitrary values V1 � 1 m3 and V2 � 5 m3, then the work becomes

 W � 4014 kJ

 Because the work is positive, it is produced by (not on) the system.

 4. Develop a MATLAB ® Solution
 First, we’ll need to solve the ideal gas law for pressure. The code

syms P V n R T V1 V2 %Define variables
ideal_gas_law = sym('P*V = n*R*T') %Define ideal gas law
P = solve(ideal_gas_law,'P') %Solve for P

 returns

P =
n*R*T/V

466 Chapter 12 Symbolic Mathematics

 Once we have the equation for P , we can integrate. The command

W = int(P,V,V1,V2) %Integrate P with respect
%to V from V1 to V2

 returns

W =
n*R*T*log(V2)-n*R*T*log(V1)

 Finally, we can substitute the values into the equation. We type

work = subs(W,{n,R,V1,V2,T},{1,8.314,1,5,300.0})

 giving us

work =
4.0143e+003

 5. Test the Solution
 The most obvious test is to compare the hand and computer solutions. However, the
same answer with both techniques just means that we did the calculations the
same way. One way to check reasonability would be to create a PV plot and esti-
mate the area under the curve.

 To create the plot, we’ll need to return to the equation for P and substitute
values for n , R , and T :

p = subs(P,{n,R,T},{1,8.314, 300})

 This returns the following equation for P :

p =
12471/5/V

 Now, we can use ezplot to create a graph of P versus V (see Figure 12.19):

1 2 3 4 5
0

500

1000

1500

2000

2500

Volume, cm3

Pressure Change with Volume for an Isothermal System

P
re

ss
ur

e,
 p

si
a

 Figure 12.19
 For an isothermal system,
as the volume increases
the pressure decreases.

12.4 Calculus 467

ezplot(p,[1,5]) %Plot the pressure versus V
title('Pressure Change with Volume for an Isothermal System')
xlabel('Volume')
ylabel('Pressure, psia')
xlabel('Volume, cm^3')
axis([1,5,0,2500])

 To estimate the work, we could fi nd the area of a triangle that approximates the
shape shown in Figure 12.20 . We have

 area �
1
2

base * height

 area � 0.5 * 15 � 12 * 2400 � 4800

 which corresponds to 4800 kJ. This matches quite nicely with the calculated
value of 4014 kJ.

 Now that we have a process that works, we could create an M-fi le that
prompts the user to enter values for any change in volume:

clear,clc
syms P V n R T V1 V2 %Define variables
ideal_gas_law = sym('P*V = n*R*T') %Define ideal gas law
P = solve(ideal_gas_law,'P') %Solve for P
W = int(P,V,V1,V2) %Integrate to find work

%Now let the user input the data

temp = input('Enter a temperature: ')
v1 = input('Enter the initial volume: ')
v2 = input('Enter the final volume: ')
work = subs(W,{n,R,V1,V2,T},{1,8.314,v1,v2,temp})

1 2 3 4 5
0

500

1000

1500

2000

2500

Volume, cm3

Pressure Change with Volume for an Isothermal System

P
re

ss
ur

e,
 p

si
a

 Figure 12.20
 We can estimate the area
under the curve with a
triangle.

468 Chapter 12 Symbolic Mathematics

 This M-fi le generates the following user interaction:

Enter a temperature: 300
temp =

300
Enter the initial volume: 1
v1 =

1
Enter the final volume: 5
v2 =

5
work =

4.0143e+003

 12.5 DIFFERENTIAL EQUATIONS

 Differential equations contain both the dependent variable and its derivative with
respect to the independent variable. For example,

dy

dt
� y

 is a differential equation.
 Although any symbol can be used for either the independent or the dependent

variable, the default independent variable in MATLAB ® is t (and it is the usual
choice for most ordinary differential equation formulations). Consider this simple
equation:

 y � e t

 The derivative of y with respect to t is

dy

dt
� e t

 We could also express this as a differential equation, since y � e t
 :

dy

dt
� y

 When we solve a differential equation, we are looking for an expression for y in
terms of t . Differential equations typically have more than one solution. The follow-
ing family of functions of t could be expressed by the same differential equation
 1dy > dt � y2 :

 y � C1e
t

 We can specify the particular equation of interest by specifying an initial condi-
tion. For example, if

 y102 � 1,

 then

 C1 � 1

 KEY IDEA
 The default independent
variable for differential
equations in MATLAB ® is t

12.5 Differential Equations 469

 A slightly more complicated function of y might be

 y � t2

 The derivative of y with respect to t is

dy

dt
� 2t

 If we wanted to, we could rewrite this equation as

dy

dt
�

2t2

t
�

2y

t

 The symbolic toolbox includes a function called dsolve that solves differential
equations, that is, it solves for y in terms of t . This function requires the user to
enter the differential equation, using the symbol D to specify derivatives with respect
to the independent variable, as in

dsolve('Dy = y')
ans =
C1*exp(t)

 Using a single input results in a family of results. If you also include a second
fi eld specifying an initial condition (or a boundary condition), the exact answer is
returned:

dsolve('Dy = y','y(0) = 1')
ans =
exp(t)

 Similarly,

dsolve('Dy = 2*y/t','y(-1) = 1')
ans =
t^2

 If t is not the independent variable in your differential equation, you can spec-
ify the independent variable in a third fi eld:

dsolve('Dy = 2*y/t','y(-1) = 1', 't')
ans =
t^2

 If a differential equation includes only a fi rst derivative, it’s called a fi rst-order
differential equation. Second-order differential equations include a second deriva-
tive, third-order equations a third derivative, and so on. To specify a higher-order
derivative in the dsolve function, put the order immediately after the D . For
example,

dsolve('D2y = -y')
ans =
C1*sin(t)+C2*cos(t)

 solves a second-order differential equation.

470 Chapter 12 Symbolic Mathematics

 HINT
 Don’t use the letter D in your variable names in differential equations. The
function will interpret the D as specifying a derivative.

 KEY IDEA
 Not every differential
equation can be solved
analytically

 The dsolve function can also be used to solve systems of differential equa-
tions. First, list the equations to be solved, then list the conditions. The dsolve
function will accept up to 12 inputs. For example:

dsolve('eq1,eq2, . . .', 'cond1,cond2, . . .', 'v')

 or

dsolve('eq1','eq2',. . .,'cond1','cond2',. . .,'v')

 (The variable v is the independent variable.) Now consider the following example:

a = dsolve('Dx = y','Dy = x')
a =

x: [1x1 sym]
y: [1x1 sym]

 The results are reported as symbolic elements in a structure array, just as the results
were reported with the solve command. To access these elements, use the struc-
ture array syntax:

a.x
ans =
C1*exp(t)-C2*exp(-t)

 and

a.y
ans =
C1*exp(t)+C2*exp(-t)

 You could also specify multiple outputs from the function:

[x,y] = dsolve('Dx = y','Dy = x')
x =
C1*exp(t)-C2*exp(-t)
y =
C1*exp(t)+C2*exp(-t)

 MATLAB ® cannot solve every differential equation symbolically. For compli-
cated (or ill-behaved) systems of equations, you may fi nd it easier to use MuPad.
(Remember that MATLAB ® ’s symbolic capability is based on the MuPad engine.)
Many differential equations can’t be solved analytically at all, no matter how sophis-
ticated the tool. For those equations, numerical techniques often suffi ce.

 12.6 CONVERTING SYMBOLIC EXPRESSIONS

TO MATLAB ® FUNCTIONS

 It is often useful to evaluate mathematical expressions symbolically before using the
results in more traditional MATLAB ® functions. To accomplish this the matlab-
Function function converts a symbolic expression into an anonymous function.
Here’s a really simple example.

Summary 471

syms x
y=cos(x)
dy=diff(y)

 which returns the derivative of cos(x)

dy=-sin(x)

 To convert this symbolic variable, dy , into an anonymous function use the fol-
lowing approach.

f=matlabFunction(dy)

 which returns

f =
@x –sin(x)

 Now f can be used to evaluate –sin(x). For example to evaluate –sin(x) at x = 2

f(2)
ans =

-0.9093

 Here’s a more complicated example, which also involves symbolically fi nding a
derivative.

syms x
y=(exp(-x)-1)/x
dy=diff(y)
g=matlabFunction(dy)

 which results in a new anonymous function called g .

g=
@(x) -1./(x.*exp(x))-(1./exp(x)-1)./x.^2

 Anonymous functions can be used like any other MATLAB ® function.

 HINT
 If you have a version of MATLAB ® before 2007b, or if the Maple toolbox is
installed on your computer, the matlabFunction will not work.

 SUMMARY

 MATLAB ® ’s symbolic mathematics toolbox uses the MuPad software engine. The
symbolic toolbox is an optional component of the professional version of
MATLAB ® , but is included with the Student Version. The syntax used by the sym-
bolic toolbox is similar to that used by MuPad. However, because the underlying
structure of each program is different, MuPad users will recognize some differ-
ences in syntax.

472 Chapter 12 Symbolic Mathematics

 Symbolic variables are created in MATLAB ® with either the sym or the syms
command:

x = sym('x') or
syms x

 The syms command has the advantage of making it easy to create multiple
symbolic variables in one statement:

syms a b c

 The sym command can be used to create complete expressions or equations in
a single step:

y = sym('z^2-3')

 Although z is included in this symbolic expression, it has not been explicitly defi ned
as a symbolic variable.

 Once symbolic variables have been defi ned, they can be used to create more
complicated expressions. Since x , a , b , and c were defi ned as symbolic variables,
they can be combined to create the quadratic equation:

EQ = a*x^2 + b*x + c

 MATLAB ® allows users to manipulate either symbolic expressions or sym-
bolic equations. Equations are set equal to something; expressions are not. All
the statements in this summary so far have created expressions. By contrast, the
statement

EQ = sym('n = m/MW')

 defi nes a symbolic equation.
 Both symbolic expressions and equations can be manipulated by using built-

in MATLAB ® functions from the symbolic toolbox. The numden function extracts
the numerator and denominator from an expression but is not valid for equa-
tions. The expand , factor , and collect functions can be used to modify
either an expression or an equation. The simplify function simplifi es an
expression or an equation on the basis of built-in MuPad rules, and the simple
function tries each member of the family of simplifi cation functions and reports
the shortest answer.

 A highly useful symbolic function is solve , which allows the user to solve equa-
tions symbolically. If the input to the function is an expression, MATLAB ® sets the
expression equal to zero. The solve function can solve not only a single equation
for the specifi ed variable, but also systems of equations. Unlike the techniques used
in matrix algebra to solve systems of equations, the input to solve need not be
linear.

 The substitution function, subs , allows the user to replace variables with either
numeric values or new variables. It is important to remember that if a variable has
not been explicitly defi ned as symbolic, it must be enclosed in single quotes when it
is used in the subs function. When y is defi ned as

y = sym('m +2*n + p')

 the variables m , n , and p are not explicitly defi ned as symbolic and must therefore
be enclosed in single quotes. Notice that when multiple variables are replaced, they

Summary 473

are listed inside curly brackets. If a single variable is replaced, the brackets are not
required. Given the preceding defi nition of y , the command

subs(y,{'m','n','p'}, {1,2,3})

 returns

ans =
8

 The subs command can be used to substitute both numeric values and symbolic
variables.

 MATLAB ® ’s symbolic plotting capability roughly mirrors the standard plotting
options. The most useful of these plots for engineers and scientists is probably the
 x–y plot, ezplot . This function accepts a symbolic expression and plots it for val-
ues of x from -2p to +2p. The user can also assign the minimum and maximum
values of x . Symbolic plots are annotated with the use of the same syntax as stand-
ard MATLAB ® plots.

 The symbolic toolbox includes a number of calculus functions, the most basic
being diff (differentiation) and int (integration). The diff function allows the
user to take the derivative with respect to a default variable (x or whatever is closest
to x in the expression) or to specify the differentiation variable. Higher-order deriva-
tives can also be specifi ed. The int function also allows the user to integrate with
respect to the default variable (x) or to specify the integration variable. Both defi nite
and indefi nite integrals can be evaluated. Additional calculus functions not dis-
cussed in this chapter are available. Use the help function for more information.

 When solving a problem it is often useful to manipulate expressions symboli-
cally before creating MATLAB ® functions. The matlabFunction function allows
you to do this easily.

 MATLAB ® SUMMARY

 The following MATLAB ® summary lists all the special characters, commands, and
functions that are defi ned in this chapter:

 Special Characters

 '' identifi es a symbolic variable that has not been
explicitly defi ned

 { } encloses a cell array, used in the solve function to
create lists of symbolic variables

 Commands and Functions

 collect collects like terms

 diff fi nds the symbolic derivative of a symbolic expression

 dsolve differential equation solver

 expand expands an expression or equation

 ezcontour creates a contour plot

 ezcontourf creates a fi lled contour plot

 ezmesh creates a mesh plot from a symbolic expression
(continued)

474 Chapter 12 Symbolic Mathematics

 Commands and Functions

 ezmeshc plots both a mesh and a contour plot created from a
symbolic expression

 ezplot plots a symbolic expression (creates an x – y plot)

 ezplot3 creates a three-dimensional line plot

 ezpolar creates a plot in polar coordinates

 ezsurf creates a surface plot from a symbolic expression

 ezsurfc plots both a mesh and a contour plot created from a
symbolic expression

 factor factors an expression or equation

 int fi nds the symbolic integral of a symbolic expression

 matlabFunction converts a symbolic expression into an anonymous
MATLAB ® function

 numden extracts the numerator and denominator from an
expression or an equation

 simple tries and reports all the simplifi cation functions and
selects the shortest answer

 simplify simplifi es, using MuPad’s built-in simplifi cation rules

 solve solves a symbolic expression or equation

 subs substitutes into a symbolic expression or equation

 sym creates a symbolic variable, expression, or equation

 syms creates symbolic variables

 PROBLEMS

 Algebra

 12.1 Create the symbolic variables

a b c d x

 and use them to create the following symbolic expressions:

se1 = x^3 -3*x^2 +x
se2 = sin(x) + tan(x)
se3 =(2*x^2 - 3*x - 2)/(x^2 - 5*x)
se4 = (x^2 -9)/(x+3)

 12.2 (a) Divide se1 by se2 .

 (b) Multiply se3 by se4 .

 (c) Divide se1 by x .

 (d) Add se1 to se3 .

 12.3 Create the following symbolic equations:
 (a) sq1 = sym('x^2 + y^2 = 4')

 (b) sq2 = sym('5*x^5 - 4*x^4 + 3*x^3 + 2*x^2 -x = 24 ')

 (c) sq3 = sym('sin(a) + cos(b) -x*c = d')

 (d) sq4 = sym('(x^3 - 3*x)/(3-x) = 14')

Problems 475

 12.4 Try to use the numden function to extract numerator and denominator
from se4 and sq4 . Does this function work for both expressions and equa-
tions? Describe how your results vary. Try to explain the differences.

 12.5 Use the expand , factor , collect , simplify , and simple functions
on se1 to se4 , and on sq1 to sq4 . In your own words, describe how these
functions work for the various types of equations and expressions.

 Solving Symbolically and Using the Subs Command

 12.6 Solve each of the expressions created in Problem 12.1 for x .
 12.7 Solve each of the equations created in Problem 12.3 for x .
 12.8 Solve equation sq3 , created in Problem 12.3, for a .
 12.9 A pendulum is a rigid object suspended from a frictionless pivot point (see

 Figure P12.9). If the pendulum is allowed to swing back and forth with a
given inertia, we can fi nd the frequency of oscillation with the equation

 2pf � AmgL

I

 where
 f � frequency,
 m � mass of the pendulum,
 g � acceleration due to gravity,
 L � distance from the pivot point to the center of gravity of
 the pendulum, and
 I � inertia.

 Use MATLAB ® ’s symbolic capability to solve for the length L .

Pivot Point

L

 Figure P12.9
 Pendulum described in
 Problem 12.9.

 12.10 Let the mass, inertia, and frequency of the pendulum in the previous prob-
lem be, respectively,

 m � 10 kg

 f � 0.2 s�1

 I � 60 kg m>s.

476 Chapter 12 Symbolic Mathematics

 If the pendulum is on the earth 1g � 9.8 m > s22 what is the length from the
pivot point to the center of gravity? (Use the subs function to solve this
problem.)

 12.11 Kinetic energy is defi ned as

 KE �
1
2

mV 2

 where

 KE � kinetic energy, measured in J
 m � mass, measured in kg
 V � velocity, measured in m/s.

 Create a symbolic equation for kinetic energy, and solve it for velocity.
 12.12 Find the kinetic energy of a car that weighs 2000 lbm and is traveling at 60

mph (see Figure P12.12). Your units will be lbm mile2
 > h2. Once you’ve cal-

culated this result, change it to Btu by using the following conversion factors:

 1 lbf � 32.174 lbm
ft>s2

 1 h � 3600 s
 1 mile � 5280 ft
 1 Btu � 778.169 ft # lbf

KE mV2

m 2000 lbm

60 mph

1
2

 Figure P12.12
 Car described in
problem 12.12.

 12.13 The heat capacity of a gas can be modeled with the following equation,
composed of the empirical constants a, b, c , and d and the temperature T in
kelvins:

 CP � a � bT � cT 2 � dT 3

 Empirical constants do not have a physical meaning but are used to make
the equation fi t the data. Create a symbolic equation for heat capacity and
solve it for T .

 12.14 Substitute the following values for a , b , c , and d into the heat-capacity equa-
tion from the previous problem and give your result a new name [these
values model the heat capacity of nitrogen gas in kJ/(kmol K) as it changes
temperature between approximately 273 and 1800 K]:

 a � 28.90
 b � -0.1571 � 10�2
 c � 0.8081 � 10�5
 d � -2.873 � 10�9

Problems 477

 Solve your new equation for T if the heat capacity 1Cp2 is equal to 29.15 kJ/
(kmol K).

 12.15 The Antoine equation uses empirical constants to model the vapor pressure
of a gas as a function of temperature. The model equation is

 log101P2 � A �
B

C � T

 where
 P � pressure, in mmHg
 A � empirical constant
 B � empirical constant
 C � empirical constant
 T � temperature in °C.

 The normal boiling point of a liquid is the temperature at which the vapor
pressure (P) of the gas is equal to atmospheric pressure, 760 mmHg. Use
MATLAB ® ’s symbolic capability to fi nd the normal boiling point of benzene
if the empirical constants are

 A � 6.89272
 B � 1203.531
 C � 219.888

 12.16 A hungry college student goes to the cafeteria and buys lunch. The next
day he spends twice as much. The third day he spends $1 less than he did
the second day. At the end of 3 days he has spent $35. How much did he
spend each day? Use MATLAB ® ’s symbolic capability to help you solve this
problem.

 Solving Systems of Equations

 12.17 Consider the following set of seven equations:

 3x1 � 4x2 � 2x3 � x4 � x5 � 7x6 � x7 � 42
 2x1 � 2x2 � 3x3 � 4x4 � 5x5 � 2x6 � 8x7 � 32

 x1 � 2x2 � 3x3 � x4 � 2x5 � 4x6 � 6x7 � 12
 5x1 � 10x2 � 4x3 � 3x4 � 9x5 � 2x6 � x7 � -5
 3x1 � 2x2 � 2x3 � 4x4 � 5x5 � 6x6 � 7x7 � 10
 -2x1 � 9x2 � x3 � 3x4 � 3x5 � 5x6 � x7 � 18

 x1 � 2x2 � 8x3 � 4x4 � 2x5 � 4x6 � 5x7 � 17

 Defi ne a symbolic variable for each of the equations, and use MATLAB ® ’s
symbolic capability to solve for each unknown.

 12.18 Compare the amount of time it takes to solve the preceding problem by
using left division and by using symbolic math with the tic and toc func-
tions, whose syntax is

tic
o
code to be timed
o
toc

478 Chapter 12 Symbolic Mathematics

 12.19 Use MATLAB ® ’s symbolic capabilities to solve the following problem by
means of matrix algebra:
 Consider a separation process in which streams of water, ethanol, and
methanol enter a process unit. Two streams leave the unit, each with varying
amounts of the three components (see Figure P12.19).
 Determine the mass fl ow rates into the system and out of the top and
bottom of the separation unit.

 (a) First set up the following material-balance equations for each of the
three components:

 Water
 0.511002 � 0.2mtops � 0.65mbottoms
 50 � 0.2mtops � 0.65mbottoms

 Ethanol
 100x � 0.35mtops � 0.25mbottoms
 0 � -100x � 0.35mtops � 0.25mbottoms

 Methanol
 10011 � 0.5 � x2 � 0.45mtops � 0.1mbottoms
 50 � 100x � 0.45mtops � 0.1mbottoms
 (b) Create symbolic equations to represent each material balance.
 (c) Use the solve function to solve the system of three equations and three

unknowns.

xH2O 0.50
xEthanol x
xMethanol 1 0.5 x

xH2O 0.65
xEthanol 0.25
xMethanol 0.10

xH2O 0.20
xEthanol 0.35
xMethanol 0.45min 100

mtops ?

mbottoms ?

 Figure P12.19
 Separation process with
three components: Water,
ethanol, and methanol.

 12.20 Consider the following two equations:

 x2 � y2 � 42

 x � 3y � 2y2 � 6

 Defi ne a symbolic equation for each, and solve it by using MATLAB ® ’s
symbolic capability. Could you solve these equations by using matrices? Try
this problem twice, once using only integers in your equation defi nitions
and once using fl oating-point numbers (those with decimal points). How
do your results vary? Check the workspace window to determine whether
the results are still symbolic.

Problems 479

 Symbolic Plotting

 12.21 Create plots of the following expressions from x � 0 to 10:

 (a) y � ex
 (b) y � sin1x2
 (c) y � ax2 � bx � c, where a � 5, b � 2, and c � 4
 (d) y � 2x

 Each of your plots should include a title, an x -axis label, a y -axis label, and a
grid.

 12.22 Use ezplot to graph the following expressions on the same fi gure for
 x -values from -2p to 2p (you’ll need to use the hold on command):

 y1 � sin1x2
 y2 � sin12x2
 y3 � sin13x2

 Use the interactive plotting tools to assign each line a different color and
line style.

 12.23 Use ezplot to graph the following implicit equations:

 (a) x2 � y3 � 0
 (b) x � x2 � y � 0
 (c) x2 � 3y2 � 3
 (d) x # y � 4

 12.24 Use ezplot to graph the following parametric functions:

 (a) f11t2 � x � sin1t2
 f21t2 � y � cos1t2

 (b) f11t2 � x � sin1t2
 f21t2 � y � 3 cos1t2

 (c) f11t2 � x � sin1t2
 f21t2 � y � cos13t2

 (d) f1(t) � x � 10sin(t)
from t � 0 to 30 f2(t) � y � t cos(t)

(e) f1(t) � x � t sin(t)
from t � 0 to 30 f2(t) � y � t cos(t)

 12.25 The distance a projectile travels when fi red at an angle u is a function of
time and can be divided into horizontal and vertical distances (see Figure
 P12.25), given respectively by

 horizontal1t2 � tV0 cos1u2
 and

 vertical1t2 � tV0 sin1u2 � 1
2gt2

480 Chapter 12 Symbolic Mathematics

 where
 horizontal � distance traveled in the x direction
 vertical � distance traveled in the y direction
 V0 � initial velocity of the projectile
 g � acceleration due to gravity, 9.8 m>s2
 t � time, s.

 Suppose a projectile is fi red at an initial velocity of 100 m/s and a launch
angle of p > 4 radians (45°). Use ezplot to graph horizontal distance on
the x -axis and vertical distance on the y -axis for times from 0 to 20 seconds.

h(t)

u

v(t)

 Figure P12.25
 Trajectory of a projectile.

 12.26 For each of the following expressions, use the ezpolar plot function to
create a graph of the expression, and use the subplot function to put all
four of your graphs in the same fi gure:

 (a) sin21u2 � cos21u2
 (b) sin1u2
 (c) eu > 5 for u from 0 to 20
 (d) sinh(u) for u from 0 to 20

 12.27 Use ezplot3 to create a three-dimensional line plot of the following functions:

 f11t2 � x � t sin1t2
 f21t2 � y � t cos1t2
 f31t2 � z � t

 12.28 Use the following equation to create a symbolic function Z :

 Z �
sin12X 2 � Y 222X 2 � Y 2

 (a) Use the ezmesh plotting function to create a three-dimensional plot of Z .
 (b) Use the ezsurf plotting function to create a three-dimensional plot of Z .
 (c) Use ezcontour to create a contour map of Z .
 (d) Generate a combination surface and contour plot of Z , using ezsurfc .

 Use subplots to put all the graphs you create into the same fi gure.

 Calculus

 12.29 Determine the fi rst and second derivatives of the following functions, using
MATLAB ® ’s symbolic functions:

 (a) f11x2 � y � x3 � 4x2 � 3x � 8
 (b) f21x2 � y � 1x2 � 2x � 12 1x � 12

Problems 481

 (c) f31x2 � y � cos12x2 sin1x2
 (d) f41x2 � y � 3xe4x2

 12.30 Use MATLAB ® ’s symbolic functions to perform the following integrations:

 (a) L1x2 � x2 dx

 (b) L
1.3

0.3
1x2 � x2 dx

 (c) L1x2 � y22 dx

 (d) L
24

3.5
1ax2 � bx � c2 dx

 12.31 Let the following polynomial represent the altitude in meters during the
fi rst 48 hours following the launch of a weather balloon:

 h1t2 � -0.12t4 � 12t3 � 380t2 � 4100t � 220

 Assume that the unit of t is hours.

 (a) Use MATLAB ® together with the fact that the velocity is the fi rst derivative
of the altitude to determine the equation for the velocity of the balloon.

 (b) Use MATLAB ® together with the fact that acceleration is the derivative
of velocity, or the second derivative of the altitude, to determine the
equation for the acceleration of the balloon.

 (c) Use MATLAB ® to determine when the balloon hits the ground. Because
 h (t) is a fourth-order polynomial, there will be four answers. However,
only one answer will be physically meaningful.

 (d) Use MATLAB ® ’s symbolic plotting capability to create plots of altitude,
velocity, and acceleration from time 0 until the balloon hits the ground
[which was determined in part (c)]. You’ll need three separate plots,
since altitude, velocity, and acceleration have different units.

 (e) Determine the maximum height reached by the balloon.

 Use the fact that the velocity of the balloon is zero at the maximum height.

 12.32 Suppose that water is being pumped into an initially empty tank (see Figure
 P12.32). It is known that the rate of fl ow of water into the tank at time t (in
seconds) is 50 - t l/s. The amount of water Q that fl ows into the tank dur-
ing the fi rst x seconds can be shown to be equal to the integral of the expres-
sion 150 - t2 evaluated from 0 to x seconds. *

Empty tank at t 0;
hence, Q 0

Amount of
water in the
tank Q

Flow rate at time t is
(50 – t) liters/s

 Figure P12.32
 Tank-fi lling problem.

 * From Etter, Kuncicky, and Moore, Introduction to MATLAB 7 (Upper Saddle River, NJ: Pearson/Prentice
Hall, 2005).

482 Chapter 12 Symbolic Mathematics

 (a) Determine a symbolic equation that represents the amount of water in
the tank after x seconds.

 (b) Determine the amount of water in the tank after 30 seconds.
 (c) Determine the amount of water that fl owed into the tank between 10

and 15 seconds after the fl ow was initiated.

 12.33 Consider a spring with the left end held fi xed and the right end free to
move along the x -axis (see Figure P12.33). We assume that the right end of
the spring is at the origin x � 0 when the spring is at rest. When the spring
is stretched, the right end of the spring is at some new value of x greater
than zero. When the spring is compressed, the right end of the spring is at
some value less than zero. Suppose that the spring has a natural length of
1 ft and that a force of 10 lb is required to compress it to a length of 0.5 ft.
Then, it can be shown that the work, in ft lbf performed to stretch the
spring from its natural length to a total of n ft is equal to the integral of 20 x
over the interval from 0 to n � 1.

 (a) Use MATLAB ® to determine a symbolic expression that represents the
amount of work necessary to stretch the spring to a total length of n ft.

 (b) What is the amount of work done to stretch the spring to a total of 2 ft?
 (c) If the amount of work exerted is 25 ft lbf , what is the length of the

stretched spring?

x 0

x 0 x > 0

Length 1

x 0x < 0

 Figure P12.33
 Spring problem described
in Problem 12.33.

 12.34 The constant-pressure heat capacity Cp of a gas can be modeled with the
empirical equation

 Cp � a � bT � cT 2 � dT3

 where a , b , c , and d are empirical constants and T is the temperature in
Kelvin. The change in enthalpy (a measure of energy) as a gas is heated
from T1 to T2 is the integral of this equation with respect to T :

 �h �L
T2

T1
Cp dT

Problems 483

 Find the change in enthalpy of oxygen gas as it is heated from 300 to 1000
K. The values of a , b , c , and d for oxygen are

 a � 25.48

 b � 1.520 � 10�2

 c � -0.7155 � 10�5

 d � 1.312 � 10�9

 Creating Anonymous Functions from Symbolic Expressions

 12.35 A third-order polynomial is often represented as

 ax3 � bx2 � cx3 � d � 0

 (a) Use the symbolic algebra capability in MATLAB ® to solve this equation
for x .

 (b) Use the matlabFunction function to convert your result from part a
into a MATLAB ® function.

 (c) Evaluate your function with the following input:

 a � 4
 b � 3
 c � 1
 d � 3

 12.36 Consider the simple trigonometric function tan(x).

 (a) Use the symbolic algebra capability in MATLAB ® to integrate this function.
 (b) Use the matlabFunction function to convert your result from part a

into a MATLAB ® function.
 (c) Use fplot to plot your function from �5 to �5.

484 Chapter 13 Numerical Techniques

13

 13.1 INTERPOLATION

 Especially when we measure things, we don’t gather data at every possible data point.
Consider a set of x–y data collected during an experiment. By using an interpolation
technique, we can estimate the value of y at values of x where we didn’t take a meas-
urement (see Figure 13.1). The two most common interpolation techniques are lin-
ear interpolation and cubic spline interpolation, both of which are supported by
MATLAB ® .

 13.1.1 Linear Interpolation

 The most common way to estimate a data point between two known points is linear
interpolation . In this technique, we assume that the function between the points can be
estimated by a straight line drawn between them, as shown in Figure 13.2 . If we fi nd
the equation of a straight line defi ned by the two known points, we can fi nd y for any
value of x . The closer together the points are, the more accurate our approximation is
likely to be.

 After reading this chapter, you
should be able to:
 • Interpolate between data

points, using either linear
or cubic spline models

 • Model a set of data points
as a polynomial

 • Use the basic fi tting tool

 • Use the curve-fi tting
toolbox

 • Perform numerical
differentiations

 • Perform numerical
integrations

 • Solve differential equations
numerically

 Objectives

 Numerical
Techniques

 C H A P T E R

13.1 Interpolation 485

0 1 2 3 4 5 6
0

2

4

6

8

10

12
A Data Plot

x-axis

y-
ax

is

What is the
corresponding value
of y for this x?

 Figure 13.1
 Interpolation between data
points.

0 1 2 3 4 5 6
0

2

4

6

8

10

Interpolated Point

Interpolated Points

12
A Data Plot

x-axis

y-
ax

is

1 0 1 2 3 4 5 6

0

2

4

6

8

10

12

14

16
Measured Data

x-axis

y-
ax

is

 HINT
 Although possible, it is rarely wise to extrapolate past the region where you’ve
collected data. It may be tempting to assume that data continue to follow the
same pattern, but this assumption can lead to large errors.

 HINT
 The last character in the function name interp1 is the number 1. Depending
on the font, it may look like the lowercase letter “ell” (l).

 We can perform linear interpolation in MATLAB ® with the interp1
function. We’ll fi rst need to create a set of ordered pairs to use as input to the
function. The data used to create the right-hand graph of Figure 13.2 are

x = 0:5;
y = [15, 10, 9, 6, 2, 0];

 Figure 13.2
 Linear interpolation:
Connect the points with a
straight line to fi nd y .

486 Chapter 13 Numerical Techniques

 To perform a single interpolation, the input to interp1 is the x data, the y
data, and the new x value for which you’d like an estimate of y . For example, to
estimate the value of y when x is equal to 3.5, type

interp1(x,y,3.5)
ans =

4

 You can perform multiple interpolations all at the same time by putting a vec-
tor of x -values in the third fi eld of the interp1 function. For example, to estimate
 y -values for new x ’s spaced evenly from 0 to 5 by 0.2, type

new_x = 0:0.2:5;
new_y = interp1(x,y,new_x)

 which returns

new_y =
Columns 1 through 5
15.0000 14.0000 13.0000 12.0000 11.0000
Columns 6 through 10
10.0000 9.8000 9.6000 9.4000 9.2000
Columns 11 through 15
9.0000 8.4000 7.8000 7.2000 6.6000
Columns 16 through 20
6.0000 5.2000 4.4000 3.6000 2.8000
Columns 21 through 25
2.0000 1.6000 1.2000 0.8000 0.4000
Column 26

0

 We can plot the results on the same graph with the original data in Figure 13.3 :

plot(x,y,new_x,new_y,'o')

 INTERPOLATION
 A technique for estimating
an intermediate value
based on nearby values

1 0 1 2 3 4 5 6

0

2

4

6

8

10

12

14

16

x-axis

y-
ax

is

Measured and Interpolated Data Figure 13.3
 Both measured data points
and interpolated data were
plotted on the same graph.
The original points were
modifi ed in the interactive
plotting function to make
them solid circles.

13.1 Interpolation 487

 (For simplicity, the commands used to add titles and axis labels to plots in this
chapter have been left out.)

 The interp1 function defaults to linear interpolation to make its estimates.
However, as we will see in the next section, other approaches are possible. If we
want (probably for documentation purposes) to explicitly defi ne the approach
used in interp1 as linear interpolation, we can specify it in a fourth fi eld:

interp1(x, y, 3.5, 'linear')
ans =

4

 13.1.2 Cubic Spline Interpolation

 Connecting data points with straight lines probably isn’t the best way to estimate
intermediate values, although it is surely the simplest. We can create a smoother
curve by using the cubic spline interpolation technique, included in the interp1
function. This approach uses a third-order polynomial to model the behavior of the
data. To call the cubic spline, we need to add a fourth fi eld to interp1 :

interp1(x,y,3.5,'spline')

 This command returns an improved estimate of y at x � 3.5:

ans =
3.9417

 Of course, we could also use the cubic spline technique to create an array of
new estimates for y for every member of an array of x -values:

new_x = 0:0.2:5;
new_y_spline = interp1(x,y,new_x,'spline');

 A plot of these data on the same graph as the measured data (Figure 13.4)
using the command

plot(x,y,new_x,new_y_spline,'-o')

 results in two different lines.

1 0 1 2 3 4 5 6

0

2

4

6

8

10

12

14

16
Cubic Spline Interpolation

x-axis

y-
ax

is

 Figure 13.4
 Cubic spline interpolation.
The data points on the
smooth curve were
calculated.

488 Chapter 13 Numerical Techniques

Table 13.1 Interpolation Options in the Interp1 Function

'linear' linear interpolation, which is the default interp1(x,y,3.5,'linear')
ans =
 4

'nearest' nearest-neighbor interpolation interp1(x,y,3.5,'nearest')
ans =
 2

'spline' piecewise cubic spline interpolation interp1(x,y,3.5,'spline')
ans =
 3.9417

'pchip' shape-preserving piecewise cubic
interpolation

interp1(x,y,3.5,'pchip')
ans =
 3.9048

'cubic' same as 'pchip' interp1(x,y,3.5,'cubic')
ans =
 3.9048

'v5cubic' the cubic interpolation from MATLAB®
5, which does not extrapolate and uses
'spline' if x is not equally spaced

interp1(x,y,3.5,'v5cubic')
ans =
 3.9375

EXAMPLE 13.1
THERMODYNAMIC PROPERTIES: USING THE STEAM TABLES
The subject of thermodynamics makes extensive use of tables. Although many ther-
modynamic properties can be described by fairly simple equations, others are either
poorly understood, or the equations describing their behavior are very compli-
cated. It is much easier to tabulate the values. For example, consider the values in
Table 13.2 for steam at 0.1 MPa (approximately 1 atm) (Figure 13.5).

 The data points on the straight-line segments were measured. Note that every
measured point also falls on the curved line.

 The curved line in Figure 13.4 was drawn with the use of the interpolated data
points. The line composed of straight-line segments was drawn through just the
original data.

 Although the most common ways to interpolate between data points are linear and
spline approaches, MATLAB ® does offer some other choices, as listed in Table 13.1 .

Table 13.2 Internal Energy of Superheated Steam at 0.1 MPa,
as a Function of Temperature

Temperature, °C Internal Energy u, kJ/kg

100 2506.7

150 2582.8

200 2658.1

250 2733.7

300 2810.4

400 2967.9

500 3131.6

Source: Data from Joseph H. Keenan, Frederick G. Keyes, Philip G. Hill, and Joan G.
Moore, Steam Tables, SI units (New York: John Wiley & Sons, 1978).

13.1 Interpolation 489

Figure 13.5
Geysers spray
high-temperature and
high-pressure water and
steam. (Rod Redfern ©
Dorling Kindersley.)

Use linear interpolation to determine the internal energy at 215°C. Use linear
interpolation to determine the temperature if the internal energy is 2600 kJ/kg.

1. State the Problem
 Find the internal energy of steam, using linear interpolation.

Find the temperature of the steam, using linear interpolation.

2. Describe the Input and Output

Input Table of temperature and internal energy
 u unknown
 T unknown

Output Internal energy
 Temperature

3. Develop a Hand Example
 In the fi rst part of the problem, we need to fi nd the internal energy at 215°C.

The table includes values at 200°C and 250°C. First we need to determine the
fraction of the distance between 200 and 250 at which the value 215 falls:

215 � 200
250 � 200

� 0.30

 If we model the relationship between temperature and internal energy as lin-
ear, the internal energy should also be 30% of the distance between the tabu-
lated values:

0.30 �
u � 2658.1

2733.7 � 2658.1
 Solving for u gives

u � 2680.78 kJ>kg

4. Develop a MATLAB® Solution
 Create the MATLAB® solution in an M-fi le, then run it in the command

 environment:

%Example 13.1
%Thermodynamics
T=[100, 150, 200, 250, 300, 400, 500];
u= [2506.7, 2582.8, 2658.1, 2733.7, 2810.4, 2967.9, 3131.6];
newu=interp1(T,u,215)
newT=interp1(u,T,2600)

(continued)

490 Chapter 13 Numerical Techniques

 The code returns

newu =
 2680.78
newT =
 161.42

5. Test the Solution
 The MATLAB® result matches the hand result. This approach could be used

for any of the properties tabulated in the steam tables. The JANAF tables pub-
lished by the National Institute of Standards and Technology are a similar
source of thermodynamic properties.

 THERMODYNAMIC PROPERTIES: EXPANDING THE STEAM TABLES
 As we saw in Example 13.1 , thermodynamics makes extensive use of tables. Commonly,
many experiments are performed at atmospheric pressure, so you may regularly need
to use Table 13.3 , which is just a portion of the steam tables (Figure 13.6).

 Notice that the table is spaced fi rst at 50°C intervals and then at 100°C intervals.
Suppose you have a project that requires you to use this table and you prefer not to

 EXAMPLE 13.2

 Figure 13.6
 Power plants use steam
as a “working fl uid.”

 Table 13.3 Properties of Superheated Steam at 0.1 MPa (Approximately 1 atm)

 Temperature, °C
 Specifi c Volume,

 v , m3>kg
 Internal Energy,

 u , kJ/kg
 Enthalpy,
 h , kJ/kg

 100 1.6958 2506.7 2676.2

 150 1.9364 2582.8 2776.4

 200 2.172 2658.1 2875.3

 250 2.406 2733.7 2974.3

 300 2.639 2810.4 3074.3

 400 3.103 2967.9 3278.2

 500 3.565 3131.6 3488.1

 Source : Data from Joseph H. Keenan, Frederick G. Keyes, Philip G. Hill, and Joan G. Moore, Steam Tables,
SI units (New York: John Wiley & Sons, 1978).

13.1 Interpolation 491

perform a linear interpolation every time you use it. Use MATLAB ® to create a
table, employing linear interpolation, with a temperature spacing of 25°C.

 1. State the Problem
 Find the specifi c volume, internal energy, and enthalpy every 5°C.
 2. Describe the Input and Output

 Input Table of temperature and internal energy
 New table interval of 25°C

 Output Table

 3. Develop a Hand Example
 In Example 13.1 , we found the internal energy at 215°C. Since 215 is not on

our output table, we’ll redo the calculations at 225°C:

225 � 200
250 � 200

� 0.50

 and

 0.50 �
u � 2658.1

2733.7 � 2658.1

 Solving for u gives

 u � 2695.9 kJ>kg
 We can use this same calculation to confi rm those in the table we create.
 4. Develop a MATLAB ® Solution
 Create the MATLAB ® solution in an M-fi le, then run it in the command envi-

ronment:

%Example 13.2
%Thermodynamics
clear, clc
T = [100, 150, 200, 250, 300, 400, 500]';
v = [1.6958, 1.9364, 2.172, 2.406, 2.639, 3.103, 3.565]';
u = [2506.7, 2582.8, 2658.1, 2733.7, 2810.4, 2967.9, 3131.6]';
h = [2676.2, 2776.4, 2875.3, 2974.3, 3074.3, 3278.2, 3488.1]';
props = [v,u,h];
newT = [100:25:500]';
newprop = interp1(T,props,newT);
disp('Steam Properties at 0.1 MPa')
disp('Temp Specific Volume Internal Energy Enthalpy')
disp(' C m^3/kg kJ/kg kJ/kg')
fprintf('%6.0f %10.4f %8.1f %8.1f \n',[newT,newprop]')

 The program prints the following table to the command window:

Steam Properties at 0.1 MPa
Temp Specific Volume Internal Energy Enthalpy
C m^3/kg kJ/kg kJ/kg
100 1.6958 2506.7 2676.2
125 1.8161 2544.8 2726.3
150 1.9364 2582.8 2776.4
175 2.0542 2620.4 2825.9
200 2.1720 2658.1 2875.3
225 2.2890 2695.9 2924.8

(continued)

492 Chapter 13 Numerical Techniques

250 2.4060 2733.7 2974.3
275 2.5225 2772.1 3024.3
300 2.6390 2810.4 3074.3
325 2.7550 2849.8 3125.3
350 2.8710 2889.2 3176.3
375 2.9870 2928.5 3227.2
400 3.1030 2967.9 3278.2
425 3.2185 3008.8 3330.7
450 3.3340 3049.8 3383.1
475 3.4495 3090.7 3435.6
500 3.5650 3131.6 3488.1

5. Test the Solution
 The MATLAB result matches the hand result. Now that we know the program

works, we can create more extensive tables by changing the defi nition of newT
from

newT = [100:25:500]';

 to a vector with a smaller temperature increment—for example,

newT = [100:1:500]';

 PRACTICE EXERCISES 13.1

 Create x and y vectors to represe nt the following data:

 x y

 10 23

 20 45

 30 60

 40 82

 50 111

 60 140

 70 167

 80 198

 90 200

 100 220

 1. Plot the data on an x–y plot.
2. Use linear interpolation to approximate the value of y when x � 15.
3. Use cubic spline interpolation to approximate the value of y when x � 15.
4. Use linear interpolation to approximate the value of x when y � 80.
5. Use cubic spline interpolation to approximate the value of x when y � 80.
6. Use cubic spline interpolation to approximate y -values for x -values

evenly spaced between 10 and 100 at intervals of 2.
7. Plot the original data on an x–y plot as data points not connected by a

line. Also, plot the values calculated in Exercise 6.

13.1 Interpolation 493

 13.1.3 Multidimensional Interpolation

 Imagine you have a set of data z that depends on two variables, x and y . For exam-
ple, consider this table:

 x � 1 x � 2 x � 3 x � 4

 y � 2 7 15 22 30

 y � 4 54 109 164 218

 y � 6 403 807 1210 1614

 If you wanted to determine the value of z at y � 3 and x � 1.5, you would have
to perform two interpolations. One approach would be to fi nd the values of z at
 y � 3 and all the given x -values by using interp1 and then do a second interpola-
tion in your new chart. First let’s defi ne x , y , and z in MATLAB ® :

y = 2:2:6;
x = 1:4;
z = [7 15 22 30

54 109 164 218
403 807 1210 1614];

 Now we can use interp1 to fi nd the values of z at y � 3 for all the x -values:

new_z = interp1(y,z,3) returns
new_z =

30.50 62.00 93.00 124.00

 Finally, since we have z -values at y � 3, we can use interp1 again to fi nd z at y � 3
and x � 1.5:

new_z2 = interp1(x,new_z,1.5)
new_z2 =

46.25

 Although this approach works, performing the calculations in two steps is awk-
ward. MATLAB ® includes a two-dimensional linear interpolation function,
 interp2 , that can solve the problem in a single step:

interp2(x,y,z,1.5,3)
ans =
46.2500

 The fi rst fi eld in the interp2 function must be a vector defi ning the value
associated with each column (in this case, x), and the second fi eld must be a vector
defi ning the values associated with each row (in this case, y). The array z must have
the same number of columns as the number of elements in x and must have the
same number of rows as the number of elements in y . The fourth and fi fth fi elds
correspond to the values of x and of y for which you would like to determine new
 z -values.

 MATLAB ® also includes a function, interp3 , for three-dimensional interpola-
tion. Consult the help feature for the details on how to use this function and
 interpn , which allows you to perform n -dimensional interpolation. All these func-
tions default to the linear interpolation technique but will accept any of the other
techniques listed in Table 13.1 .

494 Chapter 13 Numerical Techniques

 13.2 CURVE FITTING

 Although we could use interpolation techniques to fi nd values of y between meas-
ured x -values, it would be more convenient if we could model experimental data as
 y � f1x2. Then we could just calculate any value of y we wanted. If we know some-
thing about the underlying relationship between x and y , we may be able to deter-
mine an equation on the basis of those principles. For example, the ideal gas law is
based on two underlying assumptions:

 • All the molecules in a gas collide elastically.
 • The molecules don’t take up any room in their container.

 Neither assumption is entirely accurate, so the ideal gas law works only when
they are a good approximation of reality, but that is true for many situations, and
the ideal gas law is extremely valuable. However, when real gases deviate from this
simple relationship, we have two choices for how to model their behavior. Either we
can try to understand the physics of the situation and adjust the equation accord-
ingly or we can just take the data and model them empirically. Empirical equations
are not related to any theory of why a behavior occurs; they just do a good job of
predicting how a parameter changes in relationship to another parameter.

 MATLAB ® has built-in curve-fi tting functions that allow us to model data empir-
ically. It’s important to remind ourselves that these models are good only in the

 PRACTICE EXERCISES 13.2

 Create x and y vectors to represent the following data:

 y T >x: x � 15 x � 30

 y � 10 z � 23 33

 20 45 55

 30 60 70

 40 82 92

 50 111 121

 60 140 150

 70 167 177

 80 198 198

 90 200 210

 100 20 230

 1. Plot both sets of y–z data on the same plot. Add a legend identifying
which value of x applies to each data set.

 2. Use two-dimensional linear interpolation to approximate the value of z
when y � 15 and x � 20.

 3. Use two-dimensional cubic spline interpolation to approximate the
value of z when y � 15 and x � 20.

 4. Use linear interpolation to create a new subtable for x � 20 and x � 25
for all the y -values.

 KEY IDEA
 Curve fi tting is a technique
for modeling data with an
equation

13.2 Curve Fitting 495

region where we’ve collected data. If we don’t understand why a parameter such as
 y changes as it does with x , we can’t predict whether our data-fi tting equation will
still work outside the range where we’ve collected data.

 13.2.1 Linear Regression

 The simplest way to model a set of data is as a straight line. Let’s revisit the data
from Section 13.1.1:

x = 0:5;
y = [15, 10, 9, 6, 2, 0];

 If we plot the data in Figure 13.7 , we can try to draw a straight line through the
data points to get a rough model of the data’s behavior. This process is sometimes
called “eyeballing it”—meaning that no calculations were done, but it looks like a
good fi t.

 Looking at the plot, we can see that several of the points appear to fall exactly
on the line, but others are off by varying amounts. In order to compare the quality
of the fi t of this line to other possible estimates, we fi nd the difference between the
actual y -value and the value calculated from the estimate. This difference is called
the residual .

 We can find the equation of the line in Figure 13.7 by noticing that at
 x � 0, y � 0 and at x � 5, y � 0 . Thus, the slope of the line is

rise
run

�
�y

�x
�

y2 � y1

x2 � x1
�

0 � 15
5 � 0

� -3

 The line crosses the y -axis at 15, so the equation of the line is

 y � -3x � 15

 The differences between the actual values and the calculated values are listed in
 Table 13.4 .

1 0 1 2 3 4 5 6

0

2

4

6

8

10

12

14

16
Linear Model of Some Data

x-axis

deviation from
the model

y-
ax

is

 Figure 13.7
 A linear model; the line
was “eyeballed.”

496 Chapter 13 Numerical Techniques

 The linear regression technique uses an approach called least squares fi t to
 compare how well different equations model the behavior of the data. In this
 technique, the differences between the actual and calculated values are squared
and added together. This has the advantage that positive and negative deviations
don’t cancel each other out. We could use MATLAB ® to calculate this parameter
for our data. We have

sum_of_the_squares = sum((y-y_calc).^2)

 which gives us

sum_of_the_squares =
5

 It’s beyond the scope of this chapter to explain how the linear regression tech-
nique works, except to say that it compares different models and chooses the appro-
priate one in which the sum of the squares is the smallest. Linear regression is
accomplished in MATLAB ® with the polyfit function. Three fi elds are required
by polyfit : a vector of x -values, a vector of y -values, and an integer indicating what
order polynomial should be used to fi t the data. Since a straight line is a fi rst-order
polynomial, we’ll enter the number 1 into the polyfit function:

polyfit(x,y,1)
ans =
-2.9143 14.2857

 The results are the coeffi cients corresponding to the best-fi t fi rst-order polyno-
mial equation:

 y � -2.9143x � 14.2857

 Is this really a better fi t than our “eyeballed” model? We can calculate the sum
of the squares to fi nd out:

best_y = -2.9143*x+14.2857;
new_sum = sum((y-best_y).^2)
new_sum =

3.3714

 Since the result of the sum-of-the-squares calculation is indeed less than the
value found for the “eyeballed” line, we can conclude that MATLAB ® found a better
fi t to the data. We can plot the data and the best-fi t line determined by linear regres-
sion (see Figure 13.8) to try to get a visual sense of whether the line fi ts the data well:

plot(x,y,'o',x,best_y)

 Table 13.4 Difference between Actual and Calculated Values

 x y (actual) y_calc (calculated) difference � y � y_calc

 0 15 15 0

 1 10 12 -2

 2 9 9 0

 3 6 6 0

 4 2 3 -1

 5 0 0 0

 LINEAR REGRESSION
 A technique for modeling
data as a straight line

13.2 Curve Fitting 497

 13.2.2 Polynomial Regression

 Of course, straight lines are not the only equations that could be analyzed with the
regression technique. For example, a common approach is to fi t the data with a
higher-order polynomial of the form

 y � a1x
n � a2x

n�1 � a3x
n�2 � . . . � anx � an�1

 Polynomial regression is used to get the best fi t by minimizing the sum of the
squares of the deviations of the calculated values from the data. The polyfit func-
tion allows us to do this easily in MATLAB ® . We can fi t our sample data to second-
and third-order equations with the commands

a=polyfit(x,y,2)
a =

0.0536 -3.1821 14.4643

 and

a=polyfit(x,y,3)
a =
-0.0648 0.5397 -4.0701 14.6587

 which correspond to the following equations

 y2 � 0.0536x2 � 3.1821x � 14.4643

y3 � -0.0648x3 � 0.5397x2 � 4.0701x � 14.6587

 We can fi nd the sum of the squares to determine whether these models fi t the
data better:

y2 = 0.0536*x.^2-3.182*x + 14.4643;
sum((y2-y).^2)
ans =

3.2643

1 0 1 2 3 4 5 6

0

2

4

6

8

10

12

14

16

x-axis

y-
ax

is

Best Fit Using Linear Regression Figure 13.8
 Data and best-fi t line using
linear regression.

498 Chapter 13 Numerical Techniques

y3 = -0.0648*x.^3+0.5398*x.^2-4.0701*x + 14.6587
sum((y3-y).^2)
ans =

2.9921

 As we might expect, the more terms we add to our equation, the “better” is the
fi t, at least in the sense that the distance between the measured and predicted data
points decreases.

 In order to plot the curves defi ned by these new equations, we’ll need more
than the six data points used in the linear model. Remember that MATLAB ® creates
plots by connecting calculated points with straight lines, so if we want a smooth
curve, we’ll need more points. We can get more points and plot the curves with the
following code:

smooth_x = 0:0.2:5;
smooth_y2 = 0.0536*smooth_x.^2-3.182*smooth_x + 14.4643;
subplot(1,2,1)
plot(x,y,'o',smooth_x,smooth_y2)
smooth_y3 = -0.0648*smooth_x.^3+0.5398*smooth_x.^2-4.0701*
smooth_x + 14.6587;
subplot(1,2,2)
plot(x,y,'o',smooth_x,smooth_y3)

 The results are shown in Figure 13.9 . Notice the slight curvature in each model.
Although mathematically these models fi t the data better, they may not be as good
a representation of reality as the straight line. As an engineer or scientist, you’ll
need to evaluate any modeling you do. You’ll need to consider what you know about
the physics of the process you’re modeling and how accurate and reproducible
your measurements are.

 13.2.3 The Polyval Function

 The polyfit function returns the coeffi cients of a polynomial that best fi ts the
data, at least on the basis of a regression criterion. In the previous section, we
entered those coeffi cients into a MATLAB ® expression for the corresponding poly-
nomial and used it to calculate new values of y . The polyval function can perform
the same job without our having to reenter the coeffi cients.

0 2 4 6
5

0

5

10

15

x-axis

y-
ax

is

Second-Order Model

0 2 4 6
5

0

5

10

15

x-axis

y-
ax

is

Third-Order Model

 KEY IDEA
 Modeling of data should
be based not only on the
data collected but also on
a physical understanding
of the process

 Figure 13.9
 Second- and third-order
polynomial fi ts.

13.2 Curve Fitting 499

 The polyval function requires two inputs. The fi rst is a coeffi cient array, such
as that created by polyfit . The second is an array of x -values for which we would
like to calculate new y -values. For example, we might have

coef = polyfit(x,y,1)
y_first_order_fit = polyval(coef,x)

 These two lines of code could be shortened to one line by nesting functions:

y_first_order_fit = polyval(polyfit(x,y,1),x)

 We can use our new understanding of the polyfit and polyval functions to
write a program to calculate and plot the fourth- and fi fth-order fi ts for the data
from Section 13.1.1:

y4 = polyval(polyfit(x,y,4),smooth_x);
y5 = polyval(polyfit(x,y,5),smooth_x);

subplot(1,2,1)
plot(x,y,'o',smooth_x,y4)
axis([0,6,-5,15])
subplot(1,2,2)
plot(x,y,'o',smooth_x,y5)
axis([0,6,-5,15])

 Figure 13.10 gives the results of our plot.
 As expected, the higher-order fi ts match the data better and better. The fi fth-

order model matches exactly because there were only six data points.

0 2 4 6
5

0

5

10

15
Fourth-Order Model

x-axis

y-
ax

is

0 2 4 6
5

0

5

10

15
Fifth-Order Model

x-axis

y-
ax

is

 Figure 13.10
 Fourth- and fi fth-order
model of six data points.

 HINT
 You could create all four of the graphs shown in Figures 13.9 and 13.10 by
using a for loop that makes use of subplots and the sprintf function.

x = 0:5;
y = [15, 10, 9, 6, 2, 0];
smooth_x = 0:0.2:5;
for k = 1:4

subplot(2,2,k)
plot(x,y,'o',smooth_x,polyval(polyfit(x,y,k+1),smooth_x))
axis([0,6,-5,15])
a = sprintf('Polynomial plot of order %1.0f \n',k+1);
title(a)

end

500 Chapter 13 Numerical Techniques

 PRACTICE EXERCISES 13.3

 Create x and y vectors to represent the following data:

 z � 15 z � 30

 x y x y

 10 23 10 33

 20 45 20 55

 30 60 30 70

 40 82 40 92

 50 111 50 121

 60 140 60 150

 70 167 70 177

 80 198 80 198

 90 200 90 210

 100 220 100 230

 1. Use the polyfit function to fi t the data for z � 15 to a fi rst-order
polynomial.

2. Create a vector of new x values from 10 to 100 in intervals of 2. Use
your new vector in the polyval function together with the coeffi cient
values found in Exercise 1 to create a new y vector.

3. Plot the original data as circles without a connecting line and the
calculated data as a solid line on the same graph. How well do you
think your model fi ts the data?

4. Repeat Exercises 1 through 3 for the x and y data corresponding to z � 30.

 WATER IN A CULVERT
 Determining how much water will fl ow through a culvert is not as easy as it might fi rst
seem. The channel could have a nonuniform shape (see Figure 13.11), obstructions
might infl uence the fl ow, friction is important, and so on. A numerical approach
allows us to fold all those concerns into a model of how the water actually behaves.

 EXAMPLE 13.3

 Figure 13.11
 Culverts do not necessarily
have a uniform cross
section.

 Consider the Following Data
Collected From an Actual Culvert

 Height, ft Flow, ft3>s

 0 0

 1.7 2.6

 1.95 3.6

 2.60 4.03

 2.92 6.45

 4.04 11.22

 5.24 30.61

13.2 Curve Fitting 501

 Compute a best-fi t linear, quadratic, and cubic equation for the data, and plot them
on the same graph. Which model best represents the data? (Linear is fi rst order,
quadratic is second order, and cubic is third order.)

 1. State the Problem
 Perform a polynomial regression on the data, plot the results, and determine

which order best represents the data.
 2. Describe the Input and Output

 Input Height and fl ow data

 Output Plot of the results

 3. Develop a Hand Example
 Draw an approximation of the curve by hand. Be sure to start at zero, since, if the

height of water in the culvert is zero, no water should be fl owing (see Figure 13.12).
 4. Develop a MATLAB ® Solution
 Create the MATLAB ® solution in an M-fi le, then run it in the command

environment:

%13.3 Example - Water in a Culvert
height = [1.7, 1.95, 2.6, 2.92, 4.04, 5.24];
flow = [2.6, 3.6, 4.03, 6.45, 11.22, 30.61];
new_height = 0:0.5:6;
newf1 = polyval(polyfit(height,flow,1),new_height);
newf2 = polyval(polyfit(height,flow,2),new_height);
newf3 = polyval(polyfit(height,flow,3),new_height);
plot(height,flow,'o',new_height,newf1,new_height,newf2,
new_height,newf3)
title('Fit of Water Flow')
xlabel('Water Height, ft')
ylabel('Flow Rate, CFS')
legend('Data','Linear Fit','Quadratic Fit', 'Cubic Fit')

 The MATLAB ® code generates the plot shown in Figure 13.13 .

0 1 2 3 4 5 6
20

10

0

10

20

30

40

50

60
Hand Fit of Water Flow

Water Height, ft

F
lo

w
 R

at
e,

 C
F

S

 Figure 13.12
Hand fi t of water fl ow.

(continued)

502 Chapter 13 Numerical Techniques

 HEAT CAPACITY OF A GAS
 The amount of energy necessary to warm a gas 1°C (called the heat capacity of the
gas) depends not only on the gas, but on its temperature as well. This relationship
is commonly modeled with polynomials. For example, consider the data for carbon
dioxide in Table 13.5 .

 Use MATLAB ® to model these data as a polynomial. Then compare the results
with those obtained from the model published in B. G. Kyle, Chemical and Process
Thermodynamics (Upper Saddle River, NJ: Prentice Hall PTR, 1999), namely

 Cp � 1.698 � 10�10T 3 � 7.957 � 10�7T 2 � 1.359 � 10�3T � 5.059 � 10�1

 1. State the Problem
 Create an empirical mathematical model that describes heat capacity as a function

of temperature. Compare the results with those obtained from published models.

0 1 2 3 4 5 6
10

0

10

20

30

40

50

60
Fit of Water Flow

Water Height, ft

F
lo

w
 R

at
e,

 C
F

S

Data
Linear Fit
Quadratic Fit
Cubic Fit

 Figure 13.13
 Different curve-fi tting
approaches.

 5. Test the Solution
 The question of which line best represents the data is diffi cult to answer. The

higher-order polynomial approximation will follow the data points better, but it
doesn’t necessarily represent reality better.
 The linear fi t predicts that the water fl ow rate will be approximately -5
CFS at a height of zero, which doesn’t match reality. The quadratic fi t goes back
up after a minimum at a height of approximately 1.5 m—again a result incon-
sistent with reality. The cubic (third-order) fi t follows the points the best and is
probably the best polynomial fi t. We should also compare the MATLAB ® solu-
tion with the hand solution. The third-order (cubic) polynomial fi t approxi-
mately matches the hand solution.

EXAMPLE 13.4

13.2 Curve Fitting 503

2. Describe the Input and Output

Input Use the table of temperature and heat-capacity data provided.

Output Find the coeffi cients of a polynomial that describes the data.
 Plot the results.

3. Develop a Hand Example
 By plotting the data (Figure 13.14) we can see that a straight-line fi t (fi rst-order

polynomial) is not a good approximation of the data. We’ll need to evaluate
several different models—for example, from fi rst to fourth order.

200 400 600 800 1000 1200 1400 1600
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
Heat Capacity of Carbon Dioxide

Temperature, K

H
ea

t C
ap

ac
it

y,
 C

p,
 k

J/
kg

 K

 Figure 13.14
 Heat capacity of
carbon dioxide as a
function of temperature.

 Table 13.5 Heat Capacity of Carbon Dioxide

 Temperature, T , in K Heat Capacity, Cp in kJ/(kg K)

 250 0.791

 300 0.846
 350 0.895
 400 0.939
 450 0.978
 500 1.014
 550 1.046
 600 1.075
 650 1.102
 700 1.126
 750 1.148
 800 1.169
 900 1.204

 1000 1.234
 1500 1.328

Source : Tables of Thermal Properties of Gases , NBS Circular 564, 1955.

(continued)

504 Chapter 13 Numerical Techniques

4. Develop a MATLAB ® Solution

%Example 13.4 Heat Capacity of a Gas
%Define the measured data
T=[250:50:800,900,1000,1500];
Cp=[0.791, 0.846, 0.895, 0.939, 0.978, 1.014, 1.046, . . .
 1.075, 1.102, 1.126, 1.148, 1.169, 1.204, 1.234, 1.328];
%Define a finer array of temperatures
new_T = 250:10:1500;

%Calculate new heat capacity values, using four different
polynomial models
Cp1 = polyval(polyfit(T,Cp,1),new_T);
Cp2 = polyval(polyfit(T,Cp,2),new_T);
Cp3 = polyval(polyfit(T,Cp,3),new_T);
Cp4 = polyval(polyfit(T,Cp,4),new_T);

%Plot the results
subplot(2,2,1)
plot(T,Cp,'o',new_T,Cp1)
axis([0,1700,0.6,1.6])
subplot(2,2,2)
plot(T,Cp,'o',new_T,Cp2)
axis([0,1700,0.6,1.6])
subplot(2,2,3)
plot(T,Cp,'o',new_T,Cp3)
axis([0,1700,0.6,1.6])
subplot(2,2,4)
plot(T,Cp,'o',new_T,Cp4)
axis([0,1700,0.6,1.6])

 By looking at the graphs shown in Figure 13.15 , we can see that a second- or
third-order model adequately describes the behavior in this temperature
region. If we decide to use a third-order polynomial model, we can fi nd the
coeffi cients with polyfit :

polyfit(T,Cp,3)
ans =
2.7372e-010 -1.0631e-006 1.5521e-003 4.6837e-001

 The results correspond to the equation

 Cp � 2.7372 � 10�10T 3 � 1.0631 � 10�6T 2 � 1.5521 � 10�3T

� 4.6837 � 10�1

 5. Test the Solution
 Comparing our result with that reported, we see that they are close, but not exact:

 Cp � 2.737 � 10�10T 3 � 10.63 � 10�7T 2 � 1.552 � 10�3T � 4.683 � 10�1

 (our fi t)

 Cp � 1.698 � 10�10T 3 � 7.957 � 10�7T 2 � 1.359 � 10�3T � 5.059 � 10�1

 (literature)

13.3 Using the Interactive Fitting Tools 505

 This is not too surprising, since we modeled a limited number of data points.
The models reported in the literature use more data and are therefore probably
more accurate.

0 500 1000 1500
0.6

0.8

1

1.2

1.4

1.6

H
ea

t C
ap

ac
it

y,
 k

J/
kg

 K

First-Order Model

0 500 1000 1500
0.6

0.8

1

1.2

1.4

1.6
Second-Order Model

0 500 1000 1500
0.6

0.8

1

1.2

1.4

Temperature, K

H
ea

t C
ap

ac
it

y,
 k

J/
kg

 K

Third-Order Model

0 500 1000 1500
0.6

0.8

1

1.2

1.4

Temperature, K

Fourth-Order Model

 Figure 13.15
 A comparison of
different polynomials
used to model the
heat-capacity data of
carbon dioxide.

 13.3 USING THE INTERACTIVE FITTING TOOLS

 MATLAB ® 7 includes new interactive plotting tools that allow you to annotate your
plots without using the command window. Also included are basic curve fi tting,
more complicated curve fi tting, and statistical tools.

 13.3.1 Basic Fitting Tools

 To access the basic fi tting tools, fi rst create a fi gure:

x = 0:5;
y = [0,20,60,68,77,110]
plot(x,y,'o')
axis([-1,7,-20,120])

 These commands produce a graph (Figure 13.16) with some sample data.
 To activate the curve-fi tting tools, select Tools: Basic Fitting from the menu

bar in the fi gure. The basic fi tting window opens on top of the plot. By checking
 linear , cubic , and show equations (see Figure 13.16), we generated the plot
shown in Figure 13.17 .

506 Chapter 13 Numerical Techniques

 Figure 13.16
 Interactive basic fi tting
window.

 RESIDUAL
 The difference between the
actual and calculated value

1 0 1 2 3 4 5 6 7
20

0

20

40

60

80

100

120
Some Data

Time, seconds

T
em

pe
ra

tu
re

, d
eg

re
es

 F

y 21*x 3.8

y 1.1*x3 9.3*x2 41*x 3.1

data 1

linear

cubic

 Figure 13.17
 Plot generated with the
basic fi tting window.

 Checking the plot residuals box generates a second plot, showing how far each data
point is from the calculated line, as shown in Figure 13.18 .

 In the lower right-hand corner of the basic fi tting window is an arrow button.
Selecting that button twice opens the rest of the window (Figure 13.19).

 The center panel of the window shows the results of the curve fi t and offers the
option of saving those results into the workspace. The right-hand panel allows you
to select x -values and calculate y -values based on the equation displayed in the
center panel.

 In addition to the basic fi tting window, you can access the data statistics window
(Figure 13.20) from the fi gure menu bar. Select Tools: Data Statistics from the
fi gure window. The data statistics window allows you to calculate statistical functions
such as the mean and standard deviation interactively, based on the data in the
 fi gure, and allows you to save the results to the workspace.

13.3 Using the Interactive Fitting Tools 507

 Figure 13.19
 Basic fi tting window.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10

5

0

5

10

residuals

1 0 1 2 3 4 5 6 7
20

0

20

40

60

80

100

120
Some Data

Time, seconds

T
em

pe
ra

tu
re

, d
eg

re
es

 F y = 21*x + 3.8
y 1.1*x3 9.3*x2 41*x 3.1

 Figure 13.18
 Residuals are the difference
between the actual and
calculated data points.

508 Chapter 13 Numerical Techniques

 13.3.2 Curve-Fitting Toolbox

 In addition to the basic fi tting utility, MATLAB ® contains toolboxes to help you
perform specialized statistical and data-fi tting operations. In particular, the curve-
fitting toolbox contains a graphical user interface (GUI) that allows you to fi t
curves with more than just polynomials. You must have the curve-fi tting toolbox
installed in your copy of MATLAB ® before you can execute the examples that fol-
low. At this time the curve-fi tting toolbox is available as an add-on for the student
edition of MATLAB ® .

 Before you access the curve-fi tting toolbox, you’ll need a set of data to analyze.
We can use the data we’ve used earlier in the chapter:

x = 0:5;
y = [0,20,60,68,77,110];

 To open the curve-fi tting toolbox, type

cftool

 This launches the curve-fi tting tool window. Now you’ll need to tell the
curve-fi tting tool what data to use. Select the data button, which will open a
data window. The data window has access to the workspace and will let you select
an independent (x) and dependent (y) variable from a drop-down list (see
 Figure 13.21).

 In our example, you should choose x and y , respectively, from the drop-down
lists. You can assign a data-set name, or MATLAB ® will assign one for you. Once
you’ve chosen variables, MATLAB ® plots the data. At this point, you can close the
data window.

 Going back to the curve-fi tting tool window, you now select the Fitting but-
ton that offers you choices of fi tting algorithms. Select New fit , and select a fi t

 Figure 13.20
 Data statistics window.

13.3 Using the Interactive Fitting Tools 509

 Figure 13.21
 The curve-fi tting and data
windows.

 Figure 13.22
 Curve-fi tting tool window.

type from the Type of fit list. You can experiment with fi tting choices to fi nd
the best one for your graph. We chose an interpolated scheme that forces the plot
through all the points, and a third-order polynomial. The results are shown in
 Figure 13.22 .

510 Chapter 13 Numerical Techniques

 POPULATION
 The population of the earth is expanding rapidly (see Figure 13.23), as is the popu-
lation of the United States. MATLAB ® includes a built-in data fi le, called census ,
that contains U.S. census data since 1790. The data fi le contains two variables:
 cdate , which contains the census dates; and pop , which lists the population in
 millions. To load the fi le into your workspace, type

load census

 Use the curve-fi tting toolbox to fi nd an equation that represents the data.

 1. State the Problem
 Find an equation that represents the population growth of the United States.
 2. Describe the Input and Output

 Input Table of population data

 Output Equation representing the data

 3. Develop a Hand Example
 Plot the data by hand.
 4. Develop a MATLAB ® Solution
 The curve-fi tting toolbox is an interactive utility, activated by typing

cftool

 which opens the curve-fi tting window. You must have the curve-fi tting toolbox
installed in your copy of MATLAB ® for this example to work. Select the data
button and choose cdate as the x -value and pop as the y -value. After closing
the data window, select the fi tting button.
 Since we have always heard that population is growing exponentially,
experiment with the exponential-fi t options. We also tried the polynomial
option and chose a third-order (cubic) polynomial. Both approaches produced
a good fi t, but the polynomial was actually the best. We sent the curve-fi tting
window graph to a fi gure window and added titles and labels (see Figure 13.24).

 From the data in the fi tting window, we saw that the sum of the squares of
the errors (SSE) was larger for the exponential fi t, but that both approaches
gave R -values greater than 0.99. (An R -value of 1 indicates a perfect fi t.)

 Figure 13.23
 The earth’s population
is expanding.

EXAMPLE 13.5

13.3 Using the Interactive Fitting Tools 511

 The results for the polynomial were as follows:

Linear model Poly3:
f(x) = p1*x^3 + p2*x^2 + p3*x + p4
where x is normalized by mean 1890 and std 62.05

Coefficients (with 95% confidence bounds):
p1 = 0.921 (-0.9743, 2.816)
p2 = 25.18 (23.57, 26.79)
p3 = 73.86 (70.33, 77.39)
p4 = 61.74 (59.69, 63.8)

Goodness of fit:
SSE: 149.8
R-square: 0.9988
Adjusted R-square: 0.9986
RMSE: 2.968

 We normalized the x -values used in the equation for a better fi t by subtracting
the mean and dividing by the standard deviation:

x = (cdate-mean(cdate))/std(cdate);

 5. Test the Solution
 Compare the fi ts by eye; they both appear to model the data adequately. It is
important to remember that just because a solution models the data well, it is
rarely appropriate to extend the solution past the measured data.

1800 1820 1840 1860 1880 1900 1920 1940 1960 1980

0

50

100

150

200

250

Census Year

P
op

ul
at

io
n,

 in
 m

ill
io

ns

U.S. Population Data

pop vs. cdate
fit 1
fit 2

 Figure 13.24
 U.S. census data
modeled with an
exponential fi t and a
third-order polynomial.

512 Chapter 13 Numerical Techniques

 13.4 DIFFERENCES AND NUMERICAL DIFFERENTIATION

 13.4.1 The Diff Function

 The derivative of the function y � f(x) is a measure of how y changes with x . If you
can defi ne an equation that relates x and y , you can use the functions contained in
the symbolic toolbox to fi nd an equation for the derivative. However, if all you have
are data, you can approximate the derivative by dividing the change in y by the
change in x :

dy

dx
�

�y

�x
�

y2 � y1

x2 � x1

 If we plot the data from Section 13.1 that we’ve used throughout the chapter,
this approximation of the derivative corresponds to the slope of each of the line
segments used to connect the data, as shown in Figure 13.25 .

 If, for example, these data describe the measured temperature of a reaction
chamber at different points in time, the slopes denote the cooling rate during each
time segment. MATLAB ® has a built-in function called diff that will fi nd the dif-
ference between element values in a vector and that can be used to calculate the
slope of ordered pairs of data. (The diff function is an example of an “overloaded”
function. MATLAB ® contains a version of diff used for symbolic algebra calcula-
tions, and a version that uses discrete data points. The software decides which
 version is appropriate based on the input you provide.)

 For example, to fi nd the change in our x -values, we type

delta_x = diff(x)

 which, because the x -values are evenly spaced, returns

delta_x =
1 1 1 1 1

 KEY IDEA
 The diff function is used
both with symbolic
expressions, where it fi nds
the derivative, and with
numeric arrays

1 0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

16
Sample Data

slope
y2 y1

x2 x1

x-axis

y-
ax

is

slope
y3 y2

x3 x2

slope
y4 y3

x4 x3

slope
y5 y4

x5 x4

slope
y6 y5

x6 x5

 Figure 13.25
 The derivative of a data set
can be approximated by
fi nding the slope of a
straight line connecting
each data point.

13.4 Differences and Numerical Differentiation 513

 Similarly, the difference in y -values is

delta_y = diff(y)
delta_y =

−5 −1 −3 −4 −2

 To fi nd the slope, we just need to divide delta_y by delta_x :

slope = delta_y./delta_x
slope =

−5 −1 −3 −4 −2

 or

slope = diff(y)./diff(x)
slope =

−5 −1 −3 −4 −2

 Notice that the vector returned when you use the diff function is one element
shorter than the input vector, because you are calculating differences. When you
use the diff function to help you calculate slopes, you are calculating the slope
between values of x , not at a particular value. If you want to plot these slopes against
 x , probably the best approach is to create a bar graph, since the rates of change are
not continuous. The x -values were adjusted to the average for each line segment:

x = x(:,1:5)+diff(x)/2;
bar(x,slope)

 The resulting bar graph is shown in Figure 13.26 .
 The diff function can also be used to approximate a derivative numerically if

you know the relationship between x and y . For example, if

 y � x2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

Rate of Change

time, hour

R
at

e
of

 te
m

pe
ra

tu
re

 c
ha

ng
e,

 d
eg

re
es

/h
ou

r

 Figure 13.26
 The calculated slopes are
discontinuous if they are
based on data. The
appearance of this graph
was adjusted with the
interactive plotting tools.

514 Chapter 13 Numerical Techniques

 we could create a set of ordered pairs for any number of x -values. The more values
of x and y , the smoother the plot will be. Here are two sets of x and y vectors that
were used to create the graph in Figure 13.27a :

x = -2:2
y = x.^2;
big_x = -2:0.1:2;
big_y = big_x.^2;
plot(big_x,big_y,x,y,'-o')

 Both lines in the graph are created by connecting the specifi ed points with
straight lines; however, the big_x and big_y values are so close together that the

2 1 0 1 2
0

1

2

3

4
y x2

y-
ax

is

(a)

2 1 0 1 2
0

1

2

3

4

y-
ax

is

(c)

2 1 0 1 2
0

1

2

3

4

y-
ax

is

(e)

2 1 0 1 2
4

2

0

2

4
Slope of y x2

(b)

2 1 0

Almost, but
not quite a
continuous
slope

1 2
4

2

0

2

4

(d)

2 1 0 1 2
4

2

0

2

4

(f)

y x2 Slope of y x2

y x2

x-axis

Slope of y x2

x-axis

Continuous
slope line

Continuous
slope line

 Figure 13.27
 The slope of a function is
approximated more
accurately when more
points are used to model
the function.

13.4 Differences and Numerical Differentiation 515

graph looks like a continuous curve. The slope of the x – y plot was calculated with
the diff function and plotted in Figure 13.27b :

slope5 = diff(y)./diff(x);
x5 = x(:,1:4)+diff(x)./2;
%These values were based on a 5-point model
bar(x5,slope5)

 The bar graph was modifi ed slightly with the use of the interactive plotting
tools to give the representation shown in Figure 13.27b . We can get a smoother
representation, though still discontinuous, by using more points:

x = -2:0.5:2;
y = x.^2;
plot(big_x,big_y,x,y,'-o')
slope9 = diff(y)./diff(x);
x9 = x(:,1:8)+diff(x)./2;
%These values were based on a 9-point model
bar(x9,slope9)

 These results are shown in Figures 13.27c and 13.27d . We can use even more points:

plot(big_x,big_y,'-o')
slope41 = diff(big_y)./diff(big_x);
x41 = big_x(:,1:40)+diff(big_x)./2; % 41-point model
bar(x41,slope41)

 This code results in an almost smooth representation of the slope as a function
of x , as seen in Figures 13.27e and 13.27f .

 13.4.2 Forward, Backward, and Central Difference Techniques

 What if you want to approximate the derivative at a point, instead of over a range, as
discussed earlier? One approach is to use the slope between adjacent points as the
approximation of the derivative at a single value of x .

 a dy

dx
b

i
�

yi�1 � yi

xi�1 � xi

 We can accomplish this by using the difference function

dydx = diff(y)./diff(x)

 and assigning the result as the derivative at the fi rst point in the range. This is called
a forward difference, since we are approximating the derivative by looking forward
in the array to the next set of x and y values.

 Take for example the sine function, whose analytical derivative is cosine. We
can compare the forward difference derivative approximation to the analytical solu-
tion with the following code. First create an array of values for the independent
variable, x , and for the dependent variable, y .

x = linspace(0,pi/2,10)
y = sin(x)

 We know from basic calculus that the derivative of sin(x) is cos(x), which is
expressed as

dy

dx
� cos(x)

516 Chapter 13 Numerical Techniques

 Thus, to fi nd the derivative analytically in MATLAB ® we use the code

dydx_analytical=cos(x)

 To approximate the derivative for the fi rst nine values in the x array (which has
a total of 10 values)

dydx_approx=diff(y)./diff(x)

 It isn’t possible to fi nd an approximation for the derivative at the last point in
the x array using this technique, so we use NaN (not a number) as a place holder.
Notice that in order to make the code more general we’ve defi ned the last element
number using the length function, which in this case returns a value of 10.

dydx_approx(length(x))=NaN;

 To fi nd the percentage error between this approximation and the analytical
value we’ll use the following equation:

 % error �
1actual_value � approximation2

actual_value
� 100

 which corresponds to the following code.

error_percentage = (dydx_analytical – dydx_approx)./dydx_
analytical*100;

 Finally, to create an output table so we can evaluate the results, the following
code can be used.

table =[x; dydx_analytical;dydx_approx;error_percentage]
disp('Forward Difference Approximation of the derivative of
sin(x)')
disp(' x dy/dx dy/dx %error')
disp(' cos(x) forward approx.')
fprintf('%8.4f\t%8.4f\t%8.4f\t%8.4f\n',table)

 The resulting table is informative. There are signifi cant errors in the approxi-
mation as the analytical result approaches 0, but the absolute error is fairly small.

 Forward Difference Approximation of the Derivative of Sin(x)

 x dy/dx dy/dx %error

 cos(x) forward
approximation

 (actual – est)/
actual *100

 0.0000 1.0000 0.9949 0.5069
 0.1745 0.9848 0.9647 2.0418
 0.3491 0.9397 0.9052 3.6751
 0.5236 0.8660 0.8181 5.5325
 0.6981 0.7660 0.7062 7.8109
 0.8727 0.6428 0.5728 10.8806
 1.0472 0.5000 0.4221 15.5836
 1.2217 0.3420 0.2585 24.4224
 1.3963 0.1736 0.0870 49.8727
 1.5708 0.0000 NaN NaN

13.4 Differences and Numerical Differentiation 517

 Notice that there is no approximation of the derivative for the last value of x , so
(in the code) a value of NaN (not a number) was added. We repeated the calcula-
tions with 20 values and plotted the results for both 10 values and 20 values in
 Figure 13.28 .

 Clearly, we can do a better job of approximating the derivative by specifying
more values of x (effectively making the points closer together).

 The backwards difference is very similar. Instead of assigning the approxima-
tion of the derivative to the fi rst value in a range, it is assigned to the last value.

 a dy

dx
b

i
�

yi � yi�1

xi � xi�1

 To solve this problem in MATLAB ® , we can use the diff function again.
Similarly to the fi rst example, a value of NaN was added to the dydx_approx
matrix, but this time it is the fi rst value, not the last.

%% Backward difference
x=linspace(0,pi/2,10);
y=sin(x);
dydx_analytical=cos(x);
dydx_approxb=diff(y)./diff(x);
dydx_approxb=[NaN,dydx_approxb];
error_percentageb = (dydx_analytical - dydx_approxb)./dydx_
analytical*100;

Calculation of the Derivative of sin(x)
Using the Forward Difference Technique

0
0 0.2 0.4 0.6 0.8

angle in radians
1 1.2 1.4 1.6

0.1

0.2

0.3

0.4

0.5

dy
dx

0.6

0.7

0.8

0.9

1

analytical solution

approximation with 20 points
approximation with 10 points

 Figure 13.28
 A comparison of the
derivative approximation
of sin(x), based on the
number of points used.

518 Chapter 13 Numerical Techniques

table =[x; dydx_analytical;dydx_approxb;error_percentageb]
disp('Backward Difference Approximation of the derivative of
sin(x)')
disp(' x dy/dx dy/dx %error')
disp(' cos(x) backward approximation')
fprintf('%8.4f\t%8.4f\t%8.4f\t%8.4f\n',table)

 The resulting table is

 Backward Difference Approximation of the Derivative of Sin(x)

 x dy/dx dy/dx %error

 cos(x) backward
approximation

 (actual – est)/actual *100

 0.0000 1.0000 NaN NaN
 0.1745 0.9848 0.9949 �1.0279
 0.3491 0.9397 0.9647 �2.6613
 0.5236 0.8660 0.9052 �4.5186
 0.6981 0.7660 0.8181 �6.7970
 0.8727 0.6428 0.7062 �9.8667
 1.0472 0.5000 0.5728 �14.5697
 1.2217 0.3420 0.4221 �23.4085
 1.3963 0.1736 0.2585 �48.8588
 1.5708 0.0000 0.0870 �142155539756746180.0000

 The absolute value of the error resulting from a forward difference technique
versus a backward difference technique is very similar. (The large error for the fi nal
table entry in the backward difference table is due to the division by 0.) We can get
closer by using a central difference technique, that looks both forward and back-
ward, and therefore is centered on the actual point of interest. The approximation
is therefore

 a dy

dx
b

i
�

yi�1 � yi�1

xi�1 � xi�1

 One downside of using this technique is that it won’t work for either the fi rst or
last value in the array.

 MATLAB ® includes a function, gradient , which approximates the derivative
using a forward difference technique for the fi rst point in an array, the backward
difference for the last point in an array, and a centered difference for the remain-
der of the points. It requires two inputs, the y and x array

g = gradient(y,x)

 and returns the derivative approximation. If you don’t enter an x array, the pro-
gram assumes the points are evenly spaced with a step size of 1. The results for all
three approaches are shown in Figure 13.29.

 The gradient function can also be used to approximate partial derivatives
when used with two-dimensional arrays. Refer to the MATLAB ® documentation for
examples.

13.4 Differences and Numerical Differentiation 519

 1. Consider the following equation:

 y � x3 � 2x2 � x � 3

 Defi ne an x vector from � 5 to � 5, and use it together with the diff
function to approximate the derivative of y with respect to x , using the forward
difference approach found analytically, the derivative is

dy

dx
� y� � 3x2 � 4x � 1

 Evaluate this function, using your previously defi ned x vector. How do your
results differ?

 2. Repeat Exercise 1 for the following functions and their derivatives:

0
0 0.2 0.4 0.6 0.8

angle in radians
1 1.2 1.4 1.6

0.1

0.2

0.3

0.4

0.5

dy
dx

0.6

0.7

0.8

0.9

1

Comparison of Calculation Techniques
for the Derivative of sin(x)

analytical solution

forward difference

backward difference

centered difference

 Figure 13.29
 A superior approximation
of the derivative is
obtained using the
centered difference
approach, implemented in
the gradient function.

 PRACTICE EXERCISES 13.4

 Function Derivative

 y � sin1x2

dy
dx

� cos1x2
 y � x5 � 1

dy
dx

� 5x4

 y � 5xex
dy
dx

� 5ex � 5xex

520 Chapter 13 Numerical Techniques

 3. Use the gradient function to fi nd the value of the derivatives in the previous
problems.

 4. Plot your results and compare the two approaches. Recall that the forward
difference approach will provide one fewer values than the length of the x array.
Be sure to pad the result array with a fi nal value of NaN to make plotting easier.

 13.5 NUMERICAL INTEGRATION

 An integral is often thought of as the area under a curve. Consider again our sam-
ple data, plotted in Figure 13.30 . The area under the curve can be found by divid-
ing the area into rectangles and then summing the contributions from all the
rectangles:

 A � a
n�1

i�1

1xi�1 � xi2 1yi�1 � yi2 >2

 The MATLAB ® commands to calculate this area are

avg_y = y(1:5)+diff(y)/2;
sum(diff(x).*avg_y)

 This is called the trapezoid rule, since the rectangles have the same area as a trap-
ezoid drawn between adjacent elements, as shown in Figure 13.31 . MATLAB ® includes
a built-in function, trapz , which gives the same result, and which uses the syntax

trapz(x,y)

 We can approximate the area under a curve defi ned by a function instead of
data by creating a set of ordered x–y pairs. Better approximations are found as we

0 2 4 6
0

5

10

15

An integral can be approximated
by the area under a curve

y-
ax

is

x-axis

0 2 4 6
0

5

10

15
A trapezoid rule approximation

y-
ax

is

x-axis

 Figure 13.30
 The area under a curve
can be approximated with
the trapezoid rule.

These areas are equal

 Figure 13.31
 The area of a trapezoid
can be modeled with a
rectangle.

13.5 Numerical Integration 521

increase the number of elements in our x and y vectors. For example, to fi nd the
area under the function

 y � f1x2 � x2

 from 0 to 1, we would defi ne a vector of 11 x -values and calculate the corresponding
 y -values:

x = 0:0.1:1;
y = x.^2;

 The calculated values are plotted in Figure 13.32 and are used to fi nd the area
under the curve:

trapz(x,y)

 This result gives us an approximation of the area under the function:

ans =
0.3350

 The preceding answer corresponds to an approximation of the integral from
 x � 0 to x � 1, or

 L
1

0
x2 dx

 MATLAB ® includes two built-in functions, quad and quadl , which will calculate
the integral of a function without requiring the user to specify how the rectangles
shown in Figure 13.32 are defi ned. The two functions differ in the numerical tech-
nique used. Functions with singularities may be solved with one approach or the other,
depending on the situation. The quad function uses adaptive Simpson quadrature:

quad('x.^2',0,1)
ans =

0.3333

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x-axis

y-
ax

is

Evaluation of Data by the Trapezoid Rule

data
calculated midpoints

 QUADRATURE
 A technique for estimating
the area under a curve by
using rectangles

 Figure 13.32
 The integral of a function
can be estimated with the
trapezoid rule.

 KEY IDEA
 Use trapz for ordered
pairs of data. Use quad or
 quadl for functions

522 Chapter 13 Numerical Techniques

 The quadl function uses adaptive Lobatto quadrature:

quadl('x.^2',0,1)
ans =

0.3333

 HINT
 The quadl function ends with the letter “l,” not the number “1.” It may be
hard to tell the difference, depending on the font you are using.

5
4000

2000

0

2000
A Third-Order Polynomial

x-axis

F
un

ct
io

n
va

lu
e

F
un

ct
io

n
va

lu
e

0 5 10 15 20 250 5 10 15 20 25
x-axis

5
4000

2000

0

2000
A Third-Order Polynomial

 Figure 13.33
 The integral of a function between two points can be thought of as the area under the curve. These graphs were
created using fplot with a function handle representing a third-order polynomial.

 Both functions require the user to enter a function in the fi rst fi eld. This func-
tion can be called out explicitly as a character string, as shown, or can be defi ned in
an M-fi le or as an anonymous function. The last two fi elds in the function defi ne
the limits of integration, in this case from 0 to 1. Both techniques aim at returning
results within an error of 1 � 10�6.

 Here’s another example, using a function handle and an anonymous function,
instead of defi ning the function inside single quotes. First we’ll defi ne an anony-
mous function for a third-order polynomial.

fun_handle = @(x) -x.^3+20*x.^2 -5

 Now let’s plot the function, to see how it behaves. The easiest approach is to use
 fplot , since it also accepts a function handle:

fplot(fun_handle,[-5,25])

 The resulting plot is shown in Figure 13.33a . The integral of this function

 L
25

�5
-x3 � 20x2 � 5

 is the area under the curve, shown in Figure 13.33b .

13.5 Numerical Integration 523

 Finally, to evaluate the integral we’ll use the quad function, with the function
handle as input:

quad(fun_handle,0,25)
ans =

6.3854e+003

 You can fi nd out more about how these techniques work by consulting a numer-
ical methods textbook, such as John H. Mathews and Kurtis D. Fink, Numerical
Methods Using MATLAB , 4th ed. (Upper Saddle River, NJ: Pearson, 2004).

 Function Integral

 y � sin1x2
 L

b

a
sin1x2 dx � cos1x2 �ba � cos1b2 � cos1a2

 y � x5 � 1
 L

b

a
1x5 � 12dx � a x6

6
� xb ` b

a
� ab6 � a6

6
� 1b � a2 b

 y � 5x*ex
 L

b

a
15ex2dx � 1-5ex � 5xex2 �ba �

 1 � 51eb � ea2 � 51beb � aea22

 PRACTICE EXERCISES 13.5

 1. Consider the following equation:

 y � x3 � 2x2 � x � 3

 (a) Use the trapz function to estimate the integral of y with respect to x ,
evaluated from �1 to 1. Use 11 values of x , and calculate the correspond-
ing values of y as input to the trapz function.

 (b) Use the quad and quadl functions to fi nd the integral of y with respect to
 x , evaluated from -1 to 1.

 (c) Compare your results with the values found by using the symbolic toolbox
function int and the following analytical solution (remember that the
 quad and quadl functions take input expressed with array operators such
as .* or .^ , but that the int function takes a symbolic representation that
does not use these operators):

 L
b

a
1x3 � 2x2 � x � 32 dx �

 a x4

4
�

2x3

3
�

x2

2
� 3xb ` b

a
�

1
4
1b4 � a42 �

2
3
1b3 � a32 �

1
2
1b2 � a22 � 31b � a2

 2. Repeat Exercise 1 for the following functions:

524 Chapter 13 Numerical Techniques

 CALCULATING MOVING BOUNDARY WORK
 In this example we’ll use MATLAB ® ’s numeric integration techniques—both the
 quad function and the quadl function—to fi nd the work produced in a piston–
cylinder device by solving the equation

 W �LPdV

 based on the assumption that

 PV � nRT

 where

 P � pressure, kPa,
 V � volume, m3,
 n � number of moles, kmol,
 R � universal gas constant, 8.314 kPa m3>kmol K, and
 T � temperature, K.

 We also assume that (1) the piston contains 1 mol of gas at 300 K and (2) the
temperature stays constant during the process.

 1. State the Problem
 Find the work produced by the piston–cylinder device shown in Figure 13.34 .

 2. Describe the Input and Output

 Input
 T � 300 K
 n � 1 kmol
 R � 8.314 kJ>kmol K

V1 � 1 m3

V2 � 5 m3 } limits of integration

 Output Work done by the piston–cylinder device

 3. Develop a Hand Example
 Solving the ideal gas law

 PV � nRT

 EXAMPLE 13.6

V 1 m3

V 5 m3

 Figure 13.34
 A piston–cylinder
device.

13.5 Numerical Integration 525

 or

 P � nRT>V

 for P and performing the integration gives

 W � L
nRT

V
dV � nRT L

dV
V

� nRT lnaV2

V1
b

 Substituting in the values, we fi nd that

 W � 1 kmol � 8.314 kJ >kmol K � 300 K � lnaV2

V1
b

 Since the integration limits are V2 � 5 m3 and V1 � 1 m3, the work becomes

W � 4014 kJ

 Because the work is positive, it is produced by (and not on) the system.
 4. Develop a MATLAB ® Solution

%Example 13.6
%Calculating boundary work, using MATLAB®'s quadrature
%functions
clear, clc

%Define constants
n = 1; % number of moles of gas
R = 8.314; % universal gas constant
T = 300; % Temperature, in K

%Define an anonymous function for P
P = @(V) n*R*T./V;

% Use quad to evaluate the integral
quad(P,1,5)
%Use quadl to evaluate the integral
quadl(P,1,5)

which returns the following results in the command window
ans =

4.0143e+003
ans =

4.0143e+003

 Notice that in this solution we defi ned an anonymous function for P , and used
the function handle as input to the numerical integration functions . We could
just as easily have defi ned the function by using a character string inside the
 quad and quadl functions. However, in that case we would have had to replace
the variables with numerical values:

quad('1*8.314*300./V',1,5)
ans =

4.0143e+003

 The function could also have been defi ned in an M-fi le.
 5. Test the Solution

 We compare the results with our hand solution. The results are the same. It also helps
to obtain a solution from the symbolic toolbox. Why do we need both kinds of
MATLAB ® solution? Because some problems cannot be solved with MATLAB ® ’s sym-
bolic tools, and others (those with singularities) are ill suited to a numerical approach.

526 Chapter 13 Numerical Techniques

 13.6 SOLVING DIFFERENTIAL EQUATIONS NUMERICALLY

 MATLAB ® includes a number of functions that solve ordinary differential equa-
tions of the form

dy

dt
� f1t, y2

 numerically. In order to solve higher-order differential equations (and systems of
differential equations) they must be reformulated into a system of fi rst-order expres-
sions. This section outlines the major features of the ordinary differential equation
solver functions. For more information, consult the help feature.

 Not every differential equation can be solved by the same technique, so
MATLAB ® includes a wide variety of differential equation solvers (Table 13.6).
However, all of these solvers have the same format. This makes it easy to try differ-
ent techniques by just changing the function name.

 Each solver requires the following three inputs as a minimum:

 • A function handle to a function that describes the fi rst-order differential equa-
tion or system of differential equations in terms of t and y

 • The time span of interest
 • An initial condition for each equation in the system

 The solvers all return an array of t- and y -values:

[t,y] = odesolver(function_handle,[initial_time, final_time],
 [initial_cond_array])

 If you don’t specify the resulting arrays [t,y] , the functions create a plot of the
results.

 13.6.1 Function Handle Input

 As we’ve discussed before, a function handle is a “nickname” for a function. It can refer
to either a standard MATLAB ® function, stored as an M-fi le, or an anonymous MATLAB ®
function. Recall that the differential equations we’re discussing are of the form

dy

dt
� f1t, y2

 so the function handle is equivalent to d y/ d t .
 Here’s an example of an anonymous function for a single simple differential

equation:

dydt = @(t,y) 2*t corresponds to
dy

dt
� 2t

 Although this particular function doesn’t use a value of y in the result (2 t), y still
needs to be part of the input.

 If you want to specify a system of equations, it is probably easier to defi ne a
 function M-fi le. The output of the function must be a column vector of fi rst-derivative
values, as in

function dy=twofuns(t,y)
dy(1) = y(2);
dy(2) = -y(1);
dy=[dy(1); dy(2)];

 KEY IDEA
 MATLAB ® includes a large
family of differential
equation solvers

13.6 Solving Differential Equations Numerically 527

 Table 13.6 MATLAB ® ’s Differential Equation Solvers

 Ordinary Differential
Equation Solver
Function

 Type of Problems
Likely to be Solved
with This Technique

 Numerical
Solution
Method Comments

 ode45 nonstiff differential
equations

 Runge–Kutta Best choice for a
fi rst-guess technique if
you do not know much
about the function.

 Uses an explicit Runge–
Kutta (4, 5) formula
called the Dormand–
Prince pair.

 ode23 nonstiff differential
equations

 Runge–Kutta This technique uses an
explicit Runge–Kutta
(2, 3) pair of Bogacki
and Shampine. If the
function is “mildly
stiff,” this maybe a
better approach than
 ode45 .

 ode113 nonstiff differential
equations

 Adams Unlike ode45 and
ode23 , which are
single-step solvers, this
technique is a
multistep solver.

 ode15s stiff differential equation
and differential
algebraic equations

 NDFs (BDFs) Uses numerical
differentiation formulas
(NDFs) or backward
differentiation formulas
(BDFs). It is diffi cult to
predict which
technique will work
best on a stiff
differential equation.

 ode23s stiff differential
equations

 Rosenbrock Modifi ed second-order
Rosenbock
formulation.

 ode23t moderately stiff
differential equations
and differential
algebraic equations

 trapezoid rule Useful if you need a
solution without
numerical damping.

 ode23tb stiff differential
equations

 TR–BDF2 This solver uses an
implicit Runge–Kutta
formula with the
trapezoid rule (TR)
and a second-order
backward differen-
tiation formula (BDF2).

 ode15i fully implicit differential
equations

 BDF This solver uses a
backward difference
formula (BDF) to solve
implicit differential
equations of the form
 f1y, y�, t2 � 0.

528 Chapter 13 Numerical Techniques

 This function represents the system

dy

dt
� x

dx
dt

� -y

 which could also be expressed in a more compact notation as

 y�1 � y2

 y�2 � -y1

 where the prime indicates the derivative with respect to time, and the functions
with respect to time are y1, y2, and so on. In this notation, the second derivative is
equal to y� and the third derivative is y��:

 y� �
dy

dt
, y� �

d 2y

dt2 , y�� �
d3y

dt3

 13.6.2 Solving the Problem

 Both the time span of interest and the initial conditions for each equation are
entered as vectors into the solver equations, along with the function handle. To
demonstrate, let’s solve the equation

dy

dt
� 2 t

 We created an anonymous function for this ordinary differential equation in
the previous section and called it dydt . We’ll evaluate y from -1 to 1 and specify
the initial condition as

 y1-12 � 1

 If you don’t know how your equation or system of equations behaves, your fi rst
try should be ode45 :

[t,y] = ode45(dydt,[-1,1],1)

 This command returns an array of t -values and a corresponding array of y -values.
You can either plot these yourself or allow the solver function to plot them if you
don’t specify the output array:

ode45(dydt,[-1,1],1)

 The results are shown in Figure 13.35 and are consistent with the analytical
solution, which is

 y � t2

 Note that the fi rst derivative of this function is 2 t and that y � 1 when t � -1.
 When the input function or system of functions is stored in an M-fi le, the syntax

is slightly different. The handle for an existing M-fi le is defi ned as @m_file_name .
To solve the system of equations described in twofun (from the previous section)
we use the command

ode45(@twofun,[-1,1],[1,1])

13.6 Solving Differential Equations Numerically 529

 We could also assign the M-fi le a function handle to the M-fi le such as

some_fun = @twofun

 and use it as input to the differential equation solver

ode45(some_fun,[-1,1],[1,1])

 The time span of interest is from -1 to 1, and the initial conditions are both 1.
Notice that there is one initial condition for each equation in the system. The
results are shown in Figure 13.36 .

 13.6.3 Solving Higher-Order Differential Equations

 The ode series of functions (such as ode45 or ode23) is used to solve either a sin-
gle fi rst-order differential equation, or a system of fi rst-order differential equations.
But what if you need to solve a higher-order problem? Fortunately a higher-order
differential equation can be expressed as a series of equations by making some sim-
ple substitutions. Consider the following equation:

d2y

dt2
�

dy

dt
� y � t

1 0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Solution of dy/dt 2 * t

time

y

 Figure 13.35
 This fi gure was generated
automatically by the ode45
function. The title and
labels were added in the
usual way.

1 0.5 0 0.5 1
2

1

2

1

0

Solution of dy/dt = x and dx/dt = y

time

x
an

d
y

y

x

 Figure 13.36
 This system of equations
was solved with ode45 .
The title, labels, and legend
were added in the usual
way.

530 Chapter 13 Numerical Techniques

 We can reformulate it into a system of equations by introducing a new variable,
z. Let

 z �
dy

dt

 It’s then easy to see that

dz
dt

�
d2y

dt2

 Substituting into the original equation we get

dz
dt

�
dy

dt
� y � t,

 which is a fi rst-order differential equation. Effectively we’ve replaced

d2y

dt2
�

dy

dt
� y � t

 with the following two equations, which have been rearranged to solve for the fi rst
derivative of our two dependent variables, y and z

dy

dt
� z

 and

dz
dt

� y � t �
dy

dt

 Now all we need to do is create an M-fi le function to use in one of the ode solv-
ers. The function should have two inputs, which are typically called t and y . The
variable t is the independent variable, and the variable y is an array of dependent
variables. In this example y (1) corresponds to the y used in the hand formulation,
and y (2) corresponds to z . The function containing the system of equations should
look like this:

function dydt = twoeq(t,y)
dydt(1) = y(2);
dydt(2) = y(1) + t - dydt(1);
dydt = dydt'

 Notice that the function output has been formulated as a column vector, as
required by the ode solvers. Also recall that the function name is arbitrary. We could
have called it anything, but twoeq is descriptive.

 Once the system of equations is defi ned in a function M-fi le it is available to use
as input to an ode solver. For example, if the range of time is defi ned as �1 to �1
and the initial conditions are defi ned as y � 0 and z � 0 (which is the same as y � 0
and d y /d t � 0), then the command becomes

ode45(@twoeq,[-1,1],[0,0])

 which gives the results shown in Figure 13.37 . A problem where the starting values
are known is called an initial value problem.

13.6 Solving Differential Equations Numerically 531

 13.6.4 Boundary Value Problems

 Reconsider the function from the previous section, which describes a system of two
ordinary differential equations. What would happen if we didn’t know the initial
value of d y /d t , but instead knew the value of y at both t � �1 and t � 1? This is
called a boundary value problem, and can be solved using the bvp4c function.
Similarly to the ode solvers, the bvp4c function requires three inputs:

 • A function handle to the system of ode’s to be solved.
 • A function handle to a function that solves for the residual values of the

 function.
 • A set of guesses for the initial conditions.

 The fi rst function handle is exactly the same as we used for the ode solver set of
functions. It should contain the equations for the derivatives of interest and the
results must be a column vector.

 To solve the problem a guess is made for the initial value of all the derivatives,
then the program checks to see how it did by comparing the calculated boundary
values with the actual values. For example, if:

 at t � �1, y � 0 and

 at t � 1, y � 3

 the program would solve the system of equations based upon an initial guess of d y /d t ,
and would then check to see how close the result is at t � �1 (i.e., it would check to
see if y = 3). This is accomplished using a boundary condition function where the
equations are arranged so that if the correct boundary condition is calculated, the
function values are zero. In the case of our example,

function residual=bc(y_initial, y_final)
residual(1) = y_initial(1) + 0;

A System of Two ODE’s

�1
�0.5

�0.45

�0.4

�0.35

�0.3
y-

ax
is

, o
ft

en
 r

ep
re

se
nt

s
di

st
an

ce
�0.25

�0.2

�0.15

�0.1

�0.05

0

�0.8 �0.6 �0.4 �0.2 0
x-axis, often represents time

0.2 0.4 0.6 0.8 1

dydt
y

 Figure 13.37
 A higher-order differential
equation is solved by
creating a system of
equations that represents
the same information. A
second-order ODE requires
two equations, resulting in
two lines represented in the
graphical output, one for y ,
and one for d y /d t.

532 Chapter 13 Numerical Techniques

residual(2) = y_final (1) - 3;
residual = residual';

 If this function is executed for values of y_initial � 0 and y_fi nal � 3, the result
will be a column of zeros. Any other result means that the program has calculated
the wrong values for y_initial and y_final , and the guesses for the initial con-
ditions must be updated according to the function’s algorithm, which is a fi nite
difference strategy.

 The last input to the bvp4c function is a mesh of guesses for the problem solution,
which are used as the starting point in the solution. MATLAB ® provides a helper func-
tion, bvpinit , to help create this mesh, which is stored as a structure array. It requires
two inputs; an array of values corresponding to the independent variable (in this case t)
and initial guesses for each of the variables defi ned in the ode system of equations. In
our case there are two equations, so we’ll need a guess for y and d y /d t . The mesh need
not be particularly fi ne, and the initial guesses need not be very good. For example:

initial_guess = bvpinit(-1:.5:1, [0, -1])

 specifi es fi ve t values from �1 to 1 (�1, �0.5, 0, 0.5, 1) and initial guesses of y � 0
and d y d t � �1 at all values of t .

 Once the function describing the system of ode’s, the function defi ning the
residuals and the initial guesses created with bvpinit have been created, the
 bvp4c function can be executed.

bvp4c(@twoeq, @bc, initial_guess)

 which returns

ans =
x: [1x9 double]
y: [2x9 double]
yp: [2x9 double]

 solver: 'bvp4c'

 The result is a structure array, where x is the value of the independent variable
(denoted as t in this problem) and where an array of y values corresponds to the
solutions to the system of ode’s. In this case, y and d y /d t .

 To access the array of x values simply use the structure syntax, ans.x . If we had
chosen to assign a name such as solution to our result instead of defaulting to
 ans , the structure would be called solution , and the x values would be stored in
 solution.x . The values of most interest are the y values, which can also be
accessed using structure syntax, such as solution.y . To plot the results in a man-
ner similar to that displayed by the odesolvers use the code

plot(ans.x,ans.y, '-o')

 or, if the results were named solution

plot(solution.x, solution.y, '-o'),

 which gives the results shown in Figure 13.38 . The annotations (titles, legends, etc.)
were added in the usual way.

 13.6.5 Partial Differential Equations

 MATLAB ® also includes a limited partial differential equation solver, pdepe . For
more information, consult the MATLAB ® help function.

Summary 533

�1 �0.8 �0.6 �0.4 �0.2 0
x-axis -- the independent variable, usually time or distance

A Boundary Value Problem

y-
ax

is
 --

 th
e

in
de

pe
nd

en
t v

ar
ia

bl
es

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

dydt
y

 Tables of data are useful for summarizing technical information. However, if you
need a value that is not included in the table, you must approximate that value by
using some sort of interpolation technique. MATLAB ® includes such a technique,
called interp1 . This function requires three inputs: a set of x -values, a correspond-
ing set of y -values, and a set of x -values for which you would like to estimate y -values.
The function defaults to a linear interpolation technique, which assumes that you
can approximate these intermediate y -values as a linear function of x that is,

y � f1x2 � ax � b

 A different linear function is found for each set of two data points, ensuring
that the line approximating the data always passes through the tabulated points.

 The interp1 function can also model the data by using higher-order approxi-
mations, the most common of which is the cubic spline. The approximation tech-
nique is specifi ed as a character string in a fourth optional fi eld of the interp1
function. If it’s not specifi ed, the function defaults to linear interpolation. An exam-
ple of the syntax is

new_y = interp1(tabulated_x, tabulated_y, new_x, 'spline')

 In addition to the interp1 function, MATLAB ® includes a two-dimensional
interpolation function called interp2 , a three-dimensional interpolation function
called interp3 , and a multidimensional interpolation function called interpn .

 Curve-fi tting routines are similar to interpolation techniques. However, instead
of connecting data points, they look for an equation that models the data as accu-
rately as possible. Once you have an equation, you can calculate the corresponding

 Figure 13.38
 A boundary value problem
solved using bvp4c.

 SUMMARY

534 Chapter 13 Numerical Techniques

values of y . The curve that is modeled does not necessarily pass through the meas-
ured data points. MATLAB ® ’s curve-fi tting function is called polyfit and models
the data as a polynomial by means of a least-squares regression technique. The
function returns the coeffi cients of the polynomial equation of the form

y � a0x
n � a1x

n�1 � a2x
n�2 � ... � an�1x � an

 These coefficients can be used to create the appropriate expression in
MATLAB ® , or they can be used as the input to the polyval function to calculate
values of y at any value of x . For example, the following statements fi nd the coeffi -
cients of a second-order polynomial to fi t the input x–y data and then calculate new
values of y , using the polynomial determined in the fi rst statement:

coef = polyfit(x,y,2)
y_first_order_fit = polyval(coef,x)

 These two lines of code could be shortened to one line by nesting functions:

y_first_order_fit = polyval(polyfit(x,y,1),x)

 MATLAB ® also includes an interactive curve-fi tting capability that allows the
user to model data not only with polynomials, but with more complicated mathe-
matical functions. The basic curve-fi tting tools can be accessed from the Tools
menu in the fi gure window. More extensive tools are available in the curve-fi tting
toolbox, which is accessed by typing

cftool

 in the command window.
 Numerical techniques are used widely in engineering to approximate both

derivatives and integrals. Derivatives and integrals can also be found with the sym-
bolic toolbox.

 The MATLAB ® diff function fi nds the difference between values in adjacent
elements of a vector. By using the diff function with vectors of x - and y -values, we
can approximate the derivative with the command

slope = diff(y)./diff(x)

 The more closely spaced the x and y data are, the closer will be the approxima-
tion of the derivative.

 The gradient function uses a forward difference approach to approxi-
mate the derivative at the fi rst point in an array. It uses a backward difference
approach for the fi nal value in the array, and a central difference approach for
the remainder of the points. In general, the central difference approach gives a
more accurate approximation of the derivative than either of the other two
techniques.

 Integration of ordered pairs of data is accomplished using the trapezoidal
rule, with the trapz function. This approach can also be used with functions, by
creating a set of ordered pairs based on a set of x values and the corresponding y
values.

 Integration of functions is accomplished more directly with one of two quadra-
ture functions: quad or quadl . These functions require the user to input both a
function and its limits of integration. The function can be represented as a charac-
ter string, such as

'x.^2-1'

Summary 535

 as an anonymous function, such as

my_function = @(x) x.^2-1

 or as an M-fi le function, such as

function output = my_m_file(x)
output = x.^2-1;

 Any of the three techniques for defi ning the function can be used as input,
along with the integration limits—for example,

quad('x.^2-1',1,2)

 Both quad and quadl attempt to return an answer accurate to within 1 � 10�6.
The quad and quadl functions differ only in the technique they use to estimate
the integral. The quad function uses an adaptive Simpson quadrature technique,
and the quadl function uses an adaptive Lobatto quadrature technique.

 MATLAB ® includes a series of solver functions for fi rst-order ordinary differen-
tial equations and systems of equations. All of the solver functions use the common
format

[t,y] = odesolver(function_handle,[initial_time, final_time],
[initial_cond_array])

 A good fi rst try is usually the ode45 solver function, which uses a Runge–Kutta
technique. Other solver functions have been formulated for stiff differential equa-
tions and implicit formulations.

 The ode solver functions require that the user know the initial conditions for
the problem. If, instead, boundary conditions are known at other than the starting
conditions, the bvp4 function should be used.

 MATLAB® SUMMARY

 The following MATLAB ® summary lists and briefl y describes all the commands and
functions that were defi ned in this chapter:

 Commands and Functions

 bvp4c boundary value problem solver for ordinary differential equations
 cftool opens the curve-fi tting graphical user interface
 census a built-in data set
 diff computes the differences between adjacent values in an array if the

input is an array; fi nds the symbolic derivative if the input is a
symbolic expression

 gradient fi nds the derivative numerically using a combination of forward,
backward and central difference techniques

 int fi nds the symbolic integral
 interp1 approximates intermediate data, using either the default linear

interpolation technique or a specifi ed higher-order approach
 interp2 two-dimensional interpolation function
 interp3 three-dimensional interpolation function
 interpn multidimensional interpolation function
 ode45 ordinary differential equation solver
 ode23 ordinary differential equation solver
 ode113 ordinary differential equation solver
 ode15s ordinary differential equation solver
 ode23s ordinary differential equation solver

(continued)

536 Chapter 13 Numerical Techniques

 Commands and Functions

 ode23t ordinary differential equation solver
 ode23tb ordinary differential equation solver
 ode15i ordinary differential equation solver
 polyfit computes the coeffi cients of a least-squares polynomial
 polyval evaluates a polynomial at a specifi ed value of x
 quad computes the integral under a curve (Simpson)
 quad1 computes the integral under a curve (Lobatto)
 trapz approximates the integral based on ordered pairs of data

 approximation
 backward difference
 boundary value problem
 central difference
 cubic equation
 cubic spline
 derivative
 differentiation

 extrapolation
 forward difference
 graphical user interface
 (GUI)
 interpolation
 initial value problems
 least squares
 linear interpolation

 linear regression
 Lobatto quadrature
 quadratic equation
 quadrature
 Simpson quadrature
 trapezoidal rule

 KEY TERMS

 Interpolation

 13.1 Consider a gas in a piston–cylinder device in which the temperature is held
constant. As the volume of the device was changed, the pressure was meas-
ured. The volume and pressure values are reported in the following table:

 Volume, m 3 Pressure, kPa,
when I � 300 K

 1 2494

 2 1247

 3 831

 4 623

 5 499

 6 416

 (a) Use linear interpolation to estimate the pressure when the volume is 3.8 m3.
 (b) Use cubic spline interpolation to estimate the pressure when the vol-

ume is 3.8 m3.
 (c) Use linear interpolation to estimate the volume if the pressure is meas-

ured to be 1000 kPa.
 (d) Use cubic spline interpolation to estimate the volume if the pressure is

measured to be 1000 kPa.

 PROBLEMS

 13.2 Using the data from Problem 13.1 and linear interpolation to create an
expanded volume–pressure table with volume measurements every 0.2 m3.
Plot the calculated values on the same graph with the measured data. Show
the measured data with circles and no line and the calculated values with a
solid line.

 13.3 Repeat Problem 13.2, using cubic spline interpolation.
 13.4 The experiment described in Problem 13.1 was repeated at a higher tem-

perature and the data recorded in the following table:

 Volume, m3 Pressure, kPa, at 300 K Pressure, kPa, at 500 K

 1 2494 4157

 2 1247 2078

 3 831 1386

 4 623 1039

 5 499 831

 6 416 693

 Use these data to answer the following questions:

 (a) Approximate the pressure when the volume is 5.2 m3 for both tempera-
tures (300 K and 500 K). (Hint : Make a pressure array that contains
both sets of data; your volume array will need to be 6 � 1, and your
pressure array will need to be 6 � 2.) Use linear interpolation for your
calculations.

 (b) Repeat your calculations, using cubic spline interpolation.

 13.5 Use the data in Problem 13.4 to solve the following problems:

 (a) Create a new column of pressure values at T � 400 K, using linear
 interpolation.

 (b) Create an expanded volume–pressure table with volume measurements
every 0.2 m3, with columns corresponding to T � 300 K, T � 400 K,
and T � 500 K.

 13.6 Use the interp2 function and the data from Problem 13.4 to approximate
a pressure value when the volume is 5.2 m3 and the temperature is 425 K.

 Curve Fitting

 13.7 Fit the data from Problem 13.1 with fi rst-, second-, third-, and fourth-order
polynomials, using the polyfit function:

 • Plot your results on the same graph.
 • Plot the actual data as a circle with no line.
 • Calculate the values to plot from your polynomial regression results at

intervals of 0.2 m3.
 • Do not show the calculated values on the plot, but do connect the points

with solid lines.
 • Which model seems to do the best job?

 13.8 The relationship between pressure and volume is not usually modeled by a
polynomial. Rather, they are inversely related to each other by the ideal gas law,

 P �
nRT

V

Problems 537

538 Chapter 13 Numerical Techniques

 We can plot this relationship as a straight line if we plot P on the y -axis and
1/ V on the x -axis. The slope then becomes the value of nRT . We can use the
 polyfit function to fi nd this slope if we input P and 1/ V to the function:

polyfit(1./V, P,1)

 (a) Assuming that the value of n is 1 mol and the value of R is 8.314 kPa/kmol
K , show that the temperature used in the experiment is indeed 300 K .

 (b) Create a plot with 1/ V on the x -axis and P on the y -axis.

 13.9 Resistance and current are inversely proportional to each other in electrical
circuits:

 I �
V
R

 Consider the following data collected from an electrical circuit to which an
unknown constant voltage has been applied (Figure P13.9):

 Resistance, ohms Measured Current, amps

 10 11.11

 15 8.04

 25 6.03

 40 2.77

 65 1.97

 100 1.51

 (a) Plot resistance (R) on the x -axis and measured current (I) on the y -axis.
 (b) Create another plot with 1/ R on the x -axis and I on the y -axis.
 (c) Use polyfit to calculate the coeffi cients of the straight line shown in

your plot in part (b). The slope of your line corresponds to the applied
voltage.

 (d) Use polyval to fi nd calculated values of current (I) based on the resis-
tors used. Plot your results in a new fi gure, along with the measured data.

 13.10 Many physical processes can be modeled by an exponential equation. For
example, chemical reaction rates depend on a reaction-rate constant that is
a function of temperature and activation energy:

 k � k0e
�Q >RT

 In this equation,

 R � universal gas constant, 8.314 kJ/kmol K,

 Q � activation energy, in kJ/kmol,

 T � temperature, in K, and

 k0 � constant whose units depend on characteristics of the reaction.
 One possibility is s�1.

 One approach to fi nding the values of k0 and Q from experimental data is to
plot the natural logarithm of k on the y -axis and 1/ T on the x -axis. This should
result in a straight line with slope -Q >R and intercept ln1k02 —that is,

 ln1k2 � ln1k02 �
Q

R
a 1

T
b

Resistor

I
V

 Figure P13.9
 An electrical circuit.

 since the equation now has the form

 y � ax � b

 with y � ln1k2, x � 1>T, a � -Q>R and b � ln1k2.
 Now consider the following data:

 T , K k , s�1

 200 1.46 � 10�7

 400 0.0012

 600 0.0244

 800 0.1099

 1000 0.2710

 (a) Plot the data with 1/ T on the x -axis and ln(k) on the y -axis.
 (b) Use the polyfit function to fi nd the slope of your graph, -Q >R, and

the intercept, ln1k02.
 (c) Calculate the value of Q .
 (d) Calculate the value of k0.

 13.11 Electrical power is often modeled as

 P � I 2 R

 where

 P � power, in watts,

 I � current, in amperes, and

 R � resistance, in ohms.

 (a) Consider the following data and fi nd the value of the resistor in the
 circuit by modeling the data as a second-order polynomial with the
 polyfit function:

 Power, W Current, A

 50,000 100

 200,000 200

 450,000 300

 800,000 400

 1,250,000 500

 (b) Plot the data and use the curve-fi tting tools found in the fi gure window
to determine the value of R by modeling the data as a second-order
polynomial.

 13.12 Using a polynomial to model a function can be very useful, but it is always
dangerous to extrapolate beyond your data. We can demonstrate this pitfall
by modeling a sine wave as a third-order polynomial.

 (a) Defi ne x = -1:0.1:1
 (b) Calculate y = sin(x)

Problems 539

540 Chapter 13 Numerical Techniques

 (c) Use the polyfit function to determine the coeffi cients of a third-
order polynomial to model these data.

 (d) Use the polyval function to calculate new values of y (modeled_y)
based on your polynomial, for your x vector from -1 to 1.

 (e) Plot both sets of values on the same graph. How good is the fi t?
 (f) Create a new x vector, new_x = -4:0.1:4.
 (g) Calculate new_y values by fi nding sin(new_x) .
 (h) Extrapolate new_modeled_y values by using polyfit , the coeffi cient

vector you found in part (c) to model x and y between -1 and 1, and
the new_y values.

 (i) Plot both new sets of values on the same graph. How good is the fi t out-
side of the region from -1 to 1?

 Approximating Derivatives

 13.13 Consider the following equation:

 y � 12x3 � 5x2 � 3

 (a) Defi ne an x vector from -5 to +5, and use it together with the diff
function to approximate the derivative of y with respect to x .

 (b) Found analytically, the derivative of y with respect to x is

dy

dx
� y� � 36x2 � 10x

 Evaluate this function, using your previously defi ned x vector. How do your
results differ?

 13.14 One very common use of derivatives is to determine velocities. Consider
the following data, taken during a car trip from Salt Lake City to
Denver:

 Time, hours Distance, miles

 0 0

 1 60

 2 110

 3 170

 4 220

 5 270

 6 330

 7 390

 8 460

 (a) Find the average velocity in mph during each hour of the trip.
 (b) Plot these velocities on a bar graph. Edit the graph so that each bar cov-

ers 100% of the distance between entries.

 13.15 Consider the following data, taken during a car trip from Salt Lake City to
Los Angeles:

 Time, hours Distance, miles

 0 0

 1.0 75

 2.2 145

 2.9 225

 4.0 300

 5.2 380

 6.0 430

 6.9 510

 8.0 580

 8.7 635

 9.7 700

 10 720

 (a) Find the average velocity in mph during each segment of the trip.
 (b) Plot these velocities against the start time for each segment.
 (c) Use the find command to determine whether any of the average

velocities exceeded the speed limit of 75 mph.
 (d) Is the overall average above the speed limit?

 13.16 Consider the following data from a three-stage model rocket launch:

 Time, seconds Altitude, meters

 0 0

 1.00 107.37

 2.00 210.00

 3.00 307.63

 4.00 400.00

 5.00 484.60

 6.00 550.00

 7.00 583.97

 8.00 580.00

 9.00 549.53

 10.00 570.00

 11.00 699.18

 12.00 850.00

 13.00 927.51

 14.00 950.00

 15.00 954.51

 16.00 940.00
(continued)

Problems 541

542 Chapter 13 Numerical Techniques

 Time, seconds Altitude, meters

 17.00 910.68

 18.00 930.00

 19.00 1041.52

 20.00 1150.00

 21.00 1158.24

 22.00 1100.00

 23.00 1041.76

 24.00 1050.00

 (a) Create a plot with time on the x -axis and altitude on the y -axis.
 (b) Use the diff function to determine the velocity during each time

interval, and plot the velocity against the starting time for each interval.
 (c) Use the diff function again to determine the acceleration for each

time interval, and plot the acceleration against the starting time for
each interval.

 (d) Estimate the staging times (the time when a burnt-out stage is discarded
and the next stage ignites) by examining the plots you’ve created.

 Numerical Integration

 13.17 Consider the following equation:

 y � 5x3 � 2x2 � 3

 Use the quad and quadl functions to fi nd the integral with respect to x ,
evaluated from -1 to 1. Compare your results with the values found with
the use of the symbolic toolbox function, int , and the following analytical
solution (remember that the quad and quadl functions take input
expressed with array operators such as .* or .^ , but the int function takes a
symbolic representation that does not use these operators):

 L
b

a
15x3 � 2x2 � 32 dx �

 a5x4

4
�

2x3

3
� 3xb ` b

a
�

5
4
1b4 � a42 �

2
3
1b3 � a32 � 31b � a2

 13.18 The equation

 CP � a � bT � cT 2 � dT 3

 is an empirical polynomial that describes the behavior of the heat capacity
 CP as a function of temperature in kelvins. The change in enthalpy (a
measure of energy) as a gas is heated from T1 to T2 is the integral of this
equation with respect to T :

 �h � L
T2

T1

CP dT

 Find the change in enthalpy of oxygen gas as it is heated from 300 to 1000 K,
using the MATLAB ® quadrature functions. The values of a , b , c , and d for
oxygen are as follows:

 a � 25.48

 b � 1.520 � 10�2

 c � -0.7155 � 10�5

 d � 1.312 � 10�9

 13.19 In some sample problems in this chapter, we explored the equations that
describe moving boundary work produced by a piston–cylinder device. A
similar equation describes the work produced as a gas or a liquid fl ows
through a pump, turbine, or compressor (Figure P13.19).
 In this case, there is no moving boundary, but there is shaft work, given by

 W
#
produced � -L

outlet

inlet
V
#
dP

 This equation can be integrated if we can fi nd a relationship between V
.

and P . For ideal gases, that relationship is

 V
#
�

#n RT
P

 If the process is isothermal, the equation for work becomes

 W
#

� -n
#
RTL

outlet

inlet

dP
P

 where

 #n � molar fl ow rate, in kmol/s

 R � universal gas constant, 8.314 kJ/kmol K

 T � temperature, in K

 P � pressure, in kPa

 W
#

� power, in kW.

 Find the power produced in an isothermal gas turbine if

 #n � 0.1 kmol/s

 R � universal gas constant, 8.314 kJ/kmol K

 T � 400 K

 Pinlet � 500 kPa

 Poutlet � 100 kPa.

 Differential Equations

 13.20 Solve the following differential equation for values of t between 0 and 4,
with the initial condition of y = 1 when t = 0,

dy

dt
� sin1t2 � 1

Gas
Turbine

 Figure P13.19
 A gas turbine used to
produce power.

Problems 543

544 Chapter 13 Numerical Techniques

 (a) Analytically or using MATLAB ® ’s symbolic capabilities.
 (b) Using the ode45 function.
 (c) Plot your results for both approaches.

 13.21 Solve the following differential equation for values of t between 0 and 1,
with the initial condition of y � 0 when t � 0.

dy

dt
� t2 � y

 13.22 Blasius showed in 1908 that the solution to the incompressible fl ow fi eld in
a laminar boundary layer on a fl at plate is given by the solution of the fol-
lowing third-order ordinary nonlinear differential equation

 2
d3f

dh3 � f
d2f

dh2 � 0

 Rewrite this equation into a system of three fi rst-order equations, using the
following substitutions:

 h1(h) � f

 h2(h) �
df

dh

 h3(h) �
d2f

dh2

 Solve using the ode45 function with the following initial conditions:

 h1(0) � 0

 h2(0) � 0

 h3(0) � 0.332
for h � 0 to 1

14

INTRODUCTION

 Some of the basic graphs commonly used in engineering are the workhorse x–y
plot, polar plots, and surface plots, as well as some graphing techniques more
commonly used in business applications, such as pie charts, bar graphs, and histo-
grams. MATLAB ® gives us signifi cant control over the appearance of these plots
and lets us manipulate images (such as digital photographs) and create three-
dimensional representations (besides surface plots) of both data and models of
physical processes.

 14.1 IMAGES

 Let us start our exploration of some of MATLAB ® ’s more advanced graphics capabili-
ties by examining how images are handled with the image and imagesc functions.
Because MATLAB ® is already a matrix-manipulation program, it makes sense that
images are stored as matrices.

 After reading this chapter, you
should be able to:
• Understand how

MATLAB ® handles the
three different types of
image fi les

• Assign a handle to plots
and adjust properties,
using handle graphics

• Create an animation by
either of the two
MATLAB ® techniques

• Adjust lighting parameters,
camera locations, and
transparency values

• Use visualization
 techniques for both scalar
and vector information in
three dimensions.

 Objectives

 Advanced
Graphics

 C H A P T E R

546 Chapter 14 Advanced Graphics

 We can create a three-dimensional surface plot of the peaks function by typing

surf(peaks)

 We can manipulate the fi gure we have created (Figure 14.1) by using the interac-
tive fi gure-manipulation tools, so that we are looking down from the top (Figure 14.2).

 An easier way to accomplish the same thing is to use the pseudo color plot:

pcolor(peaks)

10

Sample Function - Peaks

z-
ax

is

y-axis x-axis

5

5

10
60

6040
40

20
20

0 0

0

50
504030

Sample Function - Peaks
20100

40

30

20

10

0
50z-

ax
is

 Figure 14.1
 The peaks function is built
into MATLAB ® for use in
demonstrating graphics
capabilities. The title and
axis labels were added in
the usual way.

 Figure 14.2
 A view of the surface plot
of the peaks function
looking down the z -axis.

14.1 Images 547

 We can also remove the grid lines, which are plotted automatically, by specify-
ing the shading option:

shading flat

 The colors in Figures 14.1 to 14.3 correspond to the values of z . The large posi-
tive values of z are red (if you are looking at the results on the screen and not in this
book, which, of course, is black and white), and the large negative values are blue.
The value of z found in the fi rst z matrix element, z (1, 1), is represented in the
lower left-hand corner of the graph (see Figure 14.3 , right).

 Although this strategy for representing data makes sense because of the coordi-
nate system we typically use in graphing, it does not make sense for representing
images such as photographs. When images are stored in matrices, we usually repre-
sent the data starting in the upper left-hand corner of the image and working across
and down (Figure 14.4 , left). In MATLAB ® , two functions used to display images—
 image and imagesc —use this format. The scaled image function (imagesc) uses
the entire colormap to represent the data, just like the pseudo color plot function
(pcolor). The results, obtained with

 imagesc(peaks)

 are shown at the right in Figure 14.4 .
 Notice that the image is fl ipped in comparison to the pseudo color plot. Of

course, in many graphics applications, it doesn’t matter how the data are
 represented, as long as we understand the convention used. However, a photo-
graph would be upside down in a vertical mirror image—clearly not an accepta-
ble representation.

z(1,1) z(1,2) z(1,3) … z(1,n)

z(2,1) z(2,2) z(2,3) … z(2,n)

z(3,1) z(3,2) z(3,3) … z(3,n)

z(m,1) z(m,2) z(m,3) … z(m,n)

… … … … …

… … … … …

… … … … …

x-axis

y-
ax

is

45

40

35

25

15

5

10

10 20 30
x-axis

y-
ax

is

Pseudo Color Plot - Peaks

40

30

20

 Figure 14.3
 A pseudo color plot (left) is the same thing as the view looking straight down at a surface plot. Pseudo color plots organize the
data on the basis of the right-hand rule, starting at the (0, 0) position on the graph (right).

548 Chapter 14 Advanced Graphics

 14.1.1 Image Types

 MATLAB ® recognizes three different techniques for storing and representing
images:

 Intensity (or gray scale) images

 Indexed images

 RGB (or true color) images

 Intensity Images
 We used an intensity image to create the representation of the peaks function
(Figure 14.4) with the scaled image function (imagesc). In this approach, the
colors in the image are determined by a colormap. The values stored in the image
matrix are scaled, and the values are correlated with a known map. (The jet
colormap is the default.) This approach works well when the parameter being
displayed does not correlate with an actual color. For example, the peaks function
is often compared to a mountain and valley range—but what elevation is the color
red? It’s an arbitrary choice based partially on aesthetics, but colormaps can also be
used to enhance features of interest in the image.

 Consider this example: X-ray images traditionally were produced by exposing
photographic fi lm to X-ray radiation. Today many X-rays are processed as digital
images and stored in a data fi le—no fi lm is involved. We can manipulate that fi le how-
ever we want, because the intensity of X-ray radiation does not correspond to a particu-
lar color.

z(m,1) z(m,2) z(m,3) … z(m,n)

… … … ……

… … … … …

z(1,1) z(1,2) z(1,3) … z(1,n)

… … … … …

… … … … …

… … … … …

x-axis

y-
ax

is

x-axis

y-
ax

is

Scaled Image Plot - Peaks

10 20 30 40

5

10

15

20

25

30

35

40

45

 Figure 14.4
T he peaks function rendered with the imagesc function. Left: images are usually represented starting in the upper left-hand
corner and working across and down, the way we read a book. Right: the pcolor plot and the imagesc plot are vertical
mirror images of each other.

KEY IDEA
 Two functions are used to
display images, imagesc
and image

14.1 Images 549

 MATLAB ® includes a sample fi le that is a digital X-ray photograph of a spine,
suitable for display with the use of the scaled image function. First you’ll need to
load the fi le:

load spine

 The loaded fi le includes a number of matrices (see the workspace window); the
intensity matrix is named X . Thus,

imagesc(X)

 produces an image whose colors are determined by the current colormap , which
defaults to jet . A representation that looks more like a traditional X-ray is returned
if we use the bone colormap:

colormap(bone)

 This image is shown in Figure 14.5 .
 The spine fi le also includes a custom colormap, which happens to correspond

to the bone colormap. This array is called map . Custom colormaps are not neces-
sary to display intensity images, and

colormap(map)

 results in the same image we created earlier.
 Although it is convenient to think of image data as a matrix, such data are not

necessarily stored that way in the standard graphics formats. MATLAB ® includes a
function, imfinfo , that will read standard graphics fi les and determine what type
of data are contained in the fi le. Consider the fi le mimas.jpg, which was down-
loaded off the Internet from a NASA website (http://saturn.jpl.nasa.gov). The
command

imfinfo('mimas.jpg')

100 200 300 400

50

100

150

200

250

300

350

 Figure 14.5
 Digital X-ray displayed with
the use of the imagesc
function and the bone
colormap.

http://saturn.jpl.nasa.gov

550 Chapter 14 Advanced Graphics

 returns the following information (be sure to list the fi le name in single quotes—
that is, as a string; also, notice that the image is 'gray scale' —another term for
an intensity image):

ans =

Filename: 'mimas.jpg'

FileModDate: '06-Aug-2005 08:52:18'

FileSize: 23459

Format: 'jpg'

FormatVersion: "

Width: 500

Height: 525

BitDepth: 8

ColorType: 'gray scale'

FormatSignature: "

NumberOfSamples: 1

CodingMethod: 'Huffman'

CodingProcess: 'Sequential'

Comment: {'Created with The GIMP'}

 In order to create a MATLAB ® matrix from this fi le, we use the image read
function imread and assign the results to a variable name, such as X :

X = imread('mimas.jpg');

 We can then plot the image with the imagesc function and gray colormap:

imagesc(X)

colormap(gray)

 The results are shown in Figure 14.6 a.

 Indexed Image Function
 When color is important, one technique for creating an image is called an indexed
image . Instead of being a list of intensity values, the matrix is a list of colors. The
image is created much like a paint-by-number painting. Each element contains a
number that corresponds to a color. The colors are listed in a separate matrix called
a colormap, which is an n � 3 matrix that defi nes n different colors by identifying
the red, green, and blue components of each color. A custom colormap can be cre-
ated for each image, or a built-in colormap could be used.

 Consider the built-in sample image of a mandrill, obtained with

load mandrill

 The fi le includes an indexed matrix named X and a colormap named map .
(Check the workspace window to confi rm that these fi les have been loaded; the
names are commonly used for images saved from a MATLAB ® program.) The
 image function is used to display indexed images:

image(X)

colormap(map)

 KEY IDEA
 The color scheme for an
image is controlled by the
colormap

14.1 Images 551

 MATLAB ® images adjust to fi ll the fi gure window, so the image may appear
warped. We can force the correct aspect to be displayed by using the axis
 command:

axis image

 The results are shown in Figure 14.7 .
 The image and imagesc functions are similar, yet they can give very different

results. The image of Mimas in Figure 14.6 b was produced by the image function
instead of the more appropriate imagesc function. The gray colormap does not
correspond to the colors stored in the intensity image; the result is the washed-out
image and lack of contrast. It is important to recognize what kind of fi le you are dis-
playing, so that you can make the optimum choice of how to represent the image.

(a) Imagesc with Gray Map

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(b) Image with Gray Map

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

 Figure 14.6
 (a) Image of mimas, a moon of saturn, displayed by means of the scaled image function, imagesc , and a gray
colormap. (b) Image displayed with the indexed image function, image, and a gray colormap .

Mandrill Image - Custom ColormapMandrill Image - Jet Colormap

50

100

150

200

250

300

350

400

450

100 200 300 400 500 100 200 300 400 500

50

100

150

200

250

300

350

400

450

 Figure 14.7
 Left: Mandrill image before
the custom colormap is
applied. Right: mandrill
image with the custom
colormap.

552 Chapter 14 Advanced Graphics

 Files stored in the GIF graphics format are often stored as indexed images. This
may not be apparent when you use the imfinfo function to determine the fi le
parameters. For example, the image in Figure 14.8 is part of the clip art included
with Microsoft Word. The image was copied into the current folder, and imfinfo
was used to determine the fi le type:

imfinfo('drawing.gif')

ans =

1x4 struct array with fields:

Filename

FileModDate

FileSize

Format etc.

 The results don’t tell us much, but if you double-click on the fi le name in the
current folder, the Import Wizard (Figure 14.9) launches and suggests that we cre-
ate two matrices: cdata and colormap . The cdata matrix is an indexed image
matrix, and colormap is the corresponding colormap . Actually, the suggested
name colormap is rather strange, because if we use it, it will supersede the color-
map function. You’ll need to rename this matrix to something different, such as
map , by clicking on the variable name in the import wizard before you actually com-
plete the import process. After importing, you can view the image with the follow-
ing commands.

image(cdata)

colormap(map)

axis image

axis off

 Figure 14.8
 Clip art stored in the GIF
fi le format.

 Figure 14.9
 The import wizard is used
to create an indexed image
matrix and colormap from
a GIF fi le.

 HINT

 A number of sample images are built into MATLAB ® and stored as indexed
images. You can access these fi les by typing

load <imagename>

14.1 Images 553

 True Color (RGB) Images
 The third technique for storing image data is in a three-dimensional matrix,
 m � n � 3. Recall that a three-dimensional matrix consists of rows, columns, and
pages. True color image fi les consist of three pages, one for each color intensity,
red, green, or blue, as shown in Figure 14.10 .

 Consider a fi le called airplanes.jpg. You can copy this or a similar fi le
(a colored .jpg image) into your current folder to experiment with true color
images. We can use the imfinfo function to determine how the airplanes fi le
stores the image:

imfinfo('airplanes.jpg')

ans =

Filename: 'airplanes.jpg'

FileModDate: '12-Sep-2005 17:51:48'

FileSize: 206397

Format: 'jpg'

 Some of the available images are

flujet

durer

detail

mandrill

clown

spine

cape

earth

gatlin

 Each of these image fi les creates a matrix of index values called X and a color-
map called map . For example, to see the image of the earth, type

load earth

image(X)

colormap(map)

 You’ll also need to adjust the aspect ratio of the display and remove the axis
with the commands

axis image

axis off

blue

rows

columns

pages

green

red

 RGB
 The primary colors of light
are red, green, and blue

 Figure 14.10
 True color images use a
multidimensional array to
represent the color of each
element.

554 Chapter 14 Advanced Graphics

FormatVersion: "

Width: 1800

Height: 1200

BitDepth: 24

ColorType: 'truecolor'

FormatSignature: "

NumberOfSamples: 3

CodingMethod: 'Huffman'

CodingProcess: 'Sequential'

Comment: {}

 Notice that the color type is ‘truecolor’ and that the number of samples is 3,
indicating a page for each color intensity.

 We can load the image with the imread function and display it with the image
function:

X = imread('airplanes.jpg');

image(X)

axis image

axis off

 Notice in the workspace window that X is a 1200 � 1800 � 3 matrix—one page
for each color. We don’t need to load a colormap, because the color-intensity infor-
mation is included in the matrix (Figure 14.11).

Figure 14.11
True color image of
airplanes. All of the color
information is stored in a
three-dimensional matrix.
(Picture used with
permission of Dr. G. Jimmy
Chen, Salt Lake Community
College, Department of
Computer Science.)

EXAMPLE 14.1
 MANDELBROT AND JULIA SETS
 Benoit Mandelbrot (Figure 14.12) is largely responsible for the current interest in
fractal geometry. His work built upon concepts developed by the French mathemat-
ician Gaston Julia in his 1919 paper Mémoire sur l’iteration des fonctions rationelles.
Advances in Julia’s work had to wait for the development of the computer and com-
puter graphics in particular. In the 1970s, Mandelbrot, then at IBM, revisited and
expanded upon Julia’s work and actually developed some of the fi rst computer
graphics programs to display the complicated and beautiful fractal patterns that
today bear his name. Mandelbrot’s work was recently described in a song by

14.1 Images 555

Jonathan Coulton. You can listen to it at http://www.jonathancoulton.com/song-
details/Mandelbrot%20Set .

 The Mandelbrot image is created by considering each point in the complex
plane, x � yi. We set z102 � x � yi and then iterate according to the following
strategy:

 z(0) � x � yi

 z112 � z1022 � z102

 z122 � z1122 � z102

 z132 � z1222 � z102

 z1n2 � z1n � 122 � z102
 The series seems either to converge or to head off toward infinity. The

Mandelbrot set is composed of the points that converge. The beautiful pictures you
have probably seen were created by counting how many iterations were necessary
for the z -value at a particular point to exceed some threshold value, often the square
root of 5. We assume, though we can’t prove, that if that threshold is reached, the
series will continue to diverge and eventually approach infi nity.

 1. State the Problem
 Write a MATLAB ® program to display the Mandelbrot set.
 2. Describe the Input and Output

 Input We know that the Mandelbrot set lies somewhere in the complex plane
and that

 -1.5 … x … 1.0

 -1.5 … y … 1.5

 We also know that we can describe each point in the complex plane as

 z � x � yi

 3. Develop a Hand Example
 Let’s work the fi rst few iterations for a point we hope converges, such as

 (x � -0.5, y � 0):

 z(0) � -0.5 � 0i

 z112 � z1022 � z102 � 1-0.522 � 0.5 � 0.25 � 0.5 � -0.25

 z122 � z1122 � z102 � 1-0.2522 � 0.5 � 0.0625 � 0.5 � -0.4375

 z132 � z1222 � z102 � 1-0.437522 � 0.5 � 0.1914 � 0.5 � -0.3086

 z142 � z1322 � z102 � 1-0.308622 � 0.5 � 0.0952 � 0.5 � -0.4048

 It appears that this sequence is converging to a value around (As an exercise,
you could create a MATLAB ® program to calculate the fi rst 20 terms of the
series and plot them.)

 4. Develop a MATLAB ® Solution

%Example 14.1 Mandelbrot Image

clear, clc

 Figure 14.12
 Benoit Mandelbrot.

Jonathan Coulton. You can listen to it at http://www.jonathancoulton.com/song-
details/Mandelbrot%20Set .

The Mandelbrot image is created by considering each point in the complex
plane, x � yi. We set z102 � x � yi and then iterate according to the following
strategy:

z(0) � x � yi

z112 � z1022 � z102
z122 � z1122 � z102
z132 � z1222 � z102
z1n2 � z1n � 122 � z102

The series seems either to converge or to head off toward infinity. The
Mandelbrot set is composed of the points that converge. The beautiful pictures you
have probably seen were created by counting how many iterations were necessary
for the z -value at a particular point to exceed some threshold value, often the square zz
root of 5. We assume, though we can’t prove, that if that threshold is reached, the
series will continue to diverge and eventually approach infi nity.

1. State the Problem
Write a MATLAB ® program to display the Mandelbrot set.

2. Describe the Input and Output

Input We know that the Mandelbrot set lies somewhere in the complex planet
and that

-1.5 … x … 1.0

-1.5 … y … 1.5

 We also know that we can describe each point in the complex plane as

z � x � yi

3. Develop a Hand Example
 Let’s work the fi rst few iterations for a point we hope converges, such as

(x � -0.5, y � 0):

z(0) � -0.5 � 0i

z112 � z1022 � z102 � 1-0.522 � 0.5 � 0.25 � 0.5 � -0.25

z122 � z1122 � z102 � 1-0.2522 � 0.5 � 0.0625 � 0.5 � -0.4375

z132 � z1222 � z102 � 1-0.437522 � 0.5 � 0.1914 � 0.5 � -0.3086

z142 � z1322 � z102 � 1-0.308622 � 0.5 � 0.0952 � 0.5 � -0.4048

It appears that this sequence is converging to a value around (As an exercise,
you could create a MATLAB® program to calculate the fi rst 20 terms of the
series and plot them.)

4. Develop a MATLAB® Solution

%Example 14.1 Mandelbrot Image

clear, clc

 Figure 14.12
 Benoit Mandelbrot.

(continued)

http://www.jonathancoulton.com/songdetails/Mandelbrot%20Set
http://www.jonathancoulton.com/songdetails/Mandelbrot%20Set

556 Chapter 14 Advanced Graphics

iterations = 80;

grid_size = 500;

[x,y] = meshgrid(linspace(-1.5,1.0,grid_size),linspace

 (-1.5,1.5,grid_size));

c = x+i*y;

z = zeros(size(x)); % set the initial matrix to 0

map = zeros(size(x)); % create a map of all grid

 % points equal to 0

for k = 1:iterations

z = z.^2 +c;

a = find(abs(z)>sqrt(5)); %Determine which elements have

 %exceeded sqrt(5)

map(a) = k;

end

figure(1)

image(map) %Create an image

colormap(jet)

 The image produced is shown in Figure 14.13 .
5. Test the Solution
 We know that all the elements in the solid colored region of the image (dark

blue—if you are looking at the image on a computer screen) will be below the
square root of 5. An alternative way to examine the results is to create an image
based on those values instead of the number of iterations needed to exceed the
threshold. We’ll need to multiply each value by a common multiple in order to
achieve any color variation. (Otherwise the values are too close to each other.)
The MATLAB ® code is as follows:

figure(2)

multiplier = 100;

map = abs(z)*multiplier;

image(map)

100 200 300 400 500

100

200

300

400

500

 Figure 14.13
 Mandelbrot image. The
fi gure was created by
determining how many
iterations were required
for the calculated
element values to
exceed the square
root of 5.

14.1 Images 557

 The results are shown in Figure 14.14 .
 Now that we’ve created an image of the entire Mandelbrot set, it would be

interesting to look more closely at some of the structures at the boundary. By
adding the following lines of code to the program, we can repeatedly zoom in
on any point in the image:

cont = 1;

while(cont==1)

figure(1)

disp('Now let's zoom in')

disp('Move the cursor to the upper left-hand corner of the

 area you want to expand')

[y1,x1] = ginput(1);

disp('Move to the lower right-hand corner of the area you

 want to expand')

[y2,x2] = ginput(1);

xx1 = x(round(x1),round(y1));

yy1 = y(round(x1),round(y1));

xx2 = x(round(x2),round(y2));

yy2 = y(round(x2),round(y2));

%%

[x,y] = meshgrid(linspace(xx1,xx2,grid_size),linspace(yy1,

 yy2,grid_size));

c = x+i*y;

z = zeros(size(x));

map = zeros(size(x));

for k = 1:iterations

 z = z.^2 +c;

 a = find(abs(z)>sqrt(5));

map(a) = k;

end

image(map)

colormap(jet)

100 200 300 400 500

100

200

300

400

500

 Figure 14.14
 An image based on the
Mandelbrot set,
showing how the
members of the set
vary. The really
interesting structure is at
the boundary of the set.

(continued)

558 Chapter 14 Advanced Graphics

again = menu('Do you want to zoom in again? ','Yes','No');

switch again

 case 1

 cont = 1;

 case 2

 cont = 0;

end

end

 Figure 14.15 shows some of the images created by recalculating with smaller
and smaller areas.

 You can experiment with using both the image function and the imagesc
function and observe how the pictures differ. Try some different colormaps as well.

100 200 300 400 500

100

200

300

400

500
100 200 300 400 500

100

200

300

400

500

100 200 300 400 500

100

200

300

400

500
100 200 300 400 500

100

200

300

400

500

 Figure 14.15
 Images created by zooming in on the Mandelbrot set from a MATLAB ® program.

 14.1.2 Reading and Writing Image Files

 We introduced functions for reading image fi les as we explored the three tech-
niques for storing image information. MATLAB ® also includes functions to write
user-created images in any of a variety of formats. In this section, we’ll explore these
reading and writing functions in more detail.

14.1 Images 559

 Reading Image Information
 Probably the easiest way to read image information into MATLAB ® is to take advan-
tage of the interactive Import Wizard. In the current folder window, simply double-
click the fi le name of the image to be imported. MATLAB ® will suggest appropriate
variable names and will make the matrices available to preview in the edit window
(Figure 14.9).

 The problem with interactively importing any data is that you can’t include the
instructions in a MATLAB ® program—for that, we need to use one of the import
functions. For most of the standard image formats, such as .jpg or .tif, the imread
function described in the preceding section is the appropriate technique. On the
other hand, if the fi le is a .mat or a .dat fi le, the easiest way to import the data is
to use the load function:

load <filename>

 For .mat fi les, you don’t even need to include the .mat extension. However,
you will need to include the extension for a .dat fi le:

load <filename.dat>

 This is the technique we used to load the built-in image fi les described earlier.
For example,

load cape

 imports the image matrix and colormap into the current folder, and the commands

image(X)

colormap(map)

axis image

axis off

 can then be used to create the picture, shown in Figure 14.16 .

 Storing Image Information
 You can save an image you’ve created in MATLAB ® the same way you save any
 fi gure. Select

File: Save As ...

 Figure 14.16
 Image created by loading
a built-in fi le.

560 Chapter 14 Advanced Graphics

 and choose the fi le type and the location where you’d like to save the image. For
example, to save the image of the Mandelbrot set created in Example 14.1 and
shown in Figure 14.13 , you might want to specify an enhanced metafi le (.emf), as
shown in Figure 14.17 .

 You could also save the fi le by using the imwrite function. This function accepts
a number of different inputs, depending on the type of data you would like to store.

 For example, if you have an intensity array (gray scale) or a true-color array
(RGB), the imwrite function expects input of the form

imwrite(arrayname,‘filename.format’)

 where
 arrayname is the name of the MATLAB ® array in which the data are stored,
 fi lename is the name you want to use to store the data, and
 format is the fi le extension, such as jpg or tif.

 Thus, to store an RGB image in a .jpg fi le named fl owers, the command would be

imwrite(X,‘flowers.jpg’)

 (Consult the help fi les for a list of graphics formats supported by MATLAB ® .)
 If you have an indexed image (an image with a custom colormap), you’ll need

to store both the array and the colormap:

imwrite(arrayname, colormap_name,‘filename.format’)

 In the case of the Mandelbrot set, we would need to save the array and the
colormap used to select the colors in the image:

imwrite(map,jet,‘my_mandelbrot.jpg’)

 Figure 14.17
 This image of a Mandelbrot
set is being saved as an
enhanced metafi le.

14.2 Handle Graphics 561

 14.2 HANDLE GRAPHICS

 A handle is a nickname given to an object in MATLAB ® . A complete description
of the graphics system used in MATLAB ® is complicated and beyond the scope
of this text. (For more details, refer to the MATLAB ® help tutorial.) However,
we’ll give a brief introduction to handle graphics and then illustrate some of its
uses.

 MATLAB ® uses a hierarchical system for creating graphs (Figure 14.18). The
basic plotting object is the fi gure. The fi gure can contain a number of different
objects, including a set of axes. Think of the axes as being layered on top of the
fi gure window. The axes also can contain a number of different objects, including a
plot such as the one shown in Figure 14.19 . Again, think of the plot being layered
on top of the axes.

 When you use a plot function, either from the command window or from an
M-fi le program, MATLAB ® automatically creates a fi gure and an appropriate axis,
and then draws the graph on the axis. MATLAB ® uses default values for many of the
plotted object’s properties. For example, the fi rst line drawn is always blue, unless
the user specifi cally changes it.

 Handle
 A nickname

Figure

AxesUser Interfaces Annotation Axes

Core Objects Group ObjectsPlot Objects

Figure Axis Plot

 Figure 14.19
 Anatomy of a graph. Left: Figure windows are used for lots of things, including graphical user
interfaces and plots. In order to create a plot you need a fi gure window. Center: Before you can
draw a graph in this fi gure window, you’ll need a set of axes to draw on. Right: Once you know
where the axes are and what the axis properties are (such as the spacing), you can draw the
graph.

 Figure 14.18
 MATLAB ® uses a
hierarchical system for
organizing plotting
information, as shown in
this representation from
Matlab ® ’s help menu.

562 Chapter 14 Advanced Graphics

 14.2.1 Plot Handles

 Assigning a plot a name (called a handle) allows us to easily ask MATLAB ® to list
the plotted object’s properties. For example, let’s create the simple plot shown in
 Figure 14.19 and assign a handle to it:

x = 1:10;

y = x.*1.5;

h = plot(x,y)

 The variable h is the handle for the plot. (We could have chosen any variable
name.) Now we can use the get function to ask MATLAB ® for the plot properties:

get(h)

 The function returns a whole list of properties representing the line that was
drawn in the axes, which were positioned in the fi gure window:

Color: [0 0 1]

EraseMode: 'normal'

LineStyle: '-'

LineWidth: 0.5000

Marker: 'none'

MarkerSize: 6

MarkerEdgeColor: 'auto'

MarkerFaceColor: 'none'

XData: [1 2 3 4 5 6 7 8 9 10]

YData: [1.5000 3 4.5000 6 7.5000 9 10.5000 12 13.5000 15]

ZData: [1x0 double]

.

.

.

 Notice that the color property is listed as [0 0 1]. Colors are described as inten-
sities of each of the primary colors of light: red, green, and blue. The array [0 0 1]
tells us that there is no red, no green, and 100% blue. If you are looking at this
graph in MATLAB ® , you should notice that the plotted line is blue. The plot handle
refers to the line drawn on the axis, which is different from the axis or from the
fi gure window.

 14.2.2 Figure Handles

 We can also specify a handle name for the fi gure window . Since we drew this graph
in the fi gure window named fi gure 1, the command would be

f_handle = figure(1)

 Using the get command returns similar results:

get(f_handle)

Alphamap = [(1 by 64) double array]

BackingStore = on

CloseRequestFcn = closereq

14.2 Handle Graphics 563

Color = [0.8 0.8 0.8]

Colormap = [(64 by 3) double array]

CurrentAxes = [150.026]

CurrentCharacter =

CurrentObject = []

CurrentPoint = [240 245]

DockControls = on

DoubleBuffer = on

FileName = [(1 by 96) char array]

.

.

.

 Notice that the properties are different for a fi gure window compared to the
plotted line. For example, notice the color (which is the window background color)
is [0.8, 0.8, 0.8], which specifi es equal intensities of red, green, and blue—which
results in a light gray background. You can change the background color using

set(f_handle,‘Color’,[0.4,0.4,0.4])

 which results in a darker gray background.
 If we haven’t specifi ed a handle name, we can ask MATLAB ® to determine the

current fi gure with the gcf (get current fi gure) command,

get(gcf)

 which returns the fi gure properties. Thus, using gcf and the set command we
could have changed the background color with the following command.

set(gcf,‘Color’,[0.4,0.4,0.4])

 14.2.3 Axis Handles

 Just as we can assign a handle to the fi gure window and the plot itself, we can assign
a handle to the axis by means of the gca (get current axis) function:

h_axis = gca;

 Using this handle with the get command allows us to view the axis properties:

get(h_axis)

ActivePositionProperty = outerposition

ALim = [0.1 10]

ALimMode = auto

AmbientLightColor = [1 1 1]

Box = off

CameraPosition = [-1625.28 -2179.06 34.641]

CameraPositionMode = auto

CameraTarget = [201 201 0]

.

.

.

564 Chapter 14 Advanced Graphics

 14.2.4 Annotation Axes

 Besides the three components described in earlier sections, another transparent
layer is added to the plot. This layer is used to insert annotation objects, such as
lines, legends, and text boxes into the fi gure.

 14.2.5 Using Handles to Manipulate Graphics

 So what can we do with all this information? We can use the set function to change
the object’s properties. The set function requires the object handle in the fi rst
input fi eld and then alternating strings specifying a property name, followed by a
new value. For example,

set(h,‘color’,‘red’)

 tells MATLAB ® to go to the plot we named h (not the fi gure, but the actual drawing
of the line) and change the color to red. If we want to change some of the fi gure
properties, we can do it the same way, using either the fi gure handle name or the
 gcf function. For example, to change the name of fi gure 1, use the command

set(f_handle,‘name’, ‘My Graph’)

or

set(gcf,‘name’, ‘My Graph’)

 You can accomplish the same thing interactively by selecting View from the
fi gure menu bar, and choosing the property editor:

View: Property Editor

 You can access all the properties if you choose property inspector from the prop-
erty editor pop-up window (Figure 14.20). Exploring the property inspector window
is a great way to fi nd out which properties are available for each graphics object.

 Figure 14.20
 Interactive property editing.

14.3 Animation 565

 14.3 ANIMATION

 There are two techniques for creating an animation in MATLAB ® :

• Redrawing and erasing
• Creating a movie

 We use handle graphics in each case to create the animation.

 14.3.1 Redrawing and Erasing

 To create an animation by redrawing and erasing, you should fi rst create a plot and
then adjust the properties of the graph each time through a loop. Consider the fol-
lowing example: We can defi ne a set of parabolas with the following equation:

 y � kx2 � 2

 Each value of k defi nes a different parabola. We could represent the data with
a three-dimensional plot; however, another approach would be to create an anima-
tion in which we draw a series of graphs, each with a different value of k . The code
to create that animation is:

clear,clc,clf

x = -10:0.01:10; % Define the x-values

k = -1; % Set an initial value of k

y = k*x.^2-2; % Calculate the first set of y-values

h = plot(x,y); % Create the figure and assign

% a handle to the graph

grid on

%set(h,‘EraseMode’,‘xor’) % The animation runs faster if

 % you activate this line

axis([-10,10,-100,100]) % Specify the axes

while k<1 % Start a loop

 k = k + 0.01; % Increment k

 y = k*x.^2-2; % Recalculate y

 set(h,‘XData’,x,‘YData’,y) % Reassign the x and y

 % values used in the graph

 drawnow % Redraw the graph now – don’t wait

 % until the program finishes running

end

 In this example, we used handle graphics to redraw just the graph each time
through the loop, instead of creating a new fi gure window each time. Also, we used
the XData and YData objects from the plot. These objects assign the data points
to be plotted. Using the set function allows us to specify new x- and y- values and
to create a different graph every time the drawnow function is called. A selection
of the frames created by the program and used in the animation is shown in
 Figure 14.21 .

 In the program, notice the line

%set(h,‘EraseMode’,‘xor’)

566 Chapter 14 Advanced Graphics

 If you activate this line by removing the comment operator (%) , the program does
not erase the entire graph each time the graph is redrawn. Only pixels that change
color are changed. This makes the animation run faster—a characteristic that is impor-
tant when the plot is more complicated than the simple parabola used in this example.

 Refer to the help tutorial for a sample animation modeling Brownian motion.

 14.3.2 Movies

 Animating the motion of a line is not computationally intensive, and it’s easy to get
nice, smooth movement. Consider this code that produces a more complicated sur-
face plot animation:

clear,clc

x = 0:pi/100:4*pi;

y = x;

[X,Y] = meshgrid(x,y);

z = 3*sin(X)+ cos(Y);

h = surf(z);

axis tight

set(gca,‘nextplot’,‘replacechildren’);

%Tells the program to replace the surface each time,

%but not the axis

shading interp

colormap(jet)

for k = 0:pi/100:2*pi

 z = (sin(X) + cos(Y)).*sin(k);

10 0 10
100

50

0

50

100

10 0 10
100

50

0

50

100

10 0 10
100

50

0

50

100

10 0 10
100

50

0

50

100

10 0 10
100

50

0

50

100

10 0 10
100

50

0

50

100

 Figure 14.21
 Animation works by
redrawing the graph
multiple times.

14.3 Animation 567

 set(h,‘Zdata’,z)

 drawnow

end

 A sample frame from this animation is shown in Figure 14.22 .
 If you have a fast computer, the animation may still be smooth. However, on a

slower computer, you may see jerky motion and pauses while the program creates
each new plot. To avoid this problem, you can create a program that captures each
“frame” and then, once all the calculations are done, plays the frames as a movie.

clear,clc

x = 0:pi/100:4*pi;

y = x;

[X,Y] = meshgrid(x,y);

z = 3*sin(X)+ cos(Y);

h = surf(z);

axis tight

set(gca,‘nextplot’,‘replacechildren’);

shading interp

colormap(jet)

m = 1;

for k = 0:pi/100:2*pi

z = (sin(X) + cos(Y)).*sin(k);

set(h,‘Zdata’,z)

M(m) = getframe; %Creates and saves each frame

%of the movie

m = m+1;

end

movie(M,2) %Plays the movie twice

 When you run this program, you will actually see the movie three times: once as
it is created, and the two times specifi ed in the movie function. (In earlier versions
of MATLAB ® 7. the movie would have played one additional time as the animation
was loaded.) One advantage of this approach is that you can play the movie again
without redoing the calculations, since the information is stored (in our example)
in the array named M . Notice in the workspace window (Figure 14.23) that M is a
moderately large structure array (~90 MB).

4

2

0

2

4
400

200
100

200
300

400

 Figure 14.22
 The animation of this fi gure
moves up and down and
looks like waves in a pond.

 KEY IDEA
 Movies record an
animation for later
playback

568 Chapter 14 Advanced Graphics

Figure 14.23
Movies are saved in a
structure array, such as the
M array shown in this
fi gure.

EXAMPLE 14.2
 A MANDELBROT MOVIE
 The calculations required to create a Mandelbrot image require signifi cant com-
puter resources and can take several minutes. If we want to zoom in on a point in a
Mandelbrot image, a logical choice is to do the calculations and create a movie,
which we can view later. In this example, we start with the MATLAB ® M-fi le pro-
gram fi rst described in Example 14.1 and create a 100-frame movie.

 1. State the Problem
 Create a movie by zooming in on a Mandelbrot set.
 2. Describe the Input and Output

 Input The complete Mandelbrot image described in Example 14.1

 Output A 100-frame movie

 3. Develop a Hand Example
 A hand example doesn’t make sense for this problem, but what we can do is

create a program with a small number of iterations and elements to test our
solution and then use it to create a more detailed sequence that is more com-
putationally intensive. Here is the fi rst program:

%Example 14.2 Mandelbrot Image

% The first part of this program is the same as Example 14.1

clear, clc

iterations = 20; % Limit the number of iterations in

 % this first pass

grid_size = 50; % Use a small grid to make the

 % program run faster

X = linspace(-1.5,1.0,grid_size);

Y = linspace(-1.5,1.5,grid_size);

[x,y] = meshgrid(X,Y);

c = x+i*y;

z = zeros(size(x));

map = zeros(size(x));

14.3 Animation 569

for k = 1:iterations

 z = z.^2 +c;

a = find(abs(z)>sqrt(5));

 map(a) = k;

end

figure(1)

h = imagesc(map)

%% New code section

N(1) = getframe; %Get the first frame of the movie

disp('Now let’s zoom in')

disp('Move the cursor to a point where you"d like to zoom')

[y1,x1] = ginput(1) %Select the point to zoom in on

xx1 = x(round(x1),round(y1))

yy1 = y(round(x1),round(y1))

%%

for k = 2:100 %Calculate and display the new images

 k %Send the iteration number to the command window

[x,y] = meshgrid(linspace(xx1-1/1.1^k,xx1+1/1.1^k,grid_size),

 . ..linspace(yy1-1/1.1^k,yy1+1/1.1^k,grid_size));

c = x+i*y;

z = zeros(size(x));

map = zeros(size(x));

for j = 1:iterations

 z = z.^2 +c;

 a = find(abs(z)>sqrt(5));

 map(a) = j;

end

set(h,‘CData’,map) % Retrieve the image data from the

 % variable map

colormap(jet)

N(k) = getframe; % Capture the current frame

end

movie(N,2) % Play the movie twice

 This version of the program runs quickly and returns low-resolution images
(Figure 14.24) which demonstrate that the program works.

4. Develop a MATLAB ® Solution
 The fi nal version of the program is created by changing just two lines of code:

iterations = 80; % Increase the number of iterations

grid_size = 500; % Use a large grid to see more detail

 This “full-up” version of the program took approximately 2 minutes to run on a
3.0-GHz AMD dual- core processor with 2.0 GB of RAM. Selected frames are
shown in Figure 14.25 . Of course, the time it takes on your computer will be
more or less, depending on your system resources. One cycle of the movie cre-
ated by the program plays in about 10 seconds.

(continued)

570 Chapter 14 Advanced Graphics

5. Test the Solution
 Try the program several times, and observe the images created when you zoom

in to different portions of the Mandelbrot set. You can experiment with increas-
ing the number of iterations used to create the image and with the colormap.

10 20 30 40 50

10

20

30

40

50

100 200 300 400 500

100

200

300

400

500
100 200 300 400 500

100

200

300

400

500

100 200 300 400 500

100

200

300

400

500
100 200 300 400 500

100

200

300

400

500

100 200 300 400 500

100

200

300

400

500
100 200 300 400 500

100

200

300

400

500

 Figure 14.24
 Low-resolution
Mandelbrot image used
to test the animation
program.

 Figure 14.25
 This series of
Mandelbrot images is a
selection of the frames
captured to create a
movie with the program
in this example. Each
movie will be different,
since it zooms in on a
different point of the
image.

14.4 Other Visualization Techniques 571

 14.4 OTHER VISUALIZATION TECHNIQUES

 14.4.1 Transparency

 When we render surfaces in MATLAB ® , we use an opaque coloring scheme. This
approach is great for many surfaces, but can obscure details in others. Take, for
example, this series of commands that creates two spheres, one inside the other:

clear,clc,clf % Clear the command window and current

 % figure window

n = 20; % Define the surface of a sphere,

 % using spherical coordinates

Theta = linspace(-pi,pi,n);

Phi = linspace(-pi/2,pi/2,n);

[theta,phi] = meshgrid(Theta,Phi);

X = cos(phi).*cos(theta); % Translate into the xyz

% coordinate system

Y = cos(phi).*sin(theta);

Z = sin(phi);

surf(X,Y,Z) %Create a surface plot of a sphere of radius 1

axis square

axis([-2,2,-2,2,-2,2]) %Specify the axis size

hold on

pause %Pause the program

surf(2*X,2*Y,2*Z) %Add a second sphere of radius 2

pause %Pause the program

alpha(0.5) %Set the transparency level

 The interior sphere is hidden by the outer sphere until we issue the transpar-
ency command,

alpha(0.5)

 which sets the transparency level. A value of 1 corresponds to opaque and 0 to com-
pletely transparent. The results are shown in Figure 14.26 . Transparency can be
added to surfaces, images, and patch objects.

 The command alpha(0.5) sets the transparency for all objects plotted on the
axis. We can use handle graphics to specify the transparency for specifi c graphical
objects. For example, fi rst clear the fi gure window, but NOT the workspace window.

clf

2

2

0

00
2

2

2 2

2

2

0

00
2

2

2 2

2

2

0

00
2

2

2 2

 Figure 14.26
 Adding transparency to
a surface plot makes it
possible to see hidden
details.

572 Chapter 14 Advanced Graphics

 Assign a handle to each of the surface plots

h1 = surf(X,Y,Z);

hold on

h2=surf(2*X, 2*Y,2*Z);

 To change the transparency of the outer sphere

set(h2,‘Facealpha’,0.3)

 14.4.2 Hidden Lines

 When mesh plots are created, any part of the surface that is obscured is not drawn.
Usually, this makes the plot easier to interpret. The two spheres shown in Figure 14.27
were created with the use of the X- , Y- , and Z- coordinates calculated in the preceding
section. Here are the MATLAB ® commands:

figure(3)

subplot(1,2,1)

mesh(X,Y,Z)

axis square

subplot(1,2,2)

mesh(X,Y,Z)

axis square

hidden off

 The default value for the hidden command is on , which results in mesh plots in which
the obscured lines are automatically hidden, as shown at the left in Figure 14.27 .
Issuing the hidden off command gives the results at the right in Figure 14.27 .

 14.4.3 Lighting

 MATLABV includes extensive techniques for manipulating the lighting used to rep-
resent surface plots. The position of the virtual light can be changed and even be
manipulated during animations. The fi gure toolbar includes icons that allow you to
adjust the lighting interactively, so that you can get just the effect you want. However,
most graphs really need the lighting only turned on or off, which is accomplished
with the camlight function. (The default is off.) Figure 14.28 shows the results
achieved when the camlight is turned onto a simple sphere. The code to use is

 Sphere

camlight

1

1
0 0

1

0

1

1 1

1

1
0 0

1

0

1

1 1

 KEY IDEA
 The camlight allows you to
adjust the fi gure lighting

 Figure 14.27
 Left: Mesh plots do not
show mesh lines that would
be obscured by a solid
fi gure. Right: The hidden
off command forces the
program to draw the
hidden lines.

14.5 Introduction to Volume Visualization 573

 The default position for the camlight is up and to the right of the “camera.”
The choices include the following:

camlight right up and to the right of the

camera (the default)

camlight left up and to the left of the camera

camlight headlight positioned on the camera

camlight(azimuth,elevation) lets you determine the position

of the light

camlight('infinite') models a light source located at

infinity (such as the sun)

 14.5 INTRODUCTION TO VOLUME VISUALIZATION

 MATLAB ® includes a number of visualization techniques that allow us to analyze
data collected in three dimensions, such as wind speeds measured at a number of
locations and elevations. It also lets us visualize the results of calculations performed
with three variables, such as y � f1x, y, z2. These visualization techniques fall into
two categories:

• Volume visualization of scalar data (where the data collected or calculated is a
single value at each point such as temperature).

• Volume visualization of vector data (where the data collected or calculated is a
vector, such as velocity).

 14.5.1 Volume Visualization of Scalar Data

 In order to work with scalar data in three dimensions, we need four three-dimen-
sional arrays:

• X data, a three-dimensional array containing the x -coordinate of each grid point.
• Y data, a three-dimensional array containing the y -coordinate of each grid point.
• Z data, a three-dimensional array containing the z -coordinate of each grid point.
• Scalar values associated with each grid point—for example, a temperature or

pressure.

nOthgilmaC)b(gnithgiLtluafeD)a(

1

1
1

0
0

0.5

0.5

1

1 1

0

1

1
1

0
0

0.5

0.5

1

1 1

0

 Figure 14.28
 (a) The default lighting
is diffuse. (b) When the
 camlight command is
issued, a spotlight is
modeled, located at the
camera position.

574 Chapter 14 Advanced Graphics

 The x , y , and z arrays are often created with the meshgrid function. For exam-
ple, we might have

x = 1:3;

y = [2,4,6,8];

z = [10, 20];

[X,Y,Z] = meshgrid(x,y,z);

 The calculations produce three arrays that are 4 � 3 � 2 and defi ne the loca-
tion of every grid point. The fourth array required is the same size and contains the
measured data or the calculated values. MATLAB ® includes several built-in data
fi les that contain this type of data—for example,

• MRI data (stored in a fi le called MRI)
• Flow fi eld data (calculated from an M-fi le)

 The help function contains numerous examples of visualization approaches
that use these data. The plots shown in Figure 14.29 are a contour slice of the
MRI data and an isosurface of the fl ow data, both created by following the
examples in the help tutorial.

 To fi nd these examples, go to the help menu table of contents. Under the
MATLAB ® heading, fi nd 3-D Visualization and then Volume Visualization tech-
niques. When the two fi gures shown were created in MATLAB ® 7.5 for this book, it
was necessary to clear the fi gure (clf) each time before rendering the images—a
detail not noted in the tutorial. When the clf command was not used, the plots
behaved as if the hold on command were activated. This is an idiosyncrasy that
may be corrected in later versions.

 14.5.2 Volume Visualization of Vector Data

 In order to display vector data, you need six three-dimensional arrays:

• Three arrays to defi ne the x , y , and z locations of each grid point.
• Three arrays to defi ne the vector data u , v , and w.

20 40 60 80 100 120

20

40

60

80

100

120

2

2
0

2

2 2
4

6
8

0

 Figure 14.29
 MATLAB ® includes
visualization techniques
used with three-dimensional
data. Left: Contour slice of
MRI data, using the sample
data fi le Included with
MATLAB ® . Right: Isosurface
of fl ow data, using the
sample M-File included
with MATLAB ®.

14.5 Introduction to Volume Visualization 575

 A sample set of vector volume data, called wind , is included in MATLAB ® as a
data fi le. The command

load wind

 sends six three-dimensional arrays to the workspace. Visualizing this type of data
can be accomplished with a number of different techniques, such as

• cone plots
• streamlines
• curl plots

 Alternatively, the vector data can be processed into scalar data, and the techniques
used in the previous section can be used. For example, velocities are not just speeds;
they are speeds plus directional information. Thus, velocities are vector data, with
components (called u , v , and w , respectively) in the x , y , and z directions. We could
convert velocities to speed by using the formula

speed = sqrt(u.^2 + v.^2 + w.^2)

 The speed data could be represented as one or more contour slices or as
isosurfaces (among other techniques). The left-hand image of Figure 14.30 is
the contourslice plot of the speed at the eighth-elevation (z) data set, pro-
duced by

 contourslice(x,y,z,speed,[],[], 8)

 and the right-hand image is a set of contour slices. The graph was interac-
tively adjusted so that you could see all four slices.

contourslice(x,y,z,speed,[],[],[1, 5, 10, 15])

 A cone plot of the same data is probably more revealing. Follow the example
used in the coneplot function description in the help tutorial to create the cone
plot shown in Figure 14.31 .

 Velocity
 A speed plus directional
information

60 80 100 120 140
10

20

30

40

50

60

50
100

150 0

50

1000

5

10

15

 Figure 14.30
 Contour slices of the
wind-speed data included
with the MATLAB ®
program.

576 Chapter 14 Advanced Graphics

 Figure 14.31
 Cone plot of the wind-
velocity data included with
the MATLAB ® program.

 SUMMARY

 MATLAB ® recognizes three different techniques for storing and representing
images:

 Intensity (or gray scale) images
 Indexed images
 RGB (or true color) images

 The imagesc function is used to display intensity images that are some-
times called gray scale images. Indexed images are displayed with the image
function and require a colormap to determine the appropriate coloring of the
image. A custom colormap can be created for each image, or a built-in colormap
can be used. RGB(true color) images are also displayed with the image func-
tion but do not require a colormap, since the color information is included in the
image fi le.

 If you don’t know what kind of image data you are dealing with, the imfinfo
function can be used to analyze the fi le. Once you know what kind of fi le you have,
the imread function can load an image fi le into MATLAB ® , or you can use the
software’s interactive data controls. The load command can load a .dat or a .mat
fi le. To save an image in one of the standard image formats, use the imwrite func-
tion or the interactive data controls. You can also save the image data as .dat or
 .mat fi les, using the save command.

Summary 577

 A handle is a nickname given to an object in MATLAB ® . The graphics displayed
by MATLAB ® include several different objects, all of which can be given a handle.
The fundamental graphics object is the fi gure. Layered on top of the fi gure is the
axis object, and layered on top of that is the actual plot object. Each of these objects
includes properties that can be determined with the get function or changed with
the set function. If you don’t know the appropriate handle name, the function
 gcf (get current fi gure) returns the current fi gure handle and gca (get current
axis) returns the current axis handle. The set function is used to change the prop-
erties of a MATLAB ® object. For example, to change the color of a plot (the line
you drew) named h , use

set(h,'color','red')

 Animation in MATLAB ® is handled with one of two techniques: redrawing and
erasing, or creating a movie. Usually, redrawing and erasing is easier for animations
which represent data that can be quickly computed and are not visually complicated.
For tasks that take signifi cant computing power, it is generally easier to capture indi-
vidual frames and then combine them into a movie to be viewed at a later time.

 Complex surfaces are often diffi cult to visualize, especially since there may be
surfaces underneath other surfaces. It is possible to render these hidden surfaces
with a specifi ed transparency, which allows us to see the obscured details. This is
accomplished with the alpha function. The input to this function can vary between
0 and 1, ranging from completely transparent to opaque.

 To make surfaces easier to interpret, by default hidden lines are not drawn.
The hidden off command forces the program to draw these lines.

 Although MATLAB ® includes an extensive lighting-manipulation capability, it
is usually suffi cient to turn the direct-lighting function on or off. By default, the
lighting is diffuse, but it can be changed to direct with the camlight function.

 Volume-visualization techniques allow us to display three-dimensional data a
number of different ways. Volume data fall into two categories: scalar and vector
data. Scalar data involve properties such as temperature or pressure, and vector
data include properties such as velocities or forces. The MATLAB ® help function
contains numerous examples of visualization techniques.

 MATLAB ® SUMMARY

 The following MATLAB ® summary lists and briefl y describes all of the special char-
acters, commands, and functions that were defi ned in this chapter.

 Commands and Functions

 alpha sets the transparency of the current plot object

 axis controls the properties of the fi gure axis

 bone colormap that makes an image look like an X-ray

 cape sample MATLAB ® image fi le of a cape

 camlight turns the camera light on
(continued)

578 Chapter 14 Advanced Graphics

 Commands and Functions

 clown sample MATLAB ® image fi le of a clown

 colormap defi nes which colormap should be used by graphing functions

 coneplot creates a plot with markers indicating the direction of input vectors

 contourslice creates a contour plot from a slice of data

 detail sample MATLAB ® image fi le of a section of a Dürer wood carving

 drawnow forces MATLAB ® to draw a plot immediately

 durer sample MATLAB ® image fi le of a Dürer wood carving

 earth sample MATLAB ® image fi le of the earth

 fl ujet sample MATLAB ® image fi le showing fl uid behavior

 gatlin sample MATLAB ® image fi le of a photograph

 gca get current axis handle

 gcf get current fi gure handle

 get returns the properties of a specifi ed object

 getframe gets the current fi gure and saves it as a movie frame in a structure array

 gray colormap used for gray scale images

 hidden off forces MATLAB ® to display obscured grid lines

 image creates a two-dimensional image

 imagesc creates a two-dimensional image by scaling the data

 imfi nfo reads a standard graphics fi le and determines what type of data it contains

 imread reads a graphics fi le

 imwrite writes a graphics fi le

 isosurface creates surface-connecting volume data, all of the same magnitude

 mandrill sample MATLAB ® image fi le of a mandrill

 movie plays a movie stored as a MATLAB ® structure array

 mri sample MRI data set

 pcolor pseudo color plot (similar to a contour plot)

 peaks creates a sample plot

 set establishes the properties assigned to a specifi ed object

 shading determines the shading technique used in surface plots and pseudo color plots

 spine sample MATLAB ® image fi le of a spine X-ray

 wind sample MATLAB ® data fi le of wind-velocity information

 handle
 image plot
 indexed image
 intensity image

 object
 RGB (true color)
 scalar data
 surface plot

 vector data
 volume visualization

 KEY TERMS

Problems 579

 PROBLEMS

 14.1 On the Internet, fi nd an example of an intensity image, an indexed image,
and an RGB image. Import these images into MATLAB ® , and display them
as MATLAB ® fi gures.

 14.2 A quadratic Julia set has the form:

 z1n � 12 � z1n22 � c

 The special case where c � -0.123 � 0.745i is called Douday’s rabbit fractal.
Follow Example 14.1 , and create an image using this value of c . For the
Mandelbrot image, we started with all z -values equal to 0. You’ll need to
start with z � x � yi. Let both x and y vary from -1.5 to 1.5.

 14.3 A quadratic Julia set has the form

 z1n � 12 � z1n22 � c

 The special case where c � -0.391 � 0.587i is called the Siegel disk fractal.
Follow Example 14.1 and create an image using this value of c . For the
Mandelbrot image, we started with all z -values equal to 0. You’ll need to
start with z � x � yi. Let both x and y vary from -1.5 to 1.5.

 14.4 A quadratic Julia set has the form

 z1n � 12 � z1n22 � c

 The special case where c � -0.75 is called the San Marco fractal. Follow
 Example 14.1 and create an image using this value of c . For the Mandelbrot
image, we started with all z -values equal to 0. You’ll need to start with
 z � x � yi. Let both x and y vary from -1.5 to 1.5.

 14.5 Create a plot of the function

 y � sin1x2 for x from -2p to �2p

 Assign the plot a handle, and use the set function to change the following
properties (if you aren’t sure what the object name is for a given property,
use the get function to see a list of available property names):

 (a) Line color from blue to green
 (b) Line style to dashed
 (c) Line width to 2

 14.6 Assign a handle to the fi gure created in Problem 14.5, and use the set
function to change the following properties (if you aren’t sure what the
object name is for a given property, use the get function to see a list of
available property names):

 (a) Figure background color to red
 (b) Figure name to “A Sine Function”

 14.7 Assign a handle to the axes created in Problem 14.5, and use the set func-
tion to change the following properties (if you aren’t sure what the object

580 Chapter 14 Advanced Graphics

name is for a given property, use the get function to see a list of available
property names):

 (a) Background color to blue
 (b) x -axis scale to log

 14.8 Repeat the three previous problems, changing the properties by means of
the interactive property inspector. Experiment with other properties and
observe the results on your graphs.

 14.9 Create an animation of the function

 y � sin(x � a) for
x ranging from -2p to �2p
a ranging from 0 to 8p

 • Use a step size for x that results in a smooth graph.
 • Let a be the animation variable. (Draw a new picture for each value of a .)
 • Use a step size for a that creates a smooth animation. A smaller step size

will make the animation seem to move more slowly.
 14.10 Create a movie of the function described in the preceding problem.
 14.11 Create an animation of the following:

 Let x vary from -2p to �2p
 Let y � sin1x2
 Let z � sin1x � a2 cos1y � a2
 Let a be the animation variable.

 Remember that you’ll need to mesh x and y to create two-dimensional
matrices; use the resulting arrays to fi nd z .

 14.12 Create a movie of the function described in the preceding problem.
 14.13 Create a program that allows you to zoom in on the “rabbit fractal” described

in Problem 14.2, and create a movie of the results (see Example 14.2).
 14.14 Use a surface plot to plot the peaks function. Issue the hold on command

and plot a sphere that encases the entire plot. Adjust the transparency so
that you can see the detail in the interior of the sphere.

 14.15 Plot the peaks function and then issue the camlight command.
Experiment with placing the camlight in different locations, and observe
the effect on your plot.

 14.16 Create a stacked contour plot of the MRI data, showing the fi rst, eighth,
and twelfth layer of the data.

 14.17 An MRI visualization example is shown in the help tutorial. Copy and paste
the commands into an M-fi le and run the example. Be sure to add the clf
command before drawing each new plot.

15

 INTRODUCTION

 Most computer programs in use today make use of a graphical user interface (GUI)
and in fact MATLAB ® ’s desktop environment is a graphical user interface. Any time
you can click an icon to execute an action, you are using a GUI (pronounced “gooey”).
Creating your own GUI’s is easy in MATLAB ® , especially if you use the GUIDE inter-
face, but it does require that you understand some programming basics—all of which
you have been introduced to in MATLAB ® for Engineers . Before starting this section it
would be wise to review the concepts of:

 • Structure arrays
 • Subfunctions
 • Handle graphics

 The m-fi le created by the GUIDE program uses a structure array to pass informa-
tion between sections of the program; each of these sections is a subfunction, and
components of the GUI are stored as properties of a graphics object, using handle
graphics.

 Generally, the fi rst step in creating a GUI should be to carefully plan what the
GUI should do and how it should look. A little planning will help you avoid a lot of
frustration. However, in this chapter, we’ll develop GUIs piecewise, so that we can

 After reading this chapter, you
should be able to:
• Understand how to use the

GUIDE layout editor

• Understand how to modify
function callbacks

• Be able to create graphical
user interfaces

 Objectives

 Creating
Graphical User
Interfaces

 C H A P T E R

582 Chapter 15 Creating Graphical User Interfaces

focus on how the program works. Be sure to try these commands out as you read
through this chapter.

 15.1 A SIMPLE GUI WITH ONE USER INTERACTION

 15.1.1 Creating the Layout

 To get started, select the guide icon from the toolbar, as shown in Figure 15.1 , or
type guide at the command line. The GUIDE Quick Start window will open, as
shown in Figure 15.2 . To start a new project, simply select the Blank GUI template,
located in the list on the left-hand side of the window.

 Once you select Blank GUI, a new fi gure window—called the GUIDE layout
editor—will open, which should look similar to the one shown in Figure 15.3 . You
can resize it to a shape that is comfortable to work with by selecting the lower left-
hand corner of the grid. If you’d like a GUI that is bigger than the fi gure window,
just resize the fi gure window fi rst.

 To create a layout of buttons, textboxes, and graphics windows, use the icons
on the left-hand side of the window in the “component palette.” The default display
for these icons is compact, but not particularly informative for new users. To change
the palette of tools to a list of the item names select

 File ➞ Preferences ➞ GUIDE
 then check “Show names in component palette,”

 as shown in Figure 15.4 . This results in a more “user friendly” list of the available
options (Figure 15.5).

 Let’s get started with a very simple GUI that allows us to enter the number of
sides on a polygon, and which then plots the polygon in polar coordinates. We’ll

 KEY IDEA
 GUIDE makes creating
GUI’s easy

 Figure 15.1
 Select the GUIDE icon from
the MATLAB ® toolbar, or
type guide at the command
line to start the program.

 KEY IDEA
 The component palette lists
the available choices for
use in the layout editor

15.1 A Simple GUI with One User Interaction 583

 Figure 15.2
 Use the GUIDE Quick Start
window to get started
building a graphical user
interface. Select Blank GUI
to start a new project.

 Figure 15.3
 The GUIDE layout editor is
used to design your GUI.

need three components in the GUI: axes, a static text box, and an edit textbox.
You can pick them up from the component palette and arrange them as shown
in Figure 15.6 .

 To modify these design elements once you have them arranged to your liking,
use the Property Inspector. First, select the static text window, right click, and select
the Property Inspector (Figures 15.7 and 15.8). You can also access the Property
Inspector from the menu bar by selecting

 View ➞ Property Inspector

584 Chapter 15 Creating Graphical User Interfaces

 Figure 15.4
 Change the component
palette display to a list of
item names in the
preference window.

 Figure 15.5
 The component palette in
the GUIDE layout editor
can be reconfi gured to
show the possible actions
in more detail than is
possible with a simple icon.

 The Property Inspector lists a wide range of properties for the selected object
in the GUIDE window. You can change the font of the message displayed, change
the color of the text box etc. The most important property for us is the String
Property. Change it from

 Static Text

 to

 Enter the number of sides

15.1 A Simple GUI with One User Interaction 585

 Figure 15.6
 The icons from the
component palette are used
to position and resize the
design elements in the
GUIDE window.

 Figure 15.7
 To access the property
inspector, select an object
from the GUIDE window,
right click, and select the
property inspector. You
may access the same
content from the menu bar
by selecting View ➞
Property Inspector.

 Use the same process to modify the properties of the “edit text” box. For our
purposes simply delete the default text.

 Now you can save and run the GUIDE window by selecting the Save and Run
icon from the window toolbar (the green triangular button). You’ll be prompted to
enter a project name, such as polygon_gui.fig . When the fi le runs notice that
the name of the GUIDE window changes, and an m-fi le is created with the appro-
priate code to create a fi gure window with which the user can interact. The m-fi le is

586 Chapter 15 Creating Graphical User Interfaces

Change the field from
“Static Text”

to read
“Enter the number of sides”

 Figure 15.8
 Property Inspector for the
Static Textbox allows you to
change properties, such as
the message in the box
(string property), the color
of the background
(Backgroundcolor), or the
font size (FontSize).

 KEY IDEA
 The GUI m-fi le is composed
of multiple subfunctions

 KEY IDEA
 GUIDE creates an m-fi le,
that is modifi ed to add
functionality to the GUI

displayed in the MATLAB ® edit window, and has the same name as the fi gure
 window—in this case polygon_gui.m (Figure 15.9).

 At this point all we have is a fi gure window with an axis, a message in the static
text box, and an empty input window. The next step is to add code to the m-fi le to
actually make the GUI do something.

 15.1.2 Adding Code to the M-File

 Just opening up the m-fi le and trying to interpret the code is confusing. The m-fi le
is organized as a function, with multiple subfunctions. Some of the subfunctions
create the graphics in the polygon_gui.fig window, but others are reserved for
adding the code that will cause an action when a user interacts with the GUI. To
see a list of the functions in the polygon_gui.m fi le, select the Show Functions
icon on the toolbar (Figure 15.10). The only functions a user should modify are
labeled as:

 • gui_name_OpeningFcn
 • graphics_object_name_Callback

15.1 A Simple GUI with One User Interaction 587

 In the polygon_gui fi le this corresponds to:

 • polygon_gui_OpeningFcn
 • edit1_Callback

 Callbacks
 In more complicated graphical user interfaces, there will be a Callback function for
each of the graphics objects on the layout, which allow the user to interact with the
GUI. Clicking on the function of interest will take you to the corresponding section
of code.

Save and
run icon

 Figure 15.9
 Once the GUIDE window is
activated an m-fi le is
created along with a fi gure
window through which the
user will interact with the
program.

 Figure 15.10
 Selecting the Show
Functions icon opens a list
of all the subfunctions in
the fi le. Navigate to a
section of code by selecting
the subfunction name from
the list.

588 Chapter 15 Creating Graphical User Interfaces

 An alternative approach to fi nding the appropriate subfunction to modify is to
use the layout editor. Right click on the graphics object (in this case the edit text-
box), select View Callbacks, then select Callback (Figure 15.11). This will move the
cursor in the m-fi le to the edit1_Callback subfunction, shown here.

 function edit1_Callback(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB®

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit1 as text
% str2double(get(hObject,'String')) returns contents of edit1 as a

double

 Notice that most of the code is composed of comments. The fi rst line identifi es
the subfunction as edit1_Callback , with three inputs. The fi rst, hObject, is a
graphics handle that links the subfunction to the corresponding edit textbox. The
 eventdata argument is a placeholder that the Mathworks has included for use in
later versions of the software. Finally, the handles argument is a structure array
that is used to pass information between subfunctions. All callback subfunctions will
have a similar structure.

 Specifi c to a callback linked to an edit textbox are the hints listed as comments.
Information typed into the textbox is interpreted using handle graphics. Recall
how we modifi ed the textbox so that it was blank by deleting the contents of the
string property in the Property Inspector. When a user types in a textbox, the con-
tents are stored as the string property. To retrieve the information and use it in our
m-fi le, we need to “get” it using the get function.

get(hObject, 'String')

 This instructs MATLAB® to retrieve the string property from the graphics
object that was passed to the function as hObject —in this case the edit1 textbox.
Information in the string property is stored as a character array, so if we want to use
it as a numeric value it is necessary to change the array type to double. This can be
accomplished either with the str2num function or the str2double function.
With this in mind, add the following code to the edit1_callback subfunction.

 Figure 15.11
 Right-click on the edit
textbox to locate the
corresponding m-fi le
subfunction.

 KEY IDEA
 Structure arrays are used to
pass information between
functions

 KEY IDEA
 Numbers entered as a
string property are stored
as character arrays, and
must be converted to a
numeric format before they
can be used.

15.1 A Simple GUI with One User Interaction 589

sides = str2double(get(hObject,'String'))

 Now we can add additional code to draw the polygon using the polar plotting
function and to annotate the graph.

theta = 0:2*pi/sides:2*pi;
r = ones(1,length(theta));
polar(theta,r)
title('A polygon')

 To run your graphical user interface, select the Save and Run icon from the
m-fi le window or from the Guide layout editor. A fi gure window appears, similar to
 Figure 15.12a . To run the GUI, type a value into the edit window, such as 3 and hit
enter. This causes the edit1_callback function to execute and draw a polygon using
the polar plot function (Figure 15.12b).

 The opening function is the only other subfunction to be modifi ed in this fi le.
It executes when the GUI fi rst runs, and can be used to control how the fi gure win-
dow appears before the user starts adding data. Notice that the opening version of
polygon_gui displays a rectangular axis. In order to display an axis system consistent
with a polar plot, we can modify the polygon_gui_OpenFcn , by adding code to cre-
ate a blank polar plot.

function polygon_gui_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB®
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to polygon_gui (see VARARGIN)
polar(0,1)
title('A polygon')
% Choose default command line output for polygon_gui
handles.output = hObject; % Not necessary for this example

 Now, when polygon_gui.m is executed the original fi gure window includes
the polar plot axis system (Figure 15.13).

(a) (b)

 Figure 15.12
 (a) Opening appearance
of the GUI, (b) appearance
once content is added to
the edit textbox.

590 Chapter 15 Creating Graphical User Interfaces

 15.2 A GRAPHICAL USER INTERFACE WITH MULTIPLE USER

INTERACTIONS— READY_AIM_FIRE

 It’s easy to create a more complicated GUI with more places for the user to enter
data and with a variety of actions. Consider a GUI that plots the trajectory of a pro-
jectile launched from a cannon. The trajectory depends on both the launch angle,
 u, and the initial velocity, V 0 of the projectile. The equations representing the hori-
zontal and the vertical distances traveled are as follows:

 h � tV0cos(u)

 v � tV0sin(u)-1>2gt2

 where

 t is the time in seconds

 V 0 is the initial velocity in m/s

 u is the launch angle in radians

 g is the acceleration due to gravity, 9.81 m/s 2

 To create a GUI that plots the trajectory, we’ll need the following components
in the layout:

 Axes for the graph

 Edit textbox for the angle input

 Edit textbox for the initial velocity input

 Push button to “fi re” the canon

 Static textbox to label the angle textbox

 Static textbox to label the velocity textbox

 Panel to group the textboxes together (not necessary, but nice)

 By selecting the appropriate items from the component palette, it is easy to cre-
ate the layout shown in Figure 15.14 . The contents of the static textboxes and the
edit textboxes were modifi ed using the property editor string property, as was the
push button. Both types of textboxes were dragged onto a panel. The panel name
was changed, not in the string property, but in the title property.

 Figure 15.13
 To modify the opening
appearance of the GUI,
add code to the
OpeningFcn subfunction.

15.2 A Graphical User Interface with Multiple User Interactions—Ready_Aim_Fire 591

Change to
launch_angle

 Figure 15.14
 The GUIDE layout editor
makes it easy to create
more complicated GUI’s.
This layout represents a
basic plotting program for
a projectile trajectory
program.

 Figure 15.15
 Changing the tag property
in the Property Inspector
changes the name of the
callback functions
associated with the object,
making it easier for the
programmer to navigate to
the associated m-fi le.

 Once a GUI has multiple components, it becomes tricky to fi nd the correspond-
ing callbacks in the m-fi le based on the default names. For example, the two edit
textboxes shown in Figure 15.14 default to edit1 and edit2—names that aren’t very
descriptive. To change the name from the default, use the tag property, which can
be accessed from the property editor. For example, Figure 15.15 shows the property
editor for the edit textbox corresponding to the launch angle. The tag has been
changed from edit1 to launch_angle. Similarly, the tag for the initial velocity edit
textbox was changed from edit2 to launch_velocity, and the tag for the push button
was changed to fi re_pushbutton. The contents of the layout editor were then saved
and named ready_aim_fi re, by selecting the Save and Run button. Recall that two
fi les are created, a fi g fi le containing the GUI and an m-fi le containing the code.

 Adding code to this GUI program is not quite as straightforward as the fi rst
example. We’ll need to read in the data entered into the edit textboxes in the call-
back functions, give the data a name, and then pass it on to the fi re_pushbutton
callback function to create the plot. Here are the steps to take.

 First fi nd the launch_angle_Callback subfunction, either by selecting the Show
Functions icon in the m-fi le toolbar or by right clicking the launch angle edit text-
box and navigating to the launch_angle callback. Add the following code:

handles.theta=str2double(get(hObject,'String'));
guidata(hObject, handles);

592 Chapter 15 Creating Graphical User Interfaces

 In order to pass information to other functions, we need to save the information
from the edit textbox into the handles structure array. We’ll store this particular
information in the theta portion of the structure. Then, we need to update the rest
of the program so that other functions can use the information.

 Similarly the launch_velocity callback is modifi ed by adding the following
code:

handles.vel=str2double(get(hObject,'String'));
guidata(hObject, handles);

 The graph is actually drawn when the fi re push button is selected, so that’s
where the plotting code must go.

time=0:0.001:100;
h=time*handles.vel*cosd(handles.theta);
v=time*handles.vel*sind(handles.theta)-1/2*9.81*time.^2;
pos=find(v>=0);
horizontal=h(pos);
vertical=v(pos);
comet(horizontal,vertical);

 Notice that an array called time was created with a small step size. This becomes
important in the plotting step. Then the horizontal and the vertical distances
traveled were calculated. The vertical distance will become negative, which doesn’t
make any physical sense, so the find function was used to fi nd all the index num-
bers in the v array that are positive. Two new variables, horizontal and
 vertical , were defi ned using that information, and then plotted using the comet
function. The comet function draws out the trajectory of the projectile. You can
change the apparent speed by manipulating how many points are plotted—which
was done by controlling the number of time values.

 To run the program, select the Save and Run icon, which will open the GUI.
The result of one set of input values is shown in Figure 15.16 .

 Figure 15.16
 This GUI accepts multiple
inputs, which are then used
when the “Fire” push
button is selected.

15.3 An Improved Ready_Aim_Fire Program 593

 15.3 AN IMPROVED READY_AIM_FIRE PROGRAM

 After you’ve run the Ready_Aim_Fire program a number of times, you will prob-
ably want to make some modifi cations. For example, each time the GUI runs, the
plot resizes to completely fi ll the window. It makes it hard to tell what the result is of
changing each of the parameters. We can modify the opening function to create an
axis that never changes to alleviate this problem. While we are at it we’ll also add a
target, so that we can practice fi ring our “cannon” with a particular goal in mind.

 Navigate to the opening function and add the following code:

plot(275,0,'s','Markersize',10,'MarkerFaceColor','r')
text(275,50,'target')
axis([0,1000,0,500])
hold on

 The fi rst line creates a plot of a single point, at x = 275 and y = 0. The data is
shown as a square, and the size and color are adjusted so that it is easy to see. The
second line adds a label to the target. The axis function forces the plot to cover
 x -axis values from 0 to 1000, and y -axis values from 0 to 500. Finally the hold on
command forces additional plots to draw on the same graph, without erasing any of
the existing lines. Figure 15.17a shows the opening screen, and Figure 15.7b shows
the screen after three attempts to adjust the input parameters and hit the target.

 One problem with this version of the ready_aim_fire GUI is that you have
to completely close it to start over and clear the screen. We can remedy this by add-
ing an additional push button to reset the plot. You’ll need to:

 • Return to the GUIDE layout editor and add an additional push button.
 • Use the Property Inspector string property to label the push button “Reset.”
 • Use the Property Inspector tag property to change the name of the push button

and its associated functions to “ reset_pushbutton .”
 • Use the Save and Run icon to save your changes and to update the ready_
aim_fire m-fi le.

 • Navigate to the reset_pushbutton_Callback subfunction and add the
appropriate code.

hold off
plot(275,0,'s','Markersize',10,'MarkerFaceColor','r')
text(275,50,'target')
axis([0,1000,0,500])
hold on

(a) (b)

 Figure 15.17
 (a) The “ ready_aim_
fire” GUI opening
screen, (b) the “ ready_
aim_fire” GUI after three
“shots.”

594 Chapter 15 Creating Graphical User Interfaces

 This code simply turns off the hold function and then repeats the instructions
from the opening function. While modifying the code, we can also add a title and
axis labels to both the opening function and the reset_pushbutton callback.

title('Projectile Trajectory')
xlabel('Horizontal Distance, m')
ylabel('Vertical Distance, m')

 HINT
 When you start to modify an existing program, close the GUI fi gure window
(not the GUIDE layout editor window). Once you are done making changes
in the m-fi le, select the Save and Run icon from the m-fi le editor tool bar.
This will reinitialize the GUI fi gure window. If you just leave the GUI open, all
the changes may not be incorporated.

 15.4 A MUCH BETTER READY_AIM_FIRE PROGRAM

 By now you probably want to be able to control the target position, and perhaps
display an explosion if you hit the target. Let’s start with moving the target, by add-
ing a slider bar to the GUI in the GUIDE layout editor. To make the GUI neater,
you’ll need to move the other controls to the side, as shown in Figure 15.18 . Also
add a static textbox to label the slider. From the slider property inspector, change
the value of the Max property to 1000 to correspond with the scale on our graph.
Also change the value of the Value property to 275, so that the slider starts off at the
original target position (Figure 15.19).

 • Navigate to the slider callback, and notice that the “Hints” suggest how to
retrieve the location of the slider. You won’t need to retrieve Max and Min.

 Figure 15.18
 The revised layout for the
“ Ready_Aim_Fire ” GUI.

15.4 A Much Better Ready_Aim_Fire Program 595

 • Use the location of the slider bar to plot the target.

handles.location = get(hObject,'Value')
hold off
plot(handles.location,0,'s','Markersize',10,'Markerfacecolor', 'r')
axis([0,1000,0,1000])
title('Trajectory')
xlabel('Horizontal Distance')
ylabel('Vertical Distance')
text(handles.location-25,50,'Target')
hold on
guidata(hObject, handles);

 Notice that the location of the slider is stored as part of the handles structure
array. In the fi nal line of the listed code, the handles structure for the entire pro-
gram is updated, so that the handles.location value can be used by other func-
tions. For example, if we don’t make anymore changes, every time the reset button
is pushed the target will move back to the starting location. It probably makes more
sense that it should remain at the same location as the slider. Modifying the reset_
pushbutton callback accomplishes this goal.

hold off
plot(handles.location,0,'s','Markersize',10,'MarkerFaceColor','r')
text(handles.location,50,'target')
axis([0,1000,0,500])
title('Projectile Trajectory')
xlabel('Horizontal Distance, m')
ylabel('Vertical Distance, m')
hold on

 Figure 15.19
 The “Slider” Property
inspector. The Max
property and the Value
property have been
adjusted.

596 Chapter 15 Creating Graphical User Interfaces

 Just for fun, we’d like to show an explosion in the plot window if we select a tra-
jectory that hits the target. The code should be added to the fire_pushbutton
callback.

time=0:0.001:100;
h=time*handles.vel*cosd(handles.theta);
v=time*handles.vel*sind(handles.theta)-1/2*9.81*time.^2;
pos=find(v>=0);
horizontal=h(pos);
vertical=v(pos);
comet(horizontal,vertical);
land=pos(end);
goal=handles.location;
if (h(land)<goal+50 && h(land)>goal-50)
x=linspace(goal-100, goal+100, 5);
y=[0,80,100,80,0]; %Code to create
z=linspace(goal-200,goal+200,9); the "Explosion"
w=[0,40,90,120,130,120,90,40,0];
plot(x,y,'*r',z,w,'*r')
text(goal,400,'Kaboom!')
end

 The explosion is simply a number of stars plotted at the points defi ned by the x ,
 y , z , and w arrays. Notice that the fire_pushbutton callback uses the handles.
location parameter, which is created in the slider callback. If the slider is never
moved, this parameter is never created. This means that the attempt to create the
explosion will fail, unless handles.location is defi ned in the opening function

handles.location = 275;

 Figure 15.20 shows the result when a user fi nally hits a target.
 One last refi nement to the GUI is to add a textbox that congratulates you when

you win. To do that, we need to add another static textbox in the GUIDE layout edi-
tor, as shown in Figure 15.21 .

 Figure 15.20
 The “ ready_aim_fire”
GUI displays a new image
once the target is hit .

15.4 A Much Better Ready_Aim_Fire Program 597

 Using the property inspector, we’ll need to change the string property to a
blank. We’ll also need to check for the tag property value, and change it to some-
thing meaningful, such as textout. Don’t forget to save your changes in the GUIDE
layout editor (Figure 15.22).

 When you run the GUI, the opening value in the textbox will be blank. To
change it to a message when the user’s shot hits the target, add the following code
to the if statement inside the Fire_pushbutton_Callback .

set(handles.textout,'string', 'You Win !','fontsize',16)

 Notice that in addition to specifying the message, the font size has been adjusted
from the default. You could have also made the adjustment from the property
inspector.

 The only thing left to do is make sure that when the reset button is pressed, the
text box returns to a blank. This is accomplished in the Reset_pushbutton_
Callback with the following code:

set(handles.textout,'string', ' ')

 The fi nal version of the GUI is shown in Figure 15.23 , once the user has fi red
the cannon and destroyed the target.

 Appendix D lists the fi nal contents of the m-fi le, including the following func-
tions, which were modifi ed to create the ready_aim_fire GUI:

 • ready_aim_fi re_OpeningFcn
 • fi re_pushbutton_Callback
 • reset_pushbutton_Callback
 • launch_angle_Callback
 • launch_velocity_Callback
 • slider_Callback

 Figure 15.21
 A static textbox is used to
create a space for a
message from MATLAB ® .

598 Chapter 15 Creating Graphical User Interfaces

Change the string
property to a blank

Change the tag property to a
meaningful name

 Figure 15.22
 Change properties from the
property inspector.

 15.5 BUILT-IN GUI TEMPLATES

 So far we have been working with the Blank GUI template within GUIDE. However,
MATLAB ® has included three other example GUI’s, which you can use as a starting
point for new projects, or just as examples to help you understand how to design
your own GUI’s. They include

 • GUI with UIcontrols
 • GUI with Axes and Menu
 • Modal Question Dialog

15.5 Built-In GUI Templates 599

 15.5.1 GUI with UIcontrols

 From the GUIDE Quick Start window (Figure 15.24), select the GUI with UIcontrols
template. A preview is shown in the Quick Start window to help you determine
which of the built-in templates is appropriate for your needs.

 The GUI with UIcontrols (user input controls) is a completely functional GUI,
which performs and displays a mass calculation using either English or Metric (SI)
units. The layout editing window is shown in Figure 15.25 .

 To see the corresponding m-fi le, select the Save and Run icon. This generates
the appropriate MATLAB ® code, which is displayed in the MATLAB ® editor, and
the GUI fi gure window shown in Figure 15.26 .

 Figure 15.24
 The Quick Start GUIDE
menu includes three
example templates.

 Figure 15.23
 The fi nal ready_aim_
fire GUI.

600 Chapter 15 Creating Graphical User Interfaces

 Figure 15.25
 The GUIDE UIcontrols
template contains a mass
calculation GUI.

 Figure 15.26
 MATLAB ® includes several
example GUI’s, which can
be used as the starting
point for new projects.

 This GUI is composed of the following:

 • A panel, that contains
 ❍ Two edit textboxes
 ❍ Seven static textboxes

 • A button group that contains
 ❍ Two radio buttons
 ❍ Two push buttons

 The only graphics objects that are new to us in this GUI are the button group
and the radio buttons. When radio buttons are added to a button group, only one
radio button can be active at a time. If the radio buttons had instead been added to
a panel, they could all be active, all be inactive, or could be any combination of
 settings.

15.5 Built-In GUI Templates 601

 15.5.2 GUI with Axes and Menu

 The GUI with Axes and Menu template illustrates how to use a popup menu (also
called a dropdown menu) (see Figure 15.27). MATLAB ® also includes a video dem-
onstration that includes the use of several graphics objects, such as the popup
menu, pushbuttons, and axes, which can be accessed from the help feature, and is
listed under demos.

 Figure 15.27
 The GUI with Axes and
Menu template.

 Figure 15.28
 The controlsuite GUI
includes examples of all the
graphics objects available
for use in GUIDE.

602 Chapter 15 Creating Graphical User Interfaces

 15.5.3 Modal Question Box

 A modal question is one which requires a response from the user before continu-
ing. For example, when you save a word processing document and ask the com-
puter to overwrite an existing fi le, most programs ask you if you really want to do
this. The modal question template demonstrates how to accomplish this in a GUI.

 15.5.4 Other Examples

 In addition to the example templates built into the layout editor, the MATLAB ®
help feature includes numerous examples that focus on single graphics objects,
such as the check box or toggle buttons. It also includes a single GUI that includes
all 15 graphics objects available from GUIDE. To access these resources, go to the
Help feature and search on controlsuite (Figure 15.28).

 The GUIDE layout editor makes it easy to create graphical user interfaces in
MATLAB ® . It does, however, require that you have a basic understanding of sub-
functions, handle graphics, and structure arrays. Graphics objects are positioned on
the editor, their properties modifi ed with the property inspector, and a function
m-fi le created automatically. Instructions are added to the m-fi le in order to activate
the various graphical components.

 GUIDE also includes three sample templates, which can be used as the starting
point for more complicated GUI’s. In addition, the MATLAB ® help feature offers a
demonstration video and examples of GUI’s showcasing each of the graphical
objects available.

 SUMMARY

 function callback
 graphical objects
 GUI

 GUIDE
 property inspector
 structure array

 subfunctions

 KEY TERMS

 15.1 Using GUIDE, create a graphical user interface to add two numbers
together. It should include the following:
 • Title, located in a static text box
 • Two edit textboxes, used to enter the numbers to be added
 • Static textboxes to hold the + and = symbols
 • A static textbox to display the result
 Your GUI should look like Figure P15.1.

 PROBLEMS

Problems 603

 15.2 Create a GUI similar to the one in the previous problem. It should accept
two numbers as input, but should allow the user to choose from the follow-
ing operations by selecting a radio button.
 • Addition
 • Subtraction
 • Multiplication
 • Division

 15.3 Create a GUI to simulate a cash register. It should accept the cost of an item
and then display the running total. It should also display the total number
of items purchased. Finally, it should accept the amount of money tendered
by the user and display the change that should be returned to the customer.

 15.4 Create a GUI that replicates the behavior of a simple four function calculator.
 15.5 Create a GUI that accepts the name of an x , y , and z array as input. (The

arrays should have been previously calculated in MATLAB ® .) It should then
allow the user to choose from the following graphing options:
 • Surface plot (surf)
 • Mesh plot (mesh)
 • Contour plot (contour)
 and display the graph on a set of axes in the GUI.

 15.6 Forces are often represented as vectors, defi ned by a magnitude, and the
angle from the horizontal at which the force is applied. To add them together
they are placed head to tail. The resultant force is the vector drawn from the
starting point to the ending point. For example consider the forces shown in
 Figure P15.6 , and the resultant shown when they are added together.

 Create a GUI that accepts both the magnitude and angle from the horizontal
of three forces, then plots them end to end on a set of axes. It should also draw in
the resultant, report the magnitude of the resultant and the angle from horizontal.

 15.7 Repeat the previous problem in three dimensions.

(a)

(b)

 Figure P15.1
 A graphical user interface
used to add two numbers
together (a) before data is
added and (b) after a
calculation.

F2

F1
	1

	2 	3

F3

Resultant

 Figure P15.6
 To add forces together, they
are placed head to tail.
The resultant is the vector
drawn from the starting
point to the ending point.

16

INTRODUCTION

 Simulink® is an interactive, graphics-based program that allows you to solve problems
by creating models using a set of built-in “blocks.” It is part of the MATLAB ® software
suite, and requires MATLAB ® to run. Simulink® is included with the student edition
of the software, but is not part of the standard installation of the professional edition;
this means that it may or may not be included on your version of MATLAB ® . LabView,
produced by National Instruments, is Simulink®’s biggest competitor.

 16.1 APPLICATIONS

 Simulink® is designed to provide a convenient method for analyzing dynamic sys-
tems , i.e., systems that change with time. In particular, it found early acceptance in
the signal processing community, and is reminiscent of the approach used to pro-
gram analog computers . In fact, one way to think of Simulink® is as a virtual analog
computer. Analog computers required the user to make actual physical connections
between electrical components that acted as adders, multipliers, integrators, etc.
Output from the computer was viewed on an oscilloscope. This is refl ected in both

 After reading this chapter you
should be able to:
• Understand how Simulink®

uses blocks to represent
common mathematical
processes

• Create and run a simple
Simulink® Model

• Import Simulink® results
into MATLAB ®

 Objectives

 Simulink®—
A Brief
Introduction

 C H A P T E R

16.2 Getting Started 605

the names of the blocks used in Simulink®, and in the icons used to represent
various operations.

 One shouldn’t jump to the conclusion that Simulink® is only useful for analyz-
ing electrical systems. Similar mathematical equations describe the behavior of
dynamic mechanical systems, reactive chemical systems, and dynamic fl uid systems.
In fact, it is common to introduce students to the behavior of electricity through
analogy with pipe fl ow problems.

 Simulink®’s strength is its ability to model dynamic systems—which are mod-
eled mathematically as differential equations . Usually these systems change with time,
but the independent variable could also be location. Differential equations can be
solved numerically in MATLAB ® by making use of functions such as ode45 , which
utilizes Runge–Kutta techniques. They can also be solved analytically using the sym-
bolic algebra toolbox, which utilizes the MuPad engine. Simulink® uses similar
methods, but they are transparent to the user. Instead of programming equations
directly, a visual model is created by collecting appropriate Simulink® blocks and
connecting them together, using a graphical user interface.

 16.2 GETTING STARTED

 To start Simulink®, open MATLAB ® and type

simulink®

 into the command window. (Or select the Simulink® icon from the Shortcut tool-
bar as shown in Figure 16.1).

 The Simulink® Library Browser opens, showing the available libraries of blocks
used to create a Simulink® model (Figure 16.2). The browser is the location where
you’ll select blocks and drag them into the model workspace. Spend a few minutes
exploring the browser. To view the blocks available in each library, either select the
library from the left-hand pane or double click on the icons in the right-hand pane.
In particular, take a look at the Commonly Used Blocks library—the Source and
Sink libraries and the Math Operations library.

 Simulink®’s strength is in solving complex dynamic systems, but before we try
to work on a complex system, it would be better to build some very simple static

 Figure 16.1
 Access Simulink® either
from the command
window, or by selecting the
icon from the shortcut
toolbar.

606 Chapter 16 Simulink®—A Brief Introduction

models to demonstrate the problem-solving process. To create a new model, select
File ➞ New ➞ Model from the browser window. The model window opens on top
of the library browser (Figure 16.3). For convenience, resize the library browser
window and the model window so that you can see both on the computer screen.
You’ll also want to keep the MATLAB ® desktop open, but resize it so that it also
fi ts on your computer screen without overlapping the other windows. See, for
example, Figure 16.4 .

 Our fi rst model will simply add two numbers. From either the Source library or
the Commonly Used Blocks library, click and drag the constant block into the
model window. Repeat the process, so that you have two copies of the constant
block in the model, as shown in Figure 16.5.

 Now drag the sum block into the model. It is found both in the Commonly
Used Blocks library and the Math Operations library. Notice that the sum block has
two “ports.” You can draw connections between the constants and the sum block by

Double-click on a
library name to see the
available blocks

Drag blocks into the
model window to solve
problems

 Figure 16.3
 The model window is the
workspace where
Simulink® models are
created and executed.

 Figure 16.2
 The Simulink® Library
Browser contains numerous
blocks that are used to
create a Simulink® model.

16.2 Getting Started 607

 Figure 16.5
 Two copies of the constant
block were added to the
model.

 Figure 16.4
 Simulink® uses multiple
windows. Arrange them on
your computer desktop so
that you can easily drag
blocks from the Simulink®
Library Browser to the
model window.

clicking and dragging between the ports, as shown in Figure 16.6 . You should notice
that the cursor changes to a cross-hair as you connect the ports. The model we’ve
created thus far just adds 1 + 1, and doesn’t display the answer. We’ll need to modify
the constant blocks to specify a value different from the default, which in this case
is 1. Double click on each constant block, and change the “constant value” fi eld, for
example, to 5 in the top block and 6 in the bottom block.

 To add a display option, look in the sink library. For this case, the display block
is all we need, so drag it to the model and connect it to the output port of the sum
block. The last thing we need to do before running the model is to adjust the simu-
lation time, from the box on the menu bar (see Figure 16.7). Since nothing in this

608 Chapter 16 Simulink®—A Brief Introduction

 Figure 16.6
 The constants are
connected to the sum
block. Change the values
in the constant blocks by
double clicking and
modifying the “constant
value” fi eld.

Simulation time

Run the simulation

Result

(a)

(b)

 Figure 16.7
 (a) The completed model.
(b) Results are shown in the
display block.

16.2 Getting Started 609

calculation will change with time, we can change the value to zero. Run the simula-
tion by selecting the run button on the toolbar (the black triangle) or by selecting
Simulation ➞ Start from the menu bar.

 Save this model in the usual way, by selecting File ➞ Save and adding an appro-
priate name. The fi les are stored with the extension, .mdl.

 As the sum block serves both the addition and subtraction functions, you
could use this same model to perform subtraction operations. Double click the
sum block in the model and the block parameter window opens, as shown in
 Figure 16.8.

 The block description is located near the top of the window, and provides
information on how to use the block—in this case the sum block. This description
includes instructions to change the block into a “subtraction block” by changing
the input from |++ to |+−. We could also adjust the block to add three inputs by
changing the list of signs fi eld to the number 3. Adjust your model and run it sev-
eral more times as you explore the possibilities for the sum block.

 Figure 16.8
 The sum block can be used
to perform subtraction
operations, as well as for
adding more than two
input values.

 HINT
 Simulink® includes a “subtraction” block, but if you open its block parameter
window you’ll notice the block title is “sum.”

 The previous example was trivial. A slightly more complex model, with results
that change with time, is described in Example 16.1.

610 Chapter 16 Simulink®—A Brief Introduction

 EXAMPLE 16.1
 RANDOM NUMBERS
 As we saw in Example 3.5 , random numbers can be used to simulate the noise we
hear on the radio as static. Although we could solve a similar problem in MATLAB ® ,
let’s use Simulink®. In this case, instead of a music fi le use a sine wave as the input
to which we want to add the noise, using the following equation:

 y � 5*sin(2t) � noise

 The noise should be the result of a uniform random number generator, with a
range of 0 to 1.

 1. State the Problem
 Create a Simulink® model of the equation

 y � 5*sin(2t) � noise

 where the noise is based on a random number.
 2. Describe the Input and Output

 Input Use Simulink®’s built-in sine wave generator to provide the sine wave.
 Use Simulink®’s built-in random number generator to simulate the

noise.

Output View the results using the Simulink® Scope block.

3. Develop a Hand Example
 In this case, since we are well versed in MATLAB ® , a MATLAB ® solution will

substitute for a hand example.

t=0:0.1:10;
noise = rand(size(t));
y=5*sin(2*t)+noise;
plot(t,y)
title('A sine wave with noise added')
xlabel('time,s'), ylabel ('function value')

 which results in the plot shown in Figure 16.9 .
 4. Develop a Simulink® Solution
 Simulink® includes blocks for creating both sine waves, and for uniform ran-

dom number generators. You can fi nd both in the Source Library. You’ll also

6

4

2

0

�2

�4

�6
0 2 4

time, s
6 8 10

fu
nc

ti
on

 v
al

ue

A sine wave with noise added Figure 16.9
 Adding noise to a sine
wave can be
accomplished using
MATLAB ® , as well as
Simulink®.

16.2 Getting Started 611

need to include an add block. Finally, add a scope (the name comes from the
word “oscilloscope”) to view the plotted result. Your model should resemble
the one shown in Figure 16.10 . Notice that the time fi eld in the upper right
corner of the model is set to 10 seconds, and that two additional scopes were
added so that we can observe the behavior of the sine wave generator, the ran-
dom number generator, and the combined output.
 The model specifi es only a sine wave, not the entire sine portion of the
expression, 5*sin(2t) . Open the Sine Wave block by double clicking on the icon
inside the model. The Source Block Parameters window opens (as shown in
 Figure 16.11), allowing us to specify the amplitude, the frequency and addi-
tional parameters as needed. By changing the amplitude to 5 and the frequency
to 2, the block now represents the fi rst term in our equation.
 Similarly, the random number generator parameter window can be modi-
fi ed to specify a minimum value of 0 and a maximum value of 1. Run the model
by selecting the black start simulation triangle, or by selecting Simulation ➞
Start. To view the output, double click on each of the scopes. Scale the images
by selecting the binocular icon as shown in Figure 16.12 , which shows the
results of the combined inputs.

5. Test the Solution
 Compare the results to those found with the MATLAB ® solution. We could also

revise the model, so that the results are sent to MATLAB ® by replacing the scope
for the combined output with the simout block, as shown in Figure 16.13 . The
simout block is found in the sinks library. Before running the model, you’ll need
to modify the block parameters (double click on the block to open the window).
Change the Save format from Structure to Array. Re-execute the model, and
observe that two new arrays have appeared in the MATLAB ® workspace window,
simout and tout , both of which are 101x1 double precision arrays. The values
in the arrays can now be used for plotting, or in other calculations.

(continued)

 Figure 16.10
 Simulink® model to add
noise to a sine wave.

612 Chapter 16 Simulink®—A Brief Introduction

Binocular icon used to resize
the plotting window

 Figure 16.12
 The scope output from
the three oscilloscopes
specifi ed in the
Simulink® model.

 Figure 16.13
 The simout block sends
simulation results to the
MATLAB ® workspace,
where they can be used
in other calculations as
needed.

(a) (b)

 Figure 16.11
 (a) The Sine Wave
parameter window.
(b) The Uniform
Random Number
parameter window. The
Source Block Parameter
window for each
Simulink® block allows
the user to modify the
default values of the
input parameters.
Access the parameter
window by double
clicking on the block in
the model window.

16.3 Solving Differential Equations with Simulink® 613

 16.3 SOLVING DIFFERENTIAL EQUATIONS WITH SIMULINK®

 Thus far the problems we’ve solved by creating models in Simulink® could have
been solved more readily in MATLAB ® . Where Simulink® really excels is in solving
differential equations. In general, a differential equation includes a dependent var-
iable, an independent variable, and the derivative of the dependent variable with
respect to the independent variable. For example,

dy

dt
� t 2 � y

 is a differential equation. In this case y is the dependent variable, t is the independ-
ent variable, and d y /d t is the derivative with respect to t . In function notation,

dy

dt
� f (t, y)

 To fi nd y , we could integrate

 y �L
dy

dt
 dt �L f(t, y)dt

 This equation has an infi nite number of solutions, unless the initial value of y is
defi ned. For this problem we’ll set y (0) = 0.

 To solve this problem in Simulink®, create a model by dragging the appropriate
blocks onto the model window, and connecting them as shown in Figure 16.14 .

 The blocks include the following:

 • A clock, to generate times (Source library)
 • A math function block, modifi ed in the parameter window to square the block

input (Math Operations library)
 • A sum block (Commonly Used Blocks library)
 • An integrator block (Continuous library)
 • A scope block (Sink library)

 Adjust the integrator block in the parameter window so that the initial condi-
tion is 0. The scope output, after running the model, is shown in Figure 16.15 . (You
may need to click on the binocular icon to see the entire plot in the scope screen.)

t

y
t2

t2+y

 Figure 16.14
 Simulink® model to solve
the differential equation

dy
dt

� t 2 � y .

614 Chapter 16 Simulink®—A Brief Introduction

 An alternative approach to this problem might be to use MATLAB ® ’s symbolic
algebra capability to solve the same problem, as discussed in an earlier chapter.
Because this is a simple differential equation, the dsolve function can be used.

y = dsolve('Dy = t^2 + y','y(0) = 0')
ezplot(y,[0,10])

 The solution to the differential equation is shown analytically in the command
window as

y =
2*exp(t) – 2*t - t^2 – 2

 and the plot is shown in Figure 16.15 b.

(a) (b)

 Figure 16.15
 A plot of the solution to the
ordinary differential
equation, dy/dt � t2 � y ,
with y (0) = 0. (a) Plot
created with Simulink®.
(b) Plot created in
MATLAB ® using symbolic
algebra.

 EXAMPLE 16.2
 VELOCITY OF A FALLING OBJECT
 Consider an object, falling toward the ground. A widely reported equation describ-
ing the resulting velocity is the differential equation:

dv
dt

 � g �
c
m

 v2

 where

 g is the acceleration due to gravity

 v is the velocity

 m is the mass

 c is the second-order drag coeffi cient

 Solve this equation by fi nding velocity as a function of time, for the fi rst 15 seconds.

 1. State the Problem
 Use Simulink® to fi nd the time versus velocity behavior of a falling object.

16.3 Solving Differential Equations with Simulink® 615

2. Describe the Input and Output

Input g = 9.81 m/s 2
 m = 70 kg
 c = 0.3 kg/m
 v (0) = 0 m/s

 Output Plot of velocity versus time from 0 to 15 seconds

 3. Develop a Hand Example
 Given that the initial velocity is 0, we would expect that the velocity would rap-

idly increase—but would eventually level off and reach a terminal value. We
would expect a plot much like the sketch shown in Figure 16.16 .

 4. Develop a Simulink® Solution
 The Simulink® model is shown in Figure 16.17 along with the resulting plot

displayed on the scope. It is composed of

 • Three constant blocks
 • Both a divide and product block
 • An add block
 • An integrator block
 • Math function block, set to square the output of the integrator block

 As you build the model, you will notice that some of the blocks are reversed
from their standard orientation. You can accomplish this by placing the block
into the model, right clicking the icon, and selecting Format from the drop-
down menu. There are a number of choices that allow the user to select a con-
venient block orientation. In particular, notice that the math function block
has been fl ipped to accommodate the data fl ow leaving the integrator block.
Also notice that the time block has been set to 15 seconds.
 If a simout block is used to replace the scope block, the output data is sent to
MATLAB ® , where it could be used in other programs, or plotted in the usual manner.

 5. Test the Solution
 Because we are well versed in MATLAB ® , we could also solve the problem using

MATLAB ® and the tools found in the symbolic algebra toolbox.

clear,clc
y = dsolve('Dv = g-c/m*v^2','v(0) = 0')
y = subs(y,{'g','c','m'},{9.81,0.30,70})
ezplot(y,[0,15])
title('A falling object'), xlabel('time,s')
ylabel('velocity, m/s')

 The resulting plot is shown in Figure 16.18 , and corresponds well to the scope
output from the Simulink® model.

time, s

ve
lo

ci
ty

, m
/s

 Figure 16.16
 Projected behavior of
the velocity versus time
curve, for a falling
object.

(continued)

616 Chapter 16 Simulink®—A Brief Introduction

v
dv/dt

A falling object

time, s

ve
lo

ci
ty

, m
/s

0
0

10

20

30

40

50

5 10 15

(a) (b)

 Figure 16.17
 Simulink® model to
solve the falling object
problem.

 Figure 16.18
 The velocity plot for a
falling object. (a) Plot
created using Simulink®.
(b) Plot created using
MATLAB ® ’s symbolic
algebra tools. Notice
that in both cases the
velocity levels-off
around 47 m/s.

v
dv/dt

A falling object

time, s

ve
lo

ci
ty

, m
/s

0
0

10

20

30

40

50

5 10 15

(a) (b)

Figure 16.17
Simulink® model to
solve the falling object
problem.

Figure 16.18
The velocity plot for a
falling object. (a) Plot
created using Simulink®kk .
(b) Plot created using
MATLAB ® ’s symbolic
algebra tools. Notice
that in both cases the
velocity levels-off
around 47 m/s.

 EXAMPLE 16.3
 POSITION OF A FALLING OBJECT
 In the previous example, we solved the following differential equation for velocity
as a function of time.

dv
dt

 � g �
c
m

 v2

 However, velocity can also be described as a derivative; it is the rate of change of
position with time.

 v �
dx
dt

16.3 Solving Differential Equations with Simulink® 617

 We could reformulate the velocity equation in terms of position as

d2x
dt 2 � g �

c
m
adx

dt
b2

 Use Simulink® to create a plot showing how far the object has fallen, as a function
of time.

1. State the Problem
 Solve the second-order differential equation

d2x
dt 2 � g �

c
m
adx

dt
b2

 for x as a function of t .
2. Describe the Input and Output

 Input
g = 9.81 m/s2

 m = 70 kg
 c = 0.3 kg/m
 v(0) = 0
 x(0) = 0
 t = 0–15 seconds

 Output Create a plot, showing how x changes with time, using the Simulink®

Scope. Also send the results to MATLAB®.

3. Develop a Hand Example
 As the object falls, it eventually reaches a terminal velocity, as shown in the pre-

vious example problem. At that point, x should be increasing at a steady rate. A
sketch of the expected behavior is shown in Figure 16.19 .

4. Develop a Simulink® Solution
 The model created in the previous example can be expanded by adding an

integration block, and by splitting the output into feeds leading to both the
scope and the simout block (see Figure 16.20). Be sure to adjust the simout
block to report the data as an array.

 The plot created in the scope is shown in Figure 16.21 a.
5. Test the Solution
 Once again we could use MATLAB ® to solve this second-order differential

equation using the symbolic algebra toolbox.

x = dsolve('D2x = g-c/m*Dx^2','x(0) = 0','Dx(0) = 0')
x = subs(x,{'g','c','m'},{9.81,0.30,70})
ezplot(x,[0,15])
title('A falling object'), xlabel('time,s'), ylabel('position, m')

time, s

di
st

an
ce

, m

 Figure 16.19
 Expected position of an
object reaching terminal
velocity.

(continued)

618 Chapter 16 Simulink®—A Brief Introduction

 The resulting plot (Figure 16.21 b) matches the scope output, and thus verifi es
our calculations.
 By using both Simulink® and a symbolic algebra approach, we can develop
confi dence in the Simulink® solutions. Not all problems can be solved symboli-
cally, so having both approaches available is important. This example was inspired
by Steven Chapra’s use of a skydiver to illustrate techniques to solve differential
equations, in ‘Numerical Methods for Engineers’, McGraw-Hill, 2010.

A falling object

0
�200

0

200

400

600

5

time, s

po
si

ti
on

, m

10 15

(a) (b)

 Figure 16.21
 The position of a falling
object. (a) Results from
the Simulink® Scope.
(b) Results from
MATLAB ® using a
symbolic algebra
solution.

 Simulink® is part of the MATLAB ® family of programs. It uses a graphical user
interface to facilitate the development of models that represent real systems.
Simulink® is especially useful for modeling dynamic systems––those that can be
mathematically described as differential equations.

 SUMMARY

position, x

velocity, dx/dtacceleration, d2x/dt2

 Figure 16.20
 Simulink® model to
solve the second-order
differential equation,
d2x
dt2

� g �
c
m
adx

dt
b2

 .

Problems 619

 Command and Function

 simulink ® opens the Simulink® library browser

 dynamic systems
 analog computers

 differential equations
 model

 block

 KEY TERMS

 16.1 The sinc function is often used in electrical engineering applications. It is
defi ned as

 sinc(x) �
sin(x)

x

 Use Simulink® to model the behavior of the sinc function, from �20 to 20
seconds. Display your results using Simulink®’s scope block. To adjust the
simulation time, in the model window menu bar select Simulation ➞
Confi guration Parameters.

 16.2 The equation of a circle can be represented parametrically as

 x � sin(t)

 y � cos(t)

 where t varies from 0 to 2*pi. Create a Simulink® model to parametrically
graph a circle using the xy graph block found in the sink library. To model
cosine, you will need to modify the Sin block.

 16.3. The multiplexer block (Mux) accepts multiple inputs that can then be sent
to a scope block to create a graph with multiple signal plots. Use two sine
blocks to create a signal representing the sin(t) and the cos(t). Combine
the signals with the Mux block (found in the Commonly Used Blocks
library), and plot the results from 0 to 20 seconds, using a Scope block.

 16.4 The derivative block fi nds the derivative (rate of change) of the incoming
signal. Create a Simulink® model that fi nds the derivative of

 y �
1
t

 and which plots both y and d y /d t in the scope window, for times from 0 to
10 seconds. You’ll need a Clock (time) block, the Math Function block, the
Derivative block, and a Mux block, in addition to the Scope block.

 PROBLEMS

 Simulink® relies on a large library of blocks, which can be combined to solve a
wide variety of problems. Its visual approach offers an alternative to building m-fi le
programs using the numerical techniques described in earlier chapters. However,
these same techniques (for example, ode45) are used by Simulink® when its mod-
els are executed.

 The MATLAB ® help function includes an extensive tutorial on using Simulink®,
including many examples.

620 Chapter 16 Simulink®—A Brief Introduction

 Applications

 16.5 The change in internal energy (kJ/kmol) of an ideal gas over a given tem-
perature range can be represented by the equation:

 �u � L
T2

T1

1a � R � bT � cT 2 � dT 32dT

 where T is the temperature in kelvin.
 For nitrogen, the constant values are:

 a � 28.90
 b � �0.1571 � 10 �2
 c � 0.8081 � 10 �5
 d � �2.873 � 10 �9
 R � 8.31447 kJ/kmol K

 Use Simulink® to plot the value of the change in internal energy (Δ u)
between 0 K and a temperature of 1000 K. (Use the time block to simulate
the values of T .)
 Data Source: B.G. Kyle, Chemical and Process Thermodynamics (Englewood
Cliffs, NJ: Prentice Hall, 1984).

 16.6 Newton’s law of cooling tells us that the rate at which an object cools is
 proportional to the difference in temperature between the object and the
surroundings (Figure P16.6). In other words,

dT
dt

� k(T � Tsurroundings)

 where k is a proportionality constant. If for a cup of hot coffee, the
surroundings temperature is 70°F, the constant is 0.5 min �1 and the initial
temperature is 110°F, plot the temperature of the object as a function of
time for 10 minutes.

 16.7 The rate of a chemical reaction is related to the concentration of the reac-
tants. For example, a fi rst-order reaction would have the following relation-
ship between the rate of change of the reactant and the concentration of
said reactant:

d3A4

dt
� � k*3A4

 A slightly more complicated reaction might be dependant upon the square
of the reactant concentration:

d3A4

dt
� � k*3A42

 Model the change in concentration, [A], with time using Simulink® for
both the fi rst- and second-order reaction problems. Assume k = 0.1 min �1
for the fi rst-order reaction and k = 0.1 l/mol min for the second-order
reaction. The initial concentration, [A], is 5 mol/l. Display the results using
a Simulink® Scope block. (Choose an appropriate length of time for the
simulation, based upon your intermediate results.)

 16.8 Blasius showed in 1908 that the solution to the incompressible fl ow fi eld in
a laminar boundary layer on a fl at plate is given by the solution of the fol-
lowing third-order ordinary nonlinear differential equation.

 2
d3f

dh3 � f
d2f

dh2 � 0

 Figure P16.6
 A cup of hot coffee cools
according to Newton’s law
of cooling.

Problems 621

 To solve this system for f , fi rst solve for the highest order derivative.

d3f

dh3 � -0.5 f
d2f

dh2

 Now use Simulink® to create a model. You’ll need three integration blocks
plus a multiplier and a gain block (the gain block multiplies by a constant),
in addition to a scope block to view the output. The initial conditions are:

d2f(0)

dt2
� 0.332

df(0)

dt
� 0

 f(0) � 0

 16.9 If a projectile such as a bullet or a rocket is fi red vertically, the only force
acting on it is the force due to gravity. A force balance yields the equation:

d2x
dt2

� -g a R21R � x22 b

 where
 x is the vertical distance measured from the surface of the earth in meters
 R is the radius of the earth, 6.4 × 10 6 m
 g is the acceleration due to gravity, 9.81 m/s 2

 Model this equation using Simulink®. Display a graph of the projectile
height, x , as a function of time. Assume that the initial height is 0, and the
initial velocity is 100 m/s. (dx / dt = 100 at time = 0.)

 16.10 The motion of a pendulum (Figure P16.10) can be modeled with an ordi-
nary second-order differential equation as:

d2u

dt2
� -

g

L
 sin1u2

 where
 u is the vertical angle
 g is the acceleration due to gravity, 9.81 m/s 2
 L is the length of the pendulum, 2 m

 Model the behavior of the pendulum (i.e., the angle as a function of time)
with Simulink®. Assume the initial angle, u , is 30° (π/6 radian) and that the
initial angular velocity is 0 (d u /d t = 0).

 16.11 Consider the simple RC series circuit shown in Figure P16.11 .
 At time zero the switch is turned on, allowing to current to fl ow. Assuming
that constant voltage is applied, the response of the circuit can be described
by the differential equation:

 R
di
dt

�
i
C

� 0

 which can be rearranged to

di
dt

� -
1

R *C
 * i

L
�

 Figure P16.10
 The Motion of a pendulum
is described by a second-
order differential equation.

622 Chapter 16 Simulink®—A Brief Introduction

 The behavior of this system depends upon the relative values of L , C , and R
(the inductance, capacitance, and the resistance). When

 R2 7
4L
C

 the system is “over-damped,” when

 R2 6
4L
C

 the system is “under-damped.” And when

 R2 �
4L
C

 the system is “critically damped.”

 Use Simulink® to model the system response, assuming that R = 100,000 Ω
and C = 1 × 10 −6 F. Select values of L to meet each of the damping conditions
described above. Calculate the initial current value from Ohm’s law

 V � iR

 with a constant voltage value of 5 V applied to the system.

 Use Simulink® to model the system response, assuming that R = 100,000 Ω
and C = 1 × 10 −6 F. Calculate the initial current value from Ohm’s law

 V � iR

 with a constant voltage value of 5 V applied to the system.

V

t�0

�

�

R

CL

i Figure P16.12
 A simple RCL circuit can be
described by a second-
order differential equation.

V

t�0

�

�

R

C

i Figure P16.11
 A simple RC series circuit.

 16.12 The current, i , fl owing through the circuit shown in Figure P16.12 , can be
described by a second-order differential equation:

 L
d2i
dt2

�R
di
dt

�
1
C

 i � 0

 which can be rearranged to give

d2i
dt2 � -

R
L

 di
 dt

�
1

L * C
 i

A
APPENDIX

 Special Characters,
Commands, and
Functions

 The tables presented in this appendix are grouped according to category, which
roughly parallels the chapter organization.

 Special Characters Matrix Definition Chapter

 [] forms matrices Chapter 2
 () used in statements to group operations; Chapter 2
 used with a matrix name to identify specifi c elements
 , separates subscripts or matrix elements Chapter 2
 ; separates rows in a matrix defi nition; Chapter 2
 suppresses output when used in commands
 : used to generate matrices; Chapter 2

 indicates all rows or all columns

624 Appendix A

 Special
Characters

 Operators Used in MATLAB ® Calculations
(Scalar and Array)

Chapter

 = assignment operator: assigns a value to a Chapter 2
 memory location; not the same as an equality

 % indicates a comment in an M-fi le Chapter 2

 %% creates a cell, used to organize code Chapter 2

 + scalar and array addition Chapter 2

 - scalar and array subtraction Chapter 2

 * scalar multiplication and multiplication in Chapter 2
 matrix algebra

 .* array multiplication (dot multiply or dot star) Chapter 2

 / scalar division and division in matrix algebra Chapter 2

 ./ array division (dot divide or dot slash) Chapter 2

 ̂ scalar exponentiation and matrix exponentiation Chapter 2
 in matrix algebra

 .^ array exponentiation (dot power or dot carat) Chapter 2

 ... ellipsis: continued on the next line Chapter 4

 [] empty matrix Chapter 4

 Commands Formatting Chapter

 format + sets format to plus and minus signs only Chapter 2

 format compact sets format to compact form Chapter 2

 format long sets format to 14 decimal places Chapter 2

 format long e sets format to 14 exponential places Chapter 2

 format long eng sets format to engineering notation with 14 decimal places Chapter 2

 format long g allows MATLAB ® to select the best format (either fi xed
point or fl oating point), using 14 decimal digits

 Chapter 2

 format loose sets format back to default, noncompact form Chapter 2

 format short sets format back to default, 4 decimal places Chapter 2

 format short e sets format to 4 exponential places Chapter 2

 format short eng sets format to engineering notation with 4 decimal places Chapter 2

 format short g allows MATLAB ® to select the best format (either fi xed
point or fl oating point), using 4 decimal digits

 Chapter 2

 format rat sets format to rational (fractional) display Chapter 2

Special Characters, Commands, and Functions 625

 Commands Basic Workspace Commands Chapter

 ans default variable name for results of MATLAB ® calculations Chapter 2

 clc clears command screen Chapter 2

 clear clears workspace Chapter 2

 diary saves both commands issued in the workspace and the results
to a fi le

 Chapter 2

 exit terminates MATLAB ® Chapter 2

 help invokes help utility Chapter 2

 load loads matrices from a fi le Chapter 2

 quit terminates MATLAB ® Chapter 2

 save saves variables in a fi le Chapter 2

 who lists variables in memory Chapter 2

 whos lists variables and their sizes Chapter 2

 help opens the help function Chapter 3

 helpwin opens the windowed help function Chapter 3

 clock returns the time Chapter 3

 date returns the date Chapter 3

 intmax returns the largest possible integer number used in MATLAB ® Chapter 3

 intmin returns the smallest possible integer number used in MATLAB ® Chapter 3

 realmax returns the largest possible fl oating-point number used in MATLAB ® Chapter 3

 realmin returns the smallest possible fl oating-point number used in MATLAB ® Chapter 3

 ascii indicates that data should be saved in a standard ASCII format Chapter 2

 pause pauses the execution of a program until any key is hit Chapter 5

 Special
Functions

 Functions with Special Meaning That
Do Not Require an Input

Chapter

 pi numeric approximation of the value of � Chapter 2

 eps smallest difference recognized Chapter 3

 I imaginary number Chapter 3

 Inf Infi nity Chapter 3

j imaginary number Chapter 3

 NaN not a number Chapter 3

626 Appendix A

 Functions Elementary Math Chapter

 abs computes the absolute value of a real number or the
magnitude of a complex number

 Chapter 3

 erf calculates the error function Chapter 3

 exp computes the value of ex Chapter 3

 factor fi nds the prime factors Chapter 3

 factorial calculates the factorial Chapter 3

 gcd fi nds the greatest common denominator Chapter 3

 isprime determines whether a value is prime Chapter 3

 isreal determines whether a value is real or complex Chapter 3

 lcn fi nds the least common denominator Chapter 3

 log computes the natural logarithm, or log base e(loge) Chapter 3

 log10 computes the common logarithm, or log base 10(log10) Chapter 3

 log2 computes the log base 2(log2) Chapter 3

 nthroot fi nds the real n th root of the input matrix Chapter 3

 primes fi nds the prime numbers less than the input value Chapter 3

 prod multiplies the values in an array Chapter 3

 rats converts the input to a rational representation (i.e., a fraction) Chapter 3

 rem calculates the remainder in a division problem Chapter 3

 sign determines the sign (positive or negative) Chapter 3

 sqrt calculates the square root of a number Chapter 3

 sum sums the values in an array Chapter 3

 Functions Trigonometry Chapter

 asin computes the inverse sine (arcsine) Chapter 3

 asind computes the inverse sine and reports the result in degrees Chapter 3

 cos computes the cosine Chapter 3

 sin computes the sine, using radians as input Chapter 3

 sind computes the sine, using angles in degrees as input Chapter 3

 sinh computes the hyperbolic sine Chapter 3

 tan computes the tangent, using radians as input Chapter 3

 MATLAB ® includes all of the trigonometric functions; only those specifi cally discussed in the text are included here.

 Functions Complex Numbers Chapter

 abs computes the absolute value of a real number or the magnitude
of a complex number

 Chapter 3

 angle computes the angle when complex numbers are represented
with polar coordinates

 Chapter 3

 complex creates a complex number Chapter 3

 conj creates the complex conjugate of a complex number Chapter 3

 imag extracts the imaginary component of a complex number Chapter 3

 isreal determines whether a value is real or complex Chapter 3

 real extracts the real component of a complex number Chapter 3

Special Characters, Commands, and Functions 627

 Functions Random Numbers Chapter

 rand calculates evenly distributed random numbers Chapter 3

 randn calculates normally distributed (Gaussian) random numbers Chapter 3

 Functions Rounding Chapter

 ceil rounds to the nearest integer toward positive infi nity Chapter 3

 fix rounds to the nearest integer toward zero Chapter 3

 floor rounds to the nearest integer toward minus infi nity Chapter 3

 round rounds to the nearest integer Chapter 3

 Functions Data Analysis Chapter

 cumprod computes the cumulative product of the values in an array Chapter 3

 cumsum computes the cumulative sum of the values in an array Chapter 3

 length determines the largest dimension of an array Chapter 3

 max fi nds the maximum value in an array and determines which
element stores the maximum value

 Chapter 3

 mean computes the average of the elements in an array Chapter 3

 median fi nds the median of the elements in an array Chapter 3

 min fi nds the minimum value in an array and determines which
element stores the minimum value

 Chapter 3

 mode fi nds the most common number in an array Chapter3

 nchoosek fi nds the number of possible combinations when a subgroup
of k values is chosen from a group of n values

 Chapter 3

 numel determines the total number of elements in an array Chapter 3

 size determines the number of rows and columns in an array Chapter 3

 sort sorts the elements of a vector Chapter 3

 sortrows sorts the rows of a vector on the basis of the values in the
fi rst column

 Chapter 3

 prod multiplies the values in an array Chapter 3

 sum sums the values in an array Chapter 3

 std determines the standard deviation Chapter 3

 var computes the variance Chapter 3

628 Appendix A

 Functions Matrix Formulation, Manipulation, and Analysis Chapter

 meshgrid maps vectors into a two-dimensional array Chapters 4 and 5

 diag extracts the diagonal from a matrix Chapter 4

 fliplr fl ips a matrix into its mirror image from left to right Chapter 4

 flipud fl ips a matrix vertically Chapter 4

 linspace linearly spaced vector function Chapter 2

 logspace logarithmically spaced vector function Chapter 2

 cross computes the cross product Chapter 9

 det computes the determinant of a matrix Chapter 9

 dot computes the dot product Chapter 9

 inv computes the inverse of a matrix Chapter 9

 rref uses the reduced row echelon format scheme for solving
a series of linear equations

 Chapter 9

 Functions Two-Dimensional Plots Chapter

 bar generates a bar graph Chapter 5

 barh generates a horizontal bar graph Chapter 5

 contour generates a contour map of a three-dimensional surface Chapter 5

 comet draws an x – y plot in a pseudo animation sequence Chapter 5

 fplot creates an x–y plot on the basis of a function Chapter 5

 hist generates a histogram Chapter 5

 loglog generates an x–y plot with both axes scaled logarithmically Chapter 5

 pcolor creates a pseudo color plot similar to a contour map Chapter 5

 pie generates a pie chart Chapter 5

 plot creates an x–y plot Chapter 5

 plotyy creates a plot with two y -axes Chapter 5

 polar creates a polar plot Chapter 5

 semilogx generates an x–y plot with the x -axis scaled logarithmically Chapter 5

 semilogy generates an x–y plot with the y -axis scaled logarithmically Chapter 5

 Functions Three-Dimensional Plots Chapter

 bar3 generates a three-dimensional bar graph Chapter 5

 bar3h generates a horizontal three-dimensional bar graph Chapter 5

 comet3 draws a three-dimensional line plot in a pseudo animation sequence Chapter 5

 mesh generates a mesh plot of a surface Chapter 5

 peaks creates a sample three-dimensional matrix used to demonstrate
graphing functions

 Chapter 5

 pie3 generates a three-dimensional pie chart Chapter 5

 plot3 generates a three-dimensional line plot Chapter 5

 sphere sample function used to demonstrate graphing Chapter 5

 surf generates a surface plot Chapter 5

 surfc generates a combination surface and contour plot Chapter 5

Special Characters, Commands, and Functions 629

 Special Characters Control of Plot Appearance Chapter

 Indicator Line Type

 - Solid Chapter 5

 : dotted Chapter 5

 -. Dash-dot Chapter 5

 -- dashed Chapter 5

 Indicator Point Type

 . point Chapter 5

 o circle Chapter 5

 x x-mark Chapter 5

 + Plus Chapter 5

 * Star Chapter 5

 s square Chapter 5

 d diamond Chapter 5

^

 triangle down Chapter 5

 ̂ triangle up Chapter 5

 < triangle left Chapter 5

 > triangle right Chapter 5

 p pentagram Chapter 5

 h hexagram Chapter 5

 Indicator Color

 b blue Chapter 5

 g green Chapter 5

 r red Chapter 5

 c cyan Chapter 5

 m Magenta Chapter 5

 y Yellow Chapter 5

 k Black Chapter 5

630 Appendix A

 Functions Figure Control and Annotation Chapter

 axis freezes the current axis scaling for subsequent plots Chapter 5
 or specifi es the axis dimensions

axis equal forces the same scale spacing for each axis Chapter 5

 colormap color scheme used in surface plots Chapter 5

 figure opens a new fi gure window Chapter 5

 gtext Similar to text. The box is placed at a location determined
interactively by the user by clicking in the fi gure window

 Chapter 5

 grid adds a grid to the current plot only Chapter 5

 grid off turns the grid off Chapter 5

 grid on adds a grid to the current and all subsequent Chapter 5

 graphs in the current fi gure

 hold off instructs MATLAB ® to erase fi gure contents before Chapter 5
 adding new information

 hold on instructs MATLAB ® not to erase fi gure contents before Chapter 5
 adding new information

 legend adds a legend to a graph Chapter 5

 shading flat shades a surface plot with one color per grid section Chapter 5

 shading interp shades a surface plot by interpolation Chapter 5

 subplot divides the graphics window up into sections Chapter 5
 available for plotting

 text adds a text box to a graph Chapter 5

 title adds a title to a plot Chapter 5

 xlabel adds a label to the x -axis Chapter 5

 ylabel adds a label to the y -axis Chapter 5

 zlabel adds a label to the z -axis Chapter 5

Special Characters, Commands, and Functions 631

 Functions Figure Color Schemes Chapter

 autumn optional colormap used in surface plots Chapter 5

 bone optional colormap used in surface plots Chapter 5

 colorcube optional colormap used in surface plots Chapter 5

 cool optional colormap used in surface plots Chapter 5

 copper optional colormap used in surface plots Chapter 5

 flag optional colormap used in surface plots Chapter 5

 hot optional colormap used in surface plots Chapter 5

 hsv optional colormap used in surface plots Chapter 5

 jet default colormap used in surface plots Chapter 5

 pink optional colormap used in surface plots Chapter 5

 prism optional colormap used in surface plots Chapter 5

 spring optional colormap used in surface plots Chapter 5

 summer optional colormap used in surface plots Chapter 5

 white optional colormap used in surface plots Chapter 5

 winter optional colormap used in surface plots Chapter 5

 Functions and
Special Characters

Function Creation and Use

Chapter

 addpath adds a directory to the MATLAB ® search path Chapter 6

 function identifi es an M-fi le as a function Chapter 6

 nargin determines the number of input arguments Chapter 6
 in a function

 nargout determines the number of output arguments Chapter 6
 from a function

 pathtool opens the interactive path tool Chapter 6

 varargin indicates that a variable number of arguments Chapter 6
 may be input to a function

 @ identifi es a function handle, such as any Chapter 6
 of those used with anonymous functions

 % comment Chapter 6

 matlabFunction converts a symbolic expression into a MATLAB ® funciton Chapter 13

632 Appendix A

 Special Characters Format Control Chapter

 ' begins and ends a string Chapter 7

 % placeholder used in the fprintf command Chapter 7

 %f fi xed-point, or decimal, notation Chapter 7

 %d decimal notation Chapter 7

 %e exponential notation Chapter 7

 %g either fi xed-point or exponential notation Chapter 7

 %s string notation Chapter 7

 %% cell divider Chapter 7

 \n linefeed Chapter 7

 \r carriage return (similar to linefeed) Chapter 7

 \t tab Chapter 7

 \b backspace Chapter 7

 Functions Input/Output (I/O) Control Chapter

 disp displays a string or a matrix in the command window Chapter 7

 fprintf creates formatted output which can be sent to the command
window or to a fi le

 Chapter 7

 ginput allows the user to pick values from a graph Chapter 7

 input allow the user to enter values Chapter 7

 pause pauses the program Chapter 7

 sprintf similar to fprintf
creates formatted output which is assigned to a variable
name and stored as a character array

 Chapter 7

 uiimport launches the Import Wizard Chapter 7

 wavread reads wave fi les Chapter 7

 xlsimport imports Excel data fi les Chapter 7

 xlswrite exports data as an Excel fi le Chapter 7

 load loads matrices from a fi le Chapter 2

 save saves variables in a fi le Chapter 2

 celldisp displays the contents of a cell array Chapter 11

 imfinfo reads a standard graphics fi le and determines what Chapter 14

 type of data it contains

 imread reads a graphics fi le Chapter 14

 mwrite writes a graphics fi le Chapter 14

 Functions Comparison Operators Chapter

 < less than Chapter 8

 <= less than or equal to Chapter 8

 > greater than Chapter 8

 >= greater than or equal to Chapter 8

 == equal to Chapter 8

 ~= not equal to Chapter 8

Special Characters, Commands, and Functions 633

 Special Characters Logical Operators Chapter

 & and Chapter 8

 | or Chapter 8

 ~ not Chapter 8

xor exclusive or Chapter 8

 Functions Control Structures Chapter

 break causes the execution of a loop to be terminated Chapter 9

 case sorts responses Chapter 8

 continue terminates the current pass through a loop, but proceeds Chapter 9
 to the next pass

 else defi nes the path if the result of an if statement is false Chapter 8

 elseif defi nes the path if the result of an if statement is false, Chapter 8
 and specifi es a new logical test

 end identifi es the end of a control structure Chapter 8

 for generates a loop structure Chapter 9

 if checks a condition resulting in either true or false Chapter 8

 menu creates a menu to use as an input vehicle Chapter 8

 otherwise part of the case selection structure Chapter 8

 switch part of the case selection structure Chapter 8

 while generates a loop structure Chapter 9

 Functions Logical Functions Chapter

 all checks to see if a criterion is met by all the elements Chapter 8
 in an array

 any checks to see if a criterion is met by any of the elements Chapter 8
 in an array

 find determines which elements in a matrix meet the input criterion Chapter 8

 isprime determines whether a value is prime Chapter 3

 isreal determines whether a value is real or complex Chapter 3

 Functions Timing Chapter

 clock determines the current time on the CPU clock Chapter 9

 etime fi nds elapsed time Chapter 9

 tic starts a timing sequence Chapter 9

 toc stops a timing sequence Chapter 9

 date returns the date Chapter 3

634 Appendix A

 Functions Special Matrices Chapter

 eye generates an identity matrix Chapter 10

 magic creates a “magic” matrix Chapter 10

 ones creates a matrix containing all ones Chapter 10

 pascal creates a Pascal matrix Chapter 10

 zeros creates a matrix containing all zeros Chapter 10

 gallery contains example matrices Chapter 10

 Special Characters Data Types Chapter

 { } cell array constructor Chapters 11 and 12

 '' string data (character information) Chapters 11 and 12

 character array Chapter 11

 numeric array Chapter 11

 symbolic array Chapter 11

 logical array Chapter 11

 sparse array Chapter 11

 cell array Chapter 11

 structure array Chapter 11

 Functions Data Type Manipulation Chapter

 celldisp displays the contents of a cell array Chapter 11

 char creates a padded character array Chapter 11

 double changes an array to a double-precision array Chapter 11

 int16 16-bit signed integer Chapter 11

 int32 32-bit signed integer Chapter 11

 int64 64-bit signed integer Chapter 11

 int8 8-bit signed integer Chapter 11

 num2str converts a numeric array to a character array Chapter 11

 single changes an array to a single-precision array Chapter 11

 sparse converts a full-format matrix to a sparse-format matrix Chapter 11

 str2num converts a character array to a numeric array Chapter 11

 uint16 16-bit unsigned integer Chapter 11

 uint32 32-bit unsigned integer Chapter 11

 uint64 64-bit unsigned integer Chapter 11

 uint8 8-bit unsigned integer Chapter 11

Special Characters, Commands, and Functions 635

 Functions Manipulation of Symbolic Expressions Chapter

 collect collects like terms Chapter 12

 diff fi nds the symbolic derivative of a symbolic expression Chapter 12

 dsolve differential equation solver Chapter 12

 expand expands an expression or equation Chapter 12

 factor factors an expression or equation Chapter 12

 int fi nds the symbolic integral of a symbolic expression Chapter 12

 matlabFunction converts a symbolic expression into an anonymous
MATLAB ® function

 Chapter 12

 mupad opens the MuPad workbook Chapter 12

 numden extracts the numerator and denominator from an
expression or an equation

 Chapter 12

 simple tries and reports all the simplifi cation functions,
and selects the shortest answer

 Chapter 12

 simplify simplifi es using Mupad’s built-in simplifi cation rules Chapter 12

 solve solves a symbolic expression or equation Chapter 12

 subs substitutes into a symbolic expression or equation Chapter 12

 sym creates a symbolic variable, expression, or equation Chapter 12

 syms creates symbolic variables Chapter 12

 Functions Symbolic Plotting Chapter

 ezcontour creates a contour plot Chapter 12

 ezcontourf creates a fi lled contour plot Chapter 12

 ezmesh creates a mesh plot from a symbolic expression Chapter 12

 ezmeshc plots both a mesh and contour plot created from
a symbolic expression

 Chapter 12

 ezplot creates an x – y plot of a symbolic expression Chapter 12

 ezplot3 creates a three-dimensional line plot Chapter 12

 ezpolar creates a plot in polar coordinates Chapter 12

 ezsurf creates a surface plot from a symbolic expression Chapter 12

 ezsurfc plots both a mesh and contour plot created from
a symbolic expression

 Chapter 12

636 Appendix A

 Functions Numerical Techniques Chapter

 bvp4c boundary value problem solver for ordinary
differential equations

 Chapter 13

 cftool opens the curve-fi tting graphical user interface Chapter 13

 diff computes the differences between adjacent values in an
array if the input is an array; fi nds the symbolic derivative
if the input is a symbolic expression

 Chapter 13

 fminbnd a function that accepts a function handle or function defi nition
as input and numerically fi nds the function minimum between
two bounds – known as a “function-function”

 Chapter 6

 fzero a function that accepts a function handle or function defi nition
as input and fi nds the zero point nearest a specifi ed
value – known as a “function-function”

 Chapter 6

 gradient fi nds the derivative numerically using a combination of
forward, backward, and central difference techniques

 Chapter 13

 interp1 Approximates intermediate data, using either the default linear
interpolation technique or a specifi ed higher order approach

 Chapter 13

 interp2 two-dimensional interpolation function Chapter 13

 interp3 three-dimensional interpolation function Chapter 13

 interpn multidimensional interpolation function Chapter 13

 ode45 ordinary differential equation solver Chapter 13

 ode23 ordinary differential equation solver Chapter 13

 ode113 ordinary differential equation solver Chapter 13

 ode15s ordinary differential equation solver Chapter 13

 ode23s ordinary differential equation solver Chapter 13

 ode23t ordinary differential equation solver Chapter 13

 ode23tb ordinary differential equation solver Chapter 13

 ode15i ordinary differential equation solver Chapter 13

 polyfit computes the coeffi cients of a least-squares polynomial Chapter 13

 polyval evaluates a polynomial at a specifi ed value of x Chapter 13

 quad computes the integral under a curve (Simpson) Chapter 13

 quad1 computes the integral under a curve (Lobatto) Chapter 13

Special Characters, Commands, and Functions 637

 Functions Sample Data Sets and Images Chapter

 cape sample MATLAB ® image fi le of a cape Chapter 14

 clown sample MATLAB ® image fi le of a clown Chapter 14

 detail sample MATLAB ® image fi le of a section of a Dürer wood carving Chapter 14

 durer sample MATLAB ® image fi le of a Dürer wood carving Chapter 14

 earth sample MATLAB ® image fi le of the earth Chapter 14

 flujet sample MATLAB ® image fi le showing fl uid behavior Chapter 14

 gatlin sample MATLAB ® image fi le of a photograph Chapter 14

 mandrill sample MATLAB ® image fi le of a mandrill Chapter 14

 mri sample MRI data set Chapter 14

 peaks creates a sample plot Chapter 14

 seamount sample MATLAB ® data fi le of a seamount Chapter 5

 spine sample MATLAB ® image fi le of a spine X-ray Chapter 14

 wind sample MATLAB ® data fi le of wind velocity information Chapter 14

 sphere sample function used to demonstrate graphing Chapter 5

 census a built-in data set used to demonstrate numerical techniques Chapter 13

 handel a built-in data set used to demonstrate the sound function Chapter 3

 Functions Advanced Visualization Chapter

 alpha sets the transparency of the current plot object Chapter 14

 camlight turns the camera light on Chapter 14

 coneplot creates a plot with markers indicating the direction
of input vectors

 Chapter 14

 contourslice creates a contour plot from a slice of data Chapter 14

 drawnow forces MATLAB ® to draw a plot immediately Chapter 14

 gca gets current axis handle Chapter 14

 gcf gets current fi gure handle Chapter 14

 get returns the properties of a specifi ed object Chapter 14

 getframe gets the current fi gure and saves it as a movie frame
in a structure array

 Chapter 14

 image creates a two-dimensional image Chapter 14

 imagesc creates a two-dimensional image by scaling the data Chapter 14

 imfinfo reads a standard graphics fi le and determines what type
of data it contains

 Chapter 14

 imread reads a graphics fi le Chapter 14

 imwrite writes a graphics fi le Chapter 14

 isosurface creates surface connecting volume data of the same magnitude Chapter 14

 movie plays a movie stored as a MATLAB ® structure array Chapter 14

 set establishes the properties assigned to a specifi ed object Chapter 14

 shading determines the shading technique used in surface plots
and pseudo color plots

 Chapter 14

B
APPENDIX

 Scaling
Techniques

 Plotting data using different scaling techniques is a useful way to try to determine
how y -values change with x . This approach is illustrated in the following sections.

 LINEAR RELATIONSHIPS

 If x and y are related by a linear relationship, a standard x–y plot will be a straight
line. Thus, for

 y � ax � b

 an x–y plot is a straight line with slope a and y -intercept b .

0 1 2 3 4 5
0

5

10

15

20

25

30
Linear Relationship between x and y

y-
ax

is

x-axis

b � intercept

a � slope

y � ax�b

Scaling Techniques 639

 LOGARITHMIC RELATIONSHIP

 If x and y are related logarithmically

 y � a log10(x) � b

 a standard plot on an evenly spaced grid is curved. However, a plot scaled evenly on
the y -axis but logarithmically on the x -axis is a straight line of slope a . The y -intercept
doesn’t exist, since log10(0) is undefi ned. However when x � 1, the value of log10(1)
is zero and y is equal to b .

0 20 40 60 80 100
3

3.5

4

4.5

5

5.5

6
Logarithmic Relationship between x and y

y-
ax

is

x-axis
10�1 100 101 102
3

3.5

4

4.5

5

5.5

6
Logarithmic Relationship between x and y

y-
ax

is
x-axis with log scaling

0 0.5 1 1.5 2 2.5 3
0

100

200

300

400
Exponential Relationship between x and y

x-axis

y-
ax

is

0 0.5 1 1.5 2 2.5 3
100

101

102

103
Exponential Relationship between x and y

x-axis

y-
ax

is
 s

ca
le

d
lo

ga
ri

th
m

ic
al

ly

 EXPONENTIAL RELATIONSHIP

 When x and y are related by an exponential relationship such as

 y � b * ax

 a plot of log10(y) versus x gives a straight line because

 log10(y) � log10(a) * x � log10(b)

 In this case, the slope of the plot is log10(a).

640 Appendix B

 POWER RELATIONSHIP

 Finally, if x and y are related by a power relationship such as

 y � bxa

 a plot scaled logarithmically on both axes produces a straight line with a slope of a .
When x is equal to 1, the log10(1) is zero, and the value of log10(y) is log10(b).

 log10(y) � a * log10(x) � log10(b)

0 2 4 6 8 10
0

50

100

150

200
Power Relationship between x and y

x-axis

y-
ax

is

10�1 100 101
10�1

100

101

102

103
Power Relationship between x and y

x-axis scaled logarithmically
y-

ax
is

 s
ca

le
d

lo
ga

ri
th

m
ic

al
ly

C The Ready_Aim_
Fire GUI

 function varargout = ready_aim_fire(varargin)
 % READY_AIM_FIRE M-file for ready_aim_fire.fig
 % READY_AIM_FIRE, by itself, creates a new READY_AIM_FIRE or raises the existing
 % singleton* .
 %
 % H = READY_AIM_FIRE returns the handle to a new READY_AIM_FIRE or the handle to
 % the existing singleton* .
 %
 % READY_AIM_FIRE('CALLBACK',hObject,eventData,handles,...) calls the local
 % function named CALLBACK in READY_AIM_FIRE.M with the given input arguments .
 %
 % READY_AIM_FIRE('Property','Value',...) creates a new READY_AIM_FIRE or raises the
 % existing singleton*. Starting from the left, property value pairs are
 % applied to the GUI before ready_aim_fire_OpeningFcn gets called. An
 % unrecognized property name or invalid value makes property application
 % stop. All inputs are passed to ready_aim_fire_OpeningFcn via varargin .
 %
 % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
 % instance to run (singleton)" .
 %

APPENDIX

642 Appendix C

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help ready_aim_fire

% Last Modified by GUIDE v2.5 29-Aug-2010 17:17:24

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, .. .
 'gui_OpeningFcn', @ready_aim_fire_OpeningFcn, ...
 'gui_OutputFcn', @ready_aim_fire_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before ready_aim_fire is made visible .
function ready_aim_fire_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn .
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB ®
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to ready_aim_fire (see VARARGIN)
plot(275,0,'s','Markersize',10,'MarkerFaceColor','r')
text(275,50,'target')
axis([0,1000,0,500])
title('Projectile Trajectory')
xlabel('Horizontal Distance, m')
ylabel('Vertical Distance, m')
hold on
handles.location=275;
% Choose default command line output for ready_aim_fire
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes ready_aim_fire wait for user response (see UIRESUME)
% uiwait(handles.figure1);

The Ready_Aim_Fire GUI 643

% --- Outputs from this function are returned to the command line .
function varargout = ready_aim_fire_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB ®
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in Fire_pushbutton .
function Fire_pushbutton_Callback(hObject, eventdata, handles)
% hObject handle to Fire_pushbutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB ®
% handles structure with handles and user data (see GUIDATA)
time=0:0.001:100;
h=time*handles.vel*cosd(handles.theta);
v=time*handles.vel*sind(handles.theta)-1/2*9.81*time.^2;
pos=find(v>=0);
horizontal=h(pos);
vertical=v(pos);
comet(horizontal,vertical);
land=pos(end);
goal=handles.location;
if (h(land)<goal+50 && h(land)>goal-50) % Code to create the "Explosion"
 x=linspace(goal-100, goal+100, 5);
 y=[0,80,100,80,0];
 z=linspace(goal-200,goal+200,9);
 w=[0,40,90,120,130,120,90,40,0];
 plot(x,y,'*r',z,w,'*r')
 text(goal,400,'Kaboom!')
 set(handles.textout,'string', 'You Win !','fontsize',16)
end

function launch_angle_Callback(hObject, eventdata, handles)
% hObject handle to launch_angle (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB ®
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of launch_angle as text
% str2double(get(hObject,'String')) returns contents of launch_angle as a double
handles.theta=str2double(get(hObject,'String'));
guidata(hObject, handles);

% --- Executes during object creation, after setting all properties .
function launch_angle_CreateFcn(hObject, eventdata, handles)
% hObject handle to launch_angle (see GCBO)

644 Appendix C

% eventdata reserved - to be defined in a future version of MATLAB ®
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows .
% See ISPC and COMPUTER .
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defau ltUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function launch_velocity_Callback(hObject, eventdata, handles)
% hObject handle to launch_velocity (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB ®
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of launch_velocity as text
% str2double(get(hObject,'String')) returns contents of launch_velocity as a double
handles.vel=str2double(get(hObject,'String'));
guidata(hObject, handles);

% --- Executes during object creation, after setting all properties .
function launch_velocity_CreateFcn(hObject, eventdata, handles)
% hObject handle to launch_velocity (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB ®
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows .
% See ISPC and COMPUTER .
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end

% --- Executes on button press in Reset_pushbutton .
function Reset_pushbutton_Callback(hObject, eventdata, handles)
% hObject handle to Reset_pushbutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB ®
% handles structure with handles and user data (see GUIDATA)
hold off
plot(handles.location,0,'s','Markersize',10,'MarkerFaceColor','r')
text(handles.location,50,'target')
axis([0,1000,0,500])
title('Projectile Trajectory')
xlabel('Horizontal Distance, m')
ylabel('Vertical Distance, m')
hold on
set(handles.textout,'string', ”)

% --- Executes on slider movement .
function slider1_Callback(hObject, eventdata, handles)

The Ready_Aim_Fire GUI 645

% hObject handle to slider1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB ®
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
handles.location = get(hObject,'Value')
hold off
plot(handles.location,0,'s','Markersize',10,'Markerfacecolor','r')
axis([0,1000,0,1000])
title('Trajectory')
xlabel('Horizontal Distance')
ylabel('Vertical Distance')
text(handles.location-25,50,'Target')
hold on
guidata(hObject, handles);

% --- Executes during object creation, after setting all properties .
function slider1_CreateFcn(hObject, eventdata, handles)
% hObject handle to slider1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB ®
% handles empty - handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background .
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

 There are many ways to solve problems in MATLAB ® . These solutions represent one

possible approach.

 Practice Exercises 2.1
 1. 7

 2. 10

 3. 2.5000

 4. 17

 5. 7.8154

 6. 4.1955

 7. 12.9600

 8. 5

 9. 2.2361

 10. -1

 Practice Exercises 2.2
 1. test is a valid name.

 2. Test is a valid name, but is a different variable from test .

 3. if is not allowed. It is a reserved keyword.

 4. my-book is not allowed because it contains a hyphen.

 5. my_book is a valid name.

 6. Thisisoneverylongnamebutisitstillallowed? is not allowed because

it includes a question mark. Even without the question mark, it is not a good

idea.

 7. 1stgroup is not allowed because it starts with a number.

 APPENDIX

DSolutions to
Practice Exercises

D-2 Appendix D

 8. group_one is a valid name.

 9. zzaAbc is a valid name, although it’s not a very good one because it combines

uppercase and lowercase letters and is not meaningful.

 10. z34wAwy%12# is not valid because it includes the percent and pound signs.

 11. sin is a valid name, but a poor choice since it is also a function name.

 12. log is a valid name, but a poor choice since it is also a function name.

 Practice Exercises 2.3
 1. 6

 2. 72

 3. 16

 4. 13

 5. 48

 6. 38.5

 7. 4096

 8. 2.4179e � 024

 9. 245

 10. 2187
 11. 15 � 32 > 19 � 12 � 1

 12. 2¿3 � 4 > 15 � 32 � 7.5

 13. 5¿ 12 � 12 > 14 � 12 � 41.6667

 14. 14 � 1 > 22 * 15 � 2 > 32 � 25.5

 15. 15 � 6 * 7 > 3 � 2¿22 > 12 > 3 * 3 > 13 * 622 � 135

 Practice Exercises 2.4
 1. a = [2.3 5.8 9]

 2. sin(a)

 ans =

 0.7457 -0.4646 0.4121

 3. a + 3

 ans =

 5.3000 8.8000 12.0000

 4. b = [5.2 3.14 2]

 5. a + b

 ans =

 7.5000 8.9400 11.0000

 6. a .* b

 ans =

 11.9600 18.2120 18.0000

 7. a.^2

 ans =

 5.2900 33.6400 81.0000

 8. c = 0:10 or

 c = [0:10]

 9. d = 0:2:10 or

 d = [0:2:10]

 10. linspace(10,20,6)

 ans =

 10 12 14 16 18 20

 11. logspace(1, 2, 5)

 ans =
 10.0000 17.7828 31.6228 56.2341 100.0000

Solutions to Practice Exercises D-3

 Practice Exercises 3.1
 1. In the command window, type

 help cos
 help sqrt
 help exp

 2. Select Help : MATLAB Help from the menu bar.

 Use the left-hand pane to navigate to either Functions - Categorical List or

 Functions - Alphabetical List
 3. Select Help : Web Resources : The Mathworks Web Site

 Practice Exercises 3.2
 1. x = -2:1:2

 x =

 -2 -1 0 1 2

 abs(x)

 ans =

 2 1 0 1 2

 sqrt(x)

 ans =

 0 + 1.4142i 0 + 1.0000i 0 1.0000 1.4142

 2. a. sqrt(-3)

 ans =

 0 + 1.7321i
 sqrt(3)

 ans =

 1.7321
 b. nthroot(-3,2)

 ??? Error using ==> nthroot at 33
 If X is negative, N must be an odd integer.
 nthroot(3,2)
 ans =
 1.7321

 c. -3^(1/2)

 ans =
 -1.7321
 3^(1/2)
 ans =

 1.7321

 3. x = -9:3:12

 x =

 -9 -6 -3 0 3 6 9 12

 rem(x,2)

 ans =

 -1 0 -1 0 1 0 1 0

 4. exp(x)

 ans =

 1.0e+005 *

 0.0000 0.0000 0.0000 0.0000 0.0002 0.0040 0.0810 1.6275

D-4 Appendix D

 5. log(x)

 ans =

 Columns 1 through 4

 2.1972 + 3.1416i 1.7918 + 3.1416i 1.0986 + 3.1416i -Inf
Columns 5 through 8

 1.0986 1.7918 2.1972 2.4849

 log10(x)

 ans =

 Columns 1 through 4

 0.9542 + 1.3644i 0.7782 + 1.3644i 0.4771 + 1.3644i -Inf

 Columns 5 through 8

 0.4771 0.7782 0.9542 1.0792

 6. sign(x)

 ans =

 -1 -1 -1 0 1 1 1 1

 7. format rat

 x/2

 ans =

 -9/2 -3 -3/2 0 3/2 3 9/2 6

 Practice Exercises 3.3
 1. factor(322)

 ans =

 2 7 23

 2. gcd(322,6)

 ans =

 2

 3. isprime(322)

 ans =

 0 Because the result of isprime is the number 0, 322 is not a prime

 number.

 4. length(primes(322))

 ans =

 66

 5. rats(pi)

 ans =

 355/113

 6. factorial(10)

 ans =

 3628800

 7. nchoosek(20,3)

 ans =

 1140

 Practice Exercises 3.4
 1. theta = 3*pi;

 sin(2*theta)

 ans =

 -7.3479e-016

Solutions to Practice Exercises D-5

 2. theta = 0:0.2*pi:2*pi;

 cos(theta)

 ans =

 Columns 1 through 7

 1.0000 0.8090 0.3090 -0.3090 -0.8090 -1.0000 -0.8090

 Columns 8 through 11

 -0.3090 0.3090 0.8090 1.0000

 3. asin(1)

 ans =

 1.5708 This answer is in radians.

 4. x = -1:0.2:1;

 acos(x)

 ans =

 Columns 1 through 7

 3.1416 2.4981 2.2143 1.9823 1.7722 1.5708 1.3694

 Columns 8 through 11

 1.1593 0.9273 0.6435 0

 5. cos(45*pi/180)

 ans =

 0.7071

 cosd(45)

 ans =

 0.7071

 6. asin(0.5)

 ans =

 0.5236 This answer is in radians. You could also fi nd the result in degrees.

 asind(0.5)

 ans =

 30.0000

 7. csc(60*pi/180)

 ans =

 1.1547

 or . . .

 cscd(60)

 ans =

 1.1547

 Practice Exercises 3.5
 x = [4 90 85 75; 2 55 65 75; 3 78 82 79;1 84 92 93];

 1. max(x)

 ans =

 4 90 92 93

 2. [maximum, row]=max(x)

 maximum =

 4 90 92 93

 row =

 1 1 4 4

D-6 Appendix D

 3. max(x')

 ans =

 90 75 82 93

 4. [maximum, column]=max(x')

 maximum =

 90 75 82 93

 column =

 2 4 3 4

 5. max(max(x))

 ans =

 93

 Practice Exercises 3.6
 x = [4 90 85 75; 2 55 65 75; 3 78 82 79;1 84 92 93];

 1. mean(x)

 ans =

 2.5000 76.7500 81.0000 80.5000

 2. median(x)

 ans =

 2.5000 81.0000 83.5000 77.0000

 3. mean(x')

 ans =

 63.5000 49.2500 60.5000 67.5000

 4. median(x')

 ans =

 80.0000 60.0000 78.5000 88.0000

 5. mode(x)

 ans =

 1 55 65 75

 6. mean(mean(x))

 ans =

 60.1875

 or . . .

 mean(x(:))

 ans =

 60.1875

 Practice Exercises 3.7
 x = [4 90 85 75; 2 55 65 75; 3 78 82 79;1 84 92 93];

 1. size(x)

 ans =

 4 4

 2. sort(x)

 ans =

 1 55 65 75

 2 78 82 75

 3 84 85 79

 4 90 92 93

Solutions to Practice Exercises D-7

 3. sort(x,'descend')

 ans =

 4 90 92 93

 3 84 85 79

 2 78 82 75

 1 55 65 75

 4. sortrows(x)

 ans =

 1 84 92 93

 2 55 65 75

 3 78 82 79

 4 90 85 75

 5. sortrows(x,-3)

 ans =

 1 84 92 93

 4 90 85 75

 3 78 82 79

 2 55 65 75

 Practice Exercises 3.8
 x = [4 90 85 75; 2 55 65 75; 3 78 82 79;1 84 92 93];

 1. std(x)

 ans =

 1.2910 15.3052 11.4601 8.5440

 2. var(x)

 ans =

 1.6667 234.2500 131.3333 73.0000

 3. sqrt(var(x))

 ans =

 1.2910 15.3052 11.4601 8.5440

 4. The square root of the variance is equal to the standard deviation.

 Practice Exercises 3.9
 1. rand(3)

 ans =

 0.9501 0.4860 0.4565

 0.2311 0.8913 0.0185

 0.6068 0.7621 0.8214

 2. randn(3)

 ans =

 -0.4326 0.2877 1.1892

 -1.6656 -1.1465 -0.0376

 0.1253 1.1909 0.3273

 3. x = rand(100,5);

 4. max(x)

 ans =

 0.9811 0.9785 0.9981 0.9948 0.9962

 std(x)

D-8 Appendix D

 ans =

 0.2821 0.2796 0.3018 0.2997 0.2942

 var(x)

 ans =

 0.0796 0.0782 0.0911 0.0898 0.0865

 mean(x)

 ans =

 0.4823 0.5026 0.5401 0.4948 0.5111

 5. x = randn(100,5);

 6. max(x)

 ans =

 2.6903 2.6289 2.7316 2.4953 1.7621

 std(x)

 ans =

 0.9725 0.9201 0.9603 0.9367 0.9130

 var(x)

 ans =

 0.9458 0.8465 0.9221 0.8774 0.8335

 mean(x)

 ans =

 -0.0277 0.0117 -0.0822 0.0974 -0.1337

 Practice Exercises 3.10
 1. A = 1+i

 A =

 1.0000 + 1.0000i

 B = 2-3i

 B =

 2.0000 - 3.0000i

 C = 8+2i

 C =

 8.0000 + 2.0000i

 2. imagD = [-3,8,-16];

 realD = [2,4,6];

 D = complex(realD,imagD)

 ans =

 2.0000 - 3.0000i 4.0000 + 8.0000i 6.0000 -16.0000i

 3. abs(A)

 ans =

 1.4142

 abs(B)

 ans =

 3.6056

 abs(C)

 ans =

 8.2462

 abs(D)
 ans =

 3.6056 8.9443 17.0880

Solutions to Practice Exercises D-9

 4. angle(A)

 ans =

 0.7854

 angle(B)

 ans =

 -0.9828

 angle(C)

 ans =

 0.2450

 angle(D)

 ans =

 -0.9828 1.1071 -1.2120

 5. conj(D)

 ans =

 2.0000 + 3.0000i 4.0000 - 8.0000i 6.0000 +16.0000i

 6. D'

 ans =

 2.0000 + 3.0000i

 4.0000 - 8.0000i

 6.0000 +16.0000i

 7. sqrt(A.*A')

 ans =

 1.4142

 Practice Exercises 3.11
 1. clock

 ans =

 1.0e+003 *

 2.0080 0.0050 0.0270 0.0160 0.0010 0.0220

 2. date

 ans =

 27-May-2008

 3. a. factorial(322)

 ans =

 Inf

 b. 5*10^500

 ans =

 Inf

 c. 1/5*10^500

 ans =

 Inf

 d. 0/0

 Warning: Divide by zero.

 ans =

 NaN

D-10 Appendix D

 Practice Exercises 4.1
 a = [12 17 3 6]

 a =
 12 17 3 6

 b = [5 8 3; 1 2 3; 2 4 6]
 b =

 5 8 3

 1 2 3

 2 4 6

 c = [22;17;4]
 c =

 22

 17

 4

 1. x1 = a(1,2)

 x1 =

 17

 2. x2 = b(:,3)

 x2 =

 3

 3

 6

 3. x3 = b(3,:)

 x3 =

 2 4 6

 4. x4 = [b(1,1), b(2,2), b(3,3)]

 x4 =

 5 2 6

 5. x5 = [a(1:3);b]

 x5 =

 12 17 3

 5 8 3

 1 2 3

 2 4 6

 Practice Exercises 4.2
 1. length = [1, 3, 5];

 width = [2,4,6,8];

 [L,W] = meshgrid(length,width);

 area = L.*W

 area =

 2 6 10

 4 12 20

 6 18 30

 8 24 40

 2. radius = 0:3:12;

 height = 10:2:20;

 [R,H] = meshgrid(radius,height);

 volume = pi*R.^2.*H

 6. x6 = [c,b;a]

 x6 =

 22 5 8 3

 17 1 2 3

 4 2 4 6

 12 17 3 6

 7. x7 = b(8)

 x7 =

 3

 8. x8 = b(:)

 x8 =

 5

 1

 2

 8

 2

 4

 3

 3

 6

Solutions to Practice Exercises D-11

 volume =

 1.0e+003 *

 0 0.2827 1.1310 2.5447 4.5239
 0 0.3393 1.3572 3.0536 5.4287
 0 0.3958 1.5834 3.5626 6.3335
 0 0.4524 1.8096 4.0715 7.2382
 0 0.5089 2.0358 4.5804 8.1430
 0 0.5655 2.2619 5.0894 9.0478

 Practice Exercises 4.3
 1. zeros(3)

 ans =

 0 0 0
 0 0 0
 0 0 0

 2. zeros(3,4)

 ans =
 0 0 0 0
 0 0 0 0
 0 0 0 0

 3. ones(3)

 ans =

 1 1 1
 1 1 1
 1 1 1

 4. ones(5,3)

 ans =

 1 1 1
 1 1 1
 1 1 1
 1 1 1
 1 1 1

 5. ones(4,6)*pi

 ans =

 3.1416 3.1416 3.1416 3.1416 3.1416 3.1416
 3.1416 3.1416 3.1416 3.1416 3.1416 3.1416
 3.1416 3.1416 3.1416 3.1416 3.1416 3.1416
 3.1416 3.1416 3.1416 3.1416 3.1416 3.1416

 6. x = [1,2,3];

 diag(x)

 ans =

 1 0 0
 0 2 0
 0 0 3

D-12 Appendix D

 7. x = magic(10)

 x =

 92 99 1 8 15 67 74 51 58 40
 98 80 7 14 16 73 55 57 64 41
 4 81 88 20 22 54 56 63 70 47
 85 87 19 21 3 60 62 69 71 28
 86 93 25 2 9 61 68 75 52 34
 17 24 76 83 90 42 49 26 33 65
 23 5 82 89 91 48 30 32 39 66
 79 6 13 95 97 29 31 38 45 72
 10 12 94 96 78 35 37 44 46 53
 11 18 100 77 84 36 43 50 27 59

 a. diag(x)

 ans =
92 80 88 21 9 42 30 38 46 59

 b. diag(fliplr(x))

 ans =
40 64 63 62 61 90 89 13 12 11

 c. sum(x)

 ans =

 505 505 505 505 505 505 505 505 505 505

 sum(x')

 ans =

 505 505 505 505 505 505 505 505 505 505

 sum(diag(x))

 ans =

 505

 sum(diag(fliplr(x)))

 ans =

 505

 Practice Exercises 5.1
 1. clear,clc

 x = 0:0.1*pi:2*pi;

 y = sin(x);

 plot(x,y)

0 1 2 3 4 5 6 7
1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1
Sinusoidal Curve

x values

si
n(

x)

Solutions to Practice Exercises D-13

 4. figure(3)

 plot(x,y1,'-- r',

 x,y2,': g')

 title('Sine and Cosine

 Plots')

 xlabel('x values')

 ylabel('y values')

 2. title('Sinusoidal Curve')

 xlabel('x values')

 ylabel('sin(x)')

0 1 2 3 4 5 6 7
1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1
Sinusoidal Curve

x values

si
n(

x)

 3. figure(2)

 y1 = sin(x);

 y2 = cos(x);

 plot(x,y1,x,y2)

 title('Sine and

 Cosine Plots')

 xlabel('x values')

 ylabel('y values')

0 1 2 3 4 5 6 7
1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1
Sine and Cosine Plots

x values

y
va

lu
es

0 1 2 3 4 5 6 7
1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1
Sine and Cosine Plots

x values

y
va

lu
es

0 1 2 3 4 5 6 7
1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1
Sine and Cosine Plots

x values

y
va

lu
es

sin(x)
cos(x)

 5. legend('sin(x)','cos(x)')

D-14 Appendix D

 Practice Exercises 5.2
 1. subplot(2,1,1)

 2. x = -1.5:0.1:1.5;

 y = tan(x);

 plot(x,y)

 3. title('Tangent(x)')

 xlabel('x value')

 ylabel('y value')

 4. subplot(2,1,2)

 y = sinh(x);
 plot(x,y)

 5. title('Hyperbolic

 sine of x')
 xlabel('x value')
 ylabel('y value')

 6. figure(2)

 subplot(1,2,1)
 plot(x,y)
 title('Tangent(x)')
 xlabel('x value')
 ylabel('y value')
 subplot(1,2,2)
 y = sinh(x);

 6. axis([-1,2*pi+1,

 -1.5,1.5])

 7. figure(4)

 a = cos(x);

 plot(a)

 A line graph is created, with a plot-

ted against the vector index number.

1 0 1 2 3 4 5 6 7
1.5

1

0.5

0

0.5

1

1.5
Sine and Cosine Plots

x values

y
va

lu
es

sin(x)
cos(x)

0 5 10 15 20 25
1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

1.5 1 0.5 0 0.5 1 1.5
20

0

20

x value

y
va

lu
e

Tangent(x)

1.5 1 0.5 0 0.5 1 1.5
5

0

5

x value

y
va

lu
e

Hyperbolic sine of x

Solutions to Practice Exercises D-15

 Practice Exercises 5.3
 1. theta = 0:0.01*pi:2*pi;

 r = 5*cos(4*theta);

 polar(theta,r)

 plot(x,y)
 title('Hyperbolic

 sine of x')

 xlabel('x value')
 ylabel('y value')

2 0 2
3

2

1

0

1

2

3
Tangent(x)

x value

y
va

lu
e

2 0 2
3

2

1

0

1

2

3
Hyperbolic sine of x

x value

y
va

lu
e

 1

 2

 3

 4

 5

30

210

60

240

90

270

120

300

150

330

180 0

 2. hold on

 r = 4*cos(6*theta);

 polar(theta,r)

 title('Flower Power')

 1

 2

 3

 4

 5

30

210

60

240

90
Flower Power

270

120

300

150

330

180 0

D-16 Appendix D

 4. figure(3)

 r = sqrt(5^2*cos(2*theta));

 polar(theta3,r)

 3. figure(2)

 r = 5-5*sin(theta);

 polar(theta,r)

 2

 4

 6

 8

 10

30

210

60

240

90

270

120

300

150

330

180 0

 1

 2

 3

 4

 5

30

210

60

240

90

270

120

300

150

330

180 0

 5. figure(4)

 theta = pi/2:4/5*pi:4.8*pi;

 r = ones(1,6);

 polar(theta,r)

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

Solutions to Practice Exercises D-17

 Practice Exercises 5.4
 1. figure(1)

 x = -1:0.1:1;

 y = 5*x+3;

 subplot(2,2,1)

 plot(x,y)

 title('Rectangular Coordinates')

 ylabel('y-axis')

 grid on

 subplot(2,2,2)

 semilogx(x,y)

 title('Semilog x Coordinate System')

 grid on

 subplot(2,2,3)

 semilogy(x,y)

 title('Semilog y Coordinate System')

 ylabel('y-axis')

 xlabel('x-axis')

 grid on

 subplot(2,2,4)

 loglog(x,y)

 title('Log Plot')

 xlabel('x-axis')

 grid on

1 0.5 0 0.5 1
2

0

2

4

6

8
Rectangular Coordinates

y-
ax

is

10 1 100

10 1 100

3

4

5

6

7

8
Semilog x Coordinate System

0.5 0 0.5 1

100 100

Semilog y Coordinate System

y-
ax

is

x-axis

Log Plot

x-axis

 2. figure(2)

 x = -1:0.1:1;

 y = 3*x.^2;

D-18 Appendix D

 subplot(2,2,1)

 plot(x,y)

 title('Rectangular Coordinates')

 ylabel('y-axis')

 grid on

 subplot(2,2,2)

 semilogx(x,y)

 title('Semilog x Coordinate System')

 grid on

 subplot(2,2,3)

 semilogy(x,y)

 title('Semilog y Coordinate System')

 ylabel('y-axis')

 xlabel('x-axis')

 grid on

 subplot(2,2,4)

 loglog(x,y)

 title('Log Plot')

 xlabel('x-axis')

 grid on

1 0.5 0 0.5 1
0

1

2

3
Rectangular Coordinates

y-
ax

is

10 1 100
0

1

2

3
Semilog x Coordinate System

1 0.5 0 0.5 1
10 2

10 1

10 1 100

100

101

10 2

10 1

100

101

y-
ax

is

x-axis

Log Plot

x-axis

 3. figure(3)

 x = -1:0.1:1;

 y = 12*exp(x+2);

 subplot(2,2,1)

 plot(x,y)

 title('Rectangular Coordinates')

 ylabel('y-axis')

Solutions to Practice Exercises D-19

 4. figure(4)

 x = -1:0.01:1;

 y = 1./x;

 subplot(2,2,1)

 plot(x,y)

 title('Rectangular Coordinates')

 ylabel('y-axis')

 grid on

 grid on

 subplot(2,2,2)

 semilogx(x,y)

 title('Semilog x Coordinate System')

 grid on

 subplot(2,2,3)

 semilogy(x,y)

 title('Semilog y Coordinate System')

 ylabel('y-axis')

 xlabel('x-axis')

 grid on

 subplot(2,2,4)

 loglog(x,y)

 title('Log Plot')

 xlabel('x-axis')

 grid on

1 0.5 0 0.5 1
0

50

100

150

200

250
Rectangular Coordinates

y-
ax

is

10 1 100
50

100

150

200

250
Semilog x Coordinate System

1 0.5 0 0.5 1 10 1 100
101

102

103

101

102

103
Semilog y Coordinate System

y-
ax

is

x-axis

Log Plot

x-axis

D-20 Appendix D

 Practice Exercises 5.5
 1. fplot('5*t^2',[-3,+3])

 title('5*t^2')

 xlabel('x-axis')

 ylabel('y-axis')

 subplot(2,2,2)

 semilogx(x,y)

 title('Semilog x Coordinate System')

 grid on

 subplot(2,2,3)

 semilogy(x,y)

 title('Semilog y Coordinate System')

 ylabel('y-axis')

 xlabel('x-axis')

 grid on

 subplot(2,2,4)

 loglog(x,y)

 title('Log Plot')

 xlabel('x-axis')

 grid on

1 0.5 0 0.5 1
100

50

0

50

100
Rectangular Coordinates

y-
ax

is

10 2 10 1 100
0

20

40

60

80

100
Semilog x Coordinate System

10 1 1000 0.5 1

Semilog y Coordinate System

y-
ax

is

x-axis
10 2

100

101

102

100

101

102
Log Plot

x-axis

2 0 2
0

20

40

60
5*t2

x-axis

y-
ax

is

Solutions to Practice Exercises D-21

 3. fplot('t*exp(t)',[0,10])

 title('t*exp(t)')

 xlabel('x-axis')

 ylabel('y-axis')

 2. fplot('5*sin(t)^2 +
t*cos(t)^2',[-2*pi,2*pi])

 title('5*sin(t)^2 +

 t*cos(t)^2')

 xlabel('x-axis')

 ylabel('y-axis')

5 0 5
10

5

0

5

10
5*sin(t)2 t*cos(t)2

x-axis

y-
ax

is

 4. fplot('log(t)+ sin(t)',[0,pi])

 title('log(t)+sin(t)')

 xlabel('x-axis')

 ylabel('y-axis')

0 2 4 6 8 10
0

1

2

3
x 105 t*exp(t)

x-axis

y-
ax

is

0 1 2 3
6

4

2

0

2
log(t) sin(t)

x-axis

y-
ax

is

 Practice Exercises 6.1
 Store these functions as separate M-Files. The name of the function must be the

same as the name of the M-File. You’ll need to call these functions either from

the command window or from a script M-File. You can’t run a function M-File by

itself.

 1. function output = quadratic(x)

 output = x.^2;

 2. function output = one_over(x)

 output = exp(1./x);

 3. function output = sin_x_squared(x)

 output = sin(x.^2);

 4. function result = in_to_ft(x)

 result = x./12;

D-22 Appendix D

 5. function result = cal_to_joules(x)

 result = 4.2.*x;

 6. function output = Watts_to_Btu_per_hour(x)

 output = x.*3.412;

 7. function output = meters_to_miles(x)

 output = x./1000.*.6214;

 8. function output = mph_to_fps(x)

 output = x.*5280/3600;

 Practice Exercises 6.2
 Store these functions as separate M-Files. The name of the function must be the

same as the name of the M-File.

 1. function output = z1(x,y)

 % summation of x and y
 % the matrix dimensions must agree
 output = x+y;

 2. function output = z2(a,b,c)

 % finds a.*b.^c
 % the matrix dimensions must agree
 output = a.*b.^c;

 3. function output = z3(w,x,y)

 % finds w.*exp(x./y)
 % the matrix dimensions must agree
 output = w.*exp(x./y);

 4. function output = z4(p,t)

 % finds p./sin(t)
 % the matrix dimensions must agree
 output = p./sin(t);

 5. function [a,b]=f5(x)

 a = cos(x);
 b = sin(x);

 6. function [a,b] = f6(x)

 a = 5.*x.^2 + 2;
 b = sqrt(5.*x.^2 + 2);

 7. function [a,b] = f7(x)

 a = exp(x);
 b = log(x);

 8. function [a,b] = f8(x,y)

 a = x+y;
 b = x-y;

 9. function [a,b] = f9(x,y)

 a = y.*exp(x);
 b = x.*exp(y);

 Practice Exercises 7.1
 1. b = input('Enter the length of the base of the triangle: ');

 h = input('Enter the height of the triangle: ');

Solutions to Practice Exercises D-23

 Area = 1/2*b*h

 When this fi le runs, it generates the following interaction in the command

 window:

 Enter the length of the base of the triangle: 5

 Enter the height of the triangle: 4

 Area =

 10

 2. r = input('Enter the radius of the cylinder: ');

 h = input('Enter the height of the cylinder: ');

 Volume = pi*r.^2*h

 When this fi le runs, it generates the following interaction in the command

window:

 Enter the radius of the cylinder: 2

 Enter the height of the cylinder: 3

 Volume =

 37.6991

 3. n = input('Enter a value of n: ')

 vector = 0:n

 When this fi le runs, it generates the following interaction in the command

 window:

 Enter a value of n: 3

 n =

 3

 vector =

 0 1 2 3

 4. a = input('Enter the starting value: ');

 b = input('Enter the ending value: ');

 c = input('Enter the vector spacing: ');

 vector = a:c:b

 When this fi le runs, it generates the following interaction in the command

 window:

 Enter the starting value: 0

 Enter the ending value: 6

 Enter the vector spacing: 2

 vector =

 0 2 4 6

 Practice Exercises 7.2
 1. disp('Inches to Feet Conversion Table')

 2. disp(' Inches Feet')

 3. inches = 0:10:120;

 feet = inches./12;

 table = [inches; feet];

 fprintf(' %8.0f %8.2f \n',table)

D-24 Appendix D

 The resulting display in the command window is

 Inches to Feet Conversion Table

 Inches Feet

 0 0.00

 10 0.83

 20 1.67

 … …

 … …

 … …

 100 8.33

 110 9.17

 120 10.00

 Practice Exercises 8.1
 Use these arrays in the exercises.

 x = [1 10 42 6

 5 8 78 23

 56 45 9 13

 23 22 8 9];

 y = [1 2 3; 4 10 12; 7 21 27];

 z = [10 22 5 13];

 1. elements_x = find(x>10)

 elements_y = find(y>10)

 elements_z = find(z>10)

 2. [rows_x, cols_x] = find(x>10)

 [rows_y, cols_y] = find(y>10)

 [rows_z, cols_z] = find(z>10)

 3. x(elements_x)

 y(elements_y)

 z(elements_z)

 4. elements_x = find(x>10 & x< 40)

 elements_y = find(y>10 & y< 40)

 elements_z = find(z>10 & z< 40)

 5. [rows_x, cols_x] = find(x>10 & x<40)

 [rows_y, cols_y] = find(y>10 & y<40)

 [rows_z, cols_z] = find(z>10 & z<40)

 6. x(elements_x)

 y(elements_y)

 z(elements_z)

 7. elements_x = find((x>0 & x<10) | (x>70 & x<80))

 elements_y = find((y>0 & y<10) | (y>70 & y<80))

 elements_z = find((z>0 & z<10) | (z>70 & z<80))

 8. length_x = length(find((x>0 & x<10) | (x>70 & x<80)))

 length_y = length(find((y>0 & y<10) | (y>70 & y<80)))

 length_z = length(find((z>0 & z<10) | (z>70 & z<80)))

Solutions to Practice Exercises D-25

 Practice Exercises 8.2
 1. function output = drink(x)

 if x> = 21

 output = 'You can drink';

 else

 output = 'Wait ''till you"re older';

 end

 Test your function with the following from the command window or a script

M-File:

 drink(22)

 drink(18)

 2. function output = tall(x)

 if x> = 48

 output = 'You may ride';

 else

 output = 'You''re too short';

 end

 Test your function with the following:

 tall(50)

 tall(46)

 3. function output = spec(x)

 if x> = 5.3 & x< = 5.5

 output = ' in spec';

 else

 output = ' out of spec';

 end

 Test your function with the following:

 spec(5.6)
 spec(5.45)
 spec(5.2)

 4. function output = metric_spec(x)

 if x> = 5.3/2.54 & x< = 5.5/2.54

 output = ' in spec';

 else

 output = ' out of spec';

 end

 Test your function with the following:

 metric_spec(2)
 metric_spec(2.2)
 metric_spec(2.4)

 5. function output = flight(x)

 if x> = 0 & x< = 100

 output = 'first stage';

 elseif x< = 170

 output = 'second stage';

 elseif x<260

 output = 'third stage';

 else

 output = 'free flight';

 end

D-26 Appendix D

 Test your function with the following:

 flight(50)

 flight(110)

 flight(200)

 flight(300)

 Practice Exercises 8.3
 1. year = input('Enter the name of your year in school:

','s');

 switch year

 case 'freshman'

 day = 'Monday';

 case 'sophomore'

 day = 'Tuesday';

 case 'junior'

 day = 'Wednesday';

 case 'senior'

 day = 'Thursday’;

 otherwise

 day = 'I don''t know that year';

 end

 disp(['Your finals are on ',day])

 2. disp('What year are you in school?')

 disp('Use the menu box to make your selection ')

 choice = menu('Year in School', 'freshman', 'sophomore',
'junior', 'senior');

 switch choice

 case 1

 day = 'Monday';

 case 2

 day = 'Tuesday';

 case 3

 day = 'Wednesday';

 case 4

 day = 'Thursday';

 end

 disp(['Your finals are on ',day])

 3. num = input('How many candy bars would you like? ');

 switch num

 case 1

 bill = 0.75;

 case 2

 bill = 1.25;

 case 3

 bill = 1.65;

 otherwise

 bill = 1.65 + (num-3)*0.30;

 end

 fprintf('Your bill is %5.2f \n',bill)

Solutions to Practice Exercises D-27

 Practice Exercises 9.1
 1. inches = 0:3:24;

 fo r k = 1:length(inches)

 feet(k) = inches(k)/12;

 end

 table = [inches',feet']

 2. x = [45,23,17,34,85,33];

 count = 0;

 fo r k = 1:length(x)

 if x(k)>30

 count = count+1;

 end

 end

 fprintf('There are %4.0f values greater than 30 \n',count)

 3. num = length(find(x>30));

 fprintf('There are %4.0f values greater than 30 \n',num)

 4. total = 0;

 fo r k = 1:length(x)

 total = total + x(k);

 end

 disp('The total is: ')

 disp(total)

 sum(x)

 5. for k = 1:10

 x(k) = 1/k

 end

 6. for k = 1:10

 x(k)=(-1)^(k+1)/k

 end

 Practice Exercises 9.2
 1. inches = 0:3:24;

 k = 1;

 while k<=length(inches)

 feet(k) = inches(k)/12;

 k = k+1;

 end

 disp(' Inches Feet');

 fprintf(' %8.0f %8.2f \n',[inches;feet])

 2. x = [45,23,17,34,85,33];

 k = 1;

 count = 0;

 while k< = length(x)

 if x(k)> = 30;

 count = count +1;

 end

 k= k+1;

 end

D-28 Appendix D

 fprintf('There are %4.0f values greater than 30 \n',count)

 3. count = length(find(x>30))

 4. k = 1;

 total = 0;

 while k< = length(x)

 total = total + x(k);

 k = k+1;

 end

 disp(total)

 sum(x)

 5. k = 1;

 while(k< = 10)

 x(k) = 1/k;

 k = k+1;

 end

 x

 6. k = 1;

 while(k< = 10)

 x(k)=(-1)^(k+1)/k

 k = k+1;

 end

 x

 Practice Exercises 10.1
 1. A = [1 2 3 4]

 B = [12 20 15 7]

 dot(A,B)

 2. sum(A.*B)

 3. price = [0.99, 1.49, 2.50, 0.99, 1.29];

 num = [4, 3, 1, 2, 2];

 total = dot(price,num)

 Practice Exercises 10.2
 1. A = [2 5; 2 9; 6 5];

 B = [2 5; 2 9; 6 5];

 % These cannot be multiplied because the number of
% columns in A does not equal

 % the number of rows in B

 2. A = [2 5; 2 9; 6 5];

 B = [1 3 12; 5 2 9];

 % Since A is a 3 × 2 matrix and B is a 2 × 3 matrix,

 % they can be multiplied

 A*B

 %However, A*B does not equal B*A

 B*A

 3. A = [5 1 9; 7 2 2];

 B = [8 5; 4 2; 8 9];

 % Since A is a 2 × 3 matrix and B is a 3 × 2 matrix,

Solutions to Practice Exercises D-29

 % they can be multiplied

 A*B

 %However, A*B does not equal B*A

 B*A

 4. A = [1 9 8; 8 4 7; 2 5 3];

 B = [7;1;5]

 % Since A is a 3 × 3 matrix and B is a 3 × 1 matrix,

 % they can be multiplied

 A*B

 % However, B*A won't work

 Practice Exercises 10.3
 1. a. a = magic(3)

 inv(magic(3))

 magic(3)^-1

 b. b = magic(4)

 inv(b)

 b^-1

 c. c = magic(5)

 inv (magic(5))

 magic(5)

 2. det(a)

 det(b)

 det(c)

 3. A = [1 2 3;2 4 6;3 6 9]

 det(A)

 inv(A)

 %Notice that the three lines are just multiples of

 %each other and therefore do not represent
 %independent equations

 Practice Exercises 11.1
 1. A = [1,4,6; 3, 15, 24; 2, 3,4];

 B = single(A)

 C = int8(A)

 D = uint8(A)

 2. E = A+B

 % The result is a single-precision array

 3. x = int8(1)

 y = int8(3)

 result1 = x./y

 % This calculation returns the integer 0

 x = int8(2)

 result2 = x./y

 % This calculation returns the integer 1; it appears

 % that MATLAB rounds the answer

 4. intmax('int8')

 intmax('int16')

D-30 Appendix D

 intmax('int32')

 intmax('int64')

 intmax('uint8')

 intmax('uint16')

 intmax('uint32')

 intmax('uint64')

 5. intmin('int8')

 intmin('int16')

 intmin('int32')

 intmin('int64')

 intmin('uint8')

 intmin('uint16')

 intmin('uint32')

 intmin('uint64')

 Practice Exercises 11.2
 1. name ='Holly'

 2. G = double('g')

 fprintf('The decimal equivalent of the letter g is %5.0f
\n',G)

 3. m = 'MATLAB'

 M = char(double(m)-32)

 Practice Exercises 11.3
 1. a = magic(3)

 b = zeros(3)

 c = ones(3)

 x(:,:,1) = a

 x(:,:,2) = b

 x(:,:,3) = c

 2. x(3,2,1)

 3. x(2,3,:)

 4. x(:,3,:)

 Practice Exercises 11.4

 1. names = char('Mercury','Venus','Earth','Mars','Jupiter',
'Saturn','Uranus','Neptune','Pluto')

 2. R = 'rocky';

 G = 'gas giants';

 type = char(R,R,R,R,G,G,G,G,R)

 3. space =[' ';' ';' ';' ';' ';' ';' ';' ';' '];

 4. table =[names,space,type]

 5. %These data were found at
 %http://sciencepark.etacude.com/astronomy/pluto.php
 %Similar data are found at many websites

 mercury = 3.303e23; % kg

Solutions to Practice Exercises D-31

 venus = 4.869e24; % kg

 earth = 5.976e24; % kg

 mars = 6.421e23; % kg

 jupiter = 1.9e27; % kg

 saturn = 5.69e26; % kg

 uranus = 8.686e25; % kg

 neptune = 1.024e26; % kg

 pluto = 1.27e22 % kg

 mass = [mercury,venus,earth,mars,jupiter, saturn,uranus
,neptune,pluto]';

 newtable = [table,space,num2str(mass)]

 Practice Exercises 12.1
 1. syms x a b c d

 %or

 d = sym('d') %etc

 d =

 d

 2. ex1 = x^2-1

 ex1 =

 x^2-1

 ex2 = (x+1)^2

 ex2 =

 (x+1)^2

 ex3 = a*x^2-1

 ex3 =

 a*x^2-1

 ex4 = a*x^2 + b*x + c

 ex4 =

 a*x^2+b*x+c

 ex5 = a*x^3 + b*x^2 + c*x + d

 ex5 =

 a*x^3+b*x^2+c*x+d

 ex6 = sin(x)

 ex6 =

 sin(x)

 3. EX1 = sym('X^2 - 1 ')

 EX1 =

 X^2 - 1

 EX2 = sym(' (X +1)^2 ')

 EX2 =

 (X +1)^2

 EX3 = sym('A*X ^2 - 1 ')

 EX3 =

 A*X ^2 - 1

 EX4 = sym('A*X ^2 + B*X + C ')

 EX4 =

 A*X ^2 + B*X + C

 EX5 = sym('A*X ^3 + B*X ^2 + C*X + D ')

D-32 Appendix D

 EX5 =

 A*X ^3 + B*X ^2 + C*X + D

 EX6 = sym(' sin(X) ')

 EX6 =

 sin(X)

 4. eq1 = sym(' x^2=1 ')

 eq1 =

 x^2 = 1

 eq2 = sym(' (x+1)^2=0 ')

 eq2 =

 (x+1)^2=0

 eq3 = sym(' a*x^2=1 ')

 eq3 =

 a*x^2=1

 eq4 = sym('a*x^2 + b*x + c = 0 ')

 eq4 =

 a*x^2 + b*x + c = 0

 eq5 = sym('a*x^3 + b*x^2 + c*x + d = 0 ')

 eq5 =

 a*x^3 + b*x^2 + c*x + d = 0

 eq6 = sym('sin(x) = 0 ')

 eq6 =

 sin(x) = 0

 5. EQ1 = sym('X^2 = 1 ')

 EQ1 =

 X^2 = 1

 EQ2 = sym(' (X +1)^2 = 0 ')

 EQ2 =

 (X +1)^2 = 0

 EQ3 = sym('A*X ^2 = 1 ')

 EQ3 =

 A*X ^2 = 1

 EQ4 = sym('A*X ^2 + B*X + C = 0 ')

 EQ4 =

 A*X ^2 + B*X + C = 0

 EQ5 = sym('A*X ^3 + B*X ^2 + C*X + D = 0 ')

 EQ5 =

 A*X ^3 + B*X ^2 + C*X + D = 0

 EQ6 = sym(' sin(X) = 0 ')

 EQ6 =

 sin(X) = 0

 Practice Exercises 12.2
 1. y1 = ex1*ex2

 y1 =

 (x^2-1)*(x+1)^2

 2. y2 = ex1/ex2

 y2 =

 (x^2-1)/(x+1)^2

Solutions to Practice Exercises D-33

 3. [num1,den1] = numden(y1)

 num1 =

 (x^2-1)*(x+1)^2

 den1 =

 1

 [num2,den2] = numden(y2)

 num2 =

 x^2-1

 den2 =

 (x+1)^2

 4. Y1 = EX1*EX2

 Y1 =

 (X^2-1)*(X+1)^2

 5. Y2=EX1/EX2

 Y2 =

 (X^2-1)/(X+1)^2

 6. [NUM1,DEN1] = numden(Y1)

 NUM1 =

 (X^2-1)*(X+1)^2

 DEN1 =

 1

 [NUM2,DEN2] = numden(Y2)

 NUM2 =

 X^2-1

 DEN2 =

 (X+1)^2

 7. %numden(EQ4)

 %The numden function does not apply to equations,

 %only to expressions

 8. a. factor(y1)

 ans =

 (x-1)*(x+1)^3

 expand(y1)

 ans =

 x^4+2*x^3-2*x-1

 collect(y1)

 ans =

 x^4+2*x^3-2*x-1

 b. factor(y2)

 ans =

 (x-1)/(x+1)

 expand(y2)

 ans =

 1/(x+1)^2*x^2-1/(x+1)^2

 collect(y2)

 ans =

 (x^2-1)/(x+1)^2

D-34 Appendix D

 c. factor(Y1)

 ans =

 (X-1)*(X+1)^3

 expand(Y1)

 ans =

 X^4+2*X^3-2*X-1

 collect(Y1)

 ans =

 X^4+2*X^3-2*X-1

 d. factor(Y2)

 ans =

 (X-1)/(X+1)

 expand(Y2)

 ans =

 1/(X+1)^2*X^2-1/(X+1)^2

 collect(Y2)

 ans =

 (X^2-1)/(X+1)^2

 9. factor(ex1)

 ans =

 (x-1)*(x+1)

 expand(ex1)

 ans =

 x^2-1

 collect(ex1)

 ans =

 x^2-1

 factor(eq1)

 ans =

 x^2 = 1

 expand(eq1)

 ans =

 x^2 = 1

 collect(eq1)

 ans =

 x^2 = 1

 %

 factor(ex2)

 ans =

 (x+1)^2

 expand(ex2)

 ans =

 x^2+2*x+1

 collect(ex2)

 ans =

 x^2+2*x+1

Solutions to Practice Exercises D-35

 factor(eq2)

 ans =

 (x+1)^2 = 0

 expand(eq2)

 ans =

 x^2+2*x+1 = 0

 collect(eq2)

 ans =

 x^2+2*x+1 = 0

 Practice Exercises 12.3
 1. solve(ex1)

 ans =

 1

 -1

 solve(EX1)

 ans =

 1

 -1

 solve(eq1)

 ans =

 1

 -1

 solve(EQ1)

 ans =

 1

 -1

 2. solve(ex2)

 ans =

 -1

 -1

 solve(EX2)

 ans =

 -1

 -1

 solve(eq2)

 ans =

 -1

 -1

 solve(EQ2)

 ans =

 -1

 -1

 3. a. A = solve(ex3,x,a)

 Warning: 1 equations in 2 variables.

 A =

 a: [1x1 sym]

 x: [1x1 sym]

 A.a
 ans =

D-36 Appendix D

 1/x^2
 A.x
 ans =
 x
 %or

 [my_a,my_x]=solve(ex3,x,a)
 Warning: 1 equations in 2 variables.
 my_a =
 1/x^2
 my_x =
 x

 b. A = solve(eq3,x,a)

 Warning: 1 equations in 2 variables.

 A =

 a: [1x1 sym]

 x: [1x1 sym]

 A.a
 ans =
 1/x^2
 A.x
 ans =
 x

 4. a. A = solve(EX3,'X','A')

 Warning: 1 equations in 2 variables.
 A =

 A: [1x1 sym]
 X: [1x1 sym]

 A.A
 ans =
 1/X^2
 A.X
 ans =
 X
 %or
 [My_A,My_X]=solve(EX3,'X','A')
 Warning: 1 equations in 2 variables.
 My_A =
 1/X^2
 My_X =
 X

 b. A = solve(EQ3,'X','A')

 Warning: 1 equations in 2 variables.
 A =

 A: [1x1 sym]
 X: [1x1 sym]

 A.A
 ans =
 1/X^2
 A.X

Solutions to Practice Exercises D-37

 ans =
 X

 5. a. A = solve(ex4,x,a)

 Warning: 1 equations in 2 variables.

 A =

 a: [1x1 sym]

 x: [1x1 sym]

 A.a

 ans =

 -(b*x+c)/x^2

 A.x

 ans =

 x

 %or

 [my_a,my_x]=solve(ex4,x,a)

 Warning: 1 equations in 2 variables.

 my_a =

 -(b*x+c)/x^2

 my_x =

 x

 %b

 b. A = solve(eq4,x,a)

 Warning: 1 equations in 2 variables.

 A =

 a: [1x1 sym]

 x: [1x1 sym]

 A.a

 ans =

 -(b*x+c)/x^2

 A.x

 ans =

 x

 6. a. A = solve(EX4,'X','A')

 Warning: 1 equations in 2 variables.

 A =

 A: [1x1 sym]

 X: [1x1 sym]

 A.A

 ans =

 -(B*X+C)/X^2

 A.X

 ans =

 X

 %or

 [My_A,My_X]=solve(EX4,'X','A')

 Warning: 1 equations in 2 variables.

 My_A =

 -(B*X+C)/X^2

 My_X =

 X

D-38 Appendix D

 b. A = solve(EQ4,'X','A')

 Warning: 1 equations in 2 variables.

 A =

 A: [1x1 sym]

 X: [1x1 sym]

 A.A

 ans =

 -(B*X+C)/X^2

 A.X

 ans =

 X

 7. A = solve(ex5,x)

 A =

 1/6/a*(36*c*b*a-108*d*a^2- 8*b^3+12*3^(1/2)*(4*c^3*a-
c^2*b^2-

 18*c*b*a*d+27*d^2*a^2+4*d*b^3)^(1/2)*a)^(1/3)-2/3*(3*c*a-
b^2)/a/(36*c*b*a-108*d*a^2-8*b^3+12*3^(1/2)*
(4*c^3*a-c^2*b^2-18*c*b*a*d+27*d^2*a^2+4*d*b^3)^
(1/2)*a)^(1/3)-1/3*b/a-1/12/a*(36*c*b*a-108*d*a^2-8*
b^3+12*3^(1/2)*(4*c^3*a-c^2*b^2-18*c*b*a*d+27*d^2*a^2+4*d*
b^3)^(1/2)*a)^(1/3)+1/3*(3*c*a-b^2)/a/(36*c*b*a-
108*d*a^2-8*b^3+12*3^(1/2)*(4*c^3*a-c^2*b^2-18*c*b*a*d+
27*d^2*a^2+4*d*b^3)^(1/2)*a)^(1/3)-1/3*b/a+1/2*i*3^(1/2)*
(1/6/a*(36*c*b*a-108*d*a^2-8*b^3+12*3^(1/2)*(4*c^3*a-
c^2*b^2-18*c*b*a*d+27*d^2*a^2+4*d*b^3)^(1/2)*a)^(1/3)+2/3*
(3*c*a-b^2)/a/(36*c*b*a-108*d*a^2-8*b^3+12*3^(1/2)*
(4*c^3*a-c^2*b^2-18*c*b*a*d+27*d^2*a^2+4*d*b^3)^(1/2)*a)^
(1/3))-1/12/a*(36*c*b*a-108*d*a^2-8*b^3+12*3^(1/2)*
(4*c^3*a-c^2*b^2-18*c*b*a*d+27*d^2*a^2+4*d*b^3)^(1/2)*a)^
(1/3)+1/3*(3*c*a-b^2)/a/(36*c*b*a-108*d*a^2-8*b^3+
12*3^(1/2)*(4*c^3*a-c^2*b^2-18*c*b*a*d+27*d^2*a^2+4*d*
b^3)^(1/2)*a)^(1/3)-1/3*b/a-1/2*i*3^(1/2)*(1/6/a*
(36*c*b*a-108*d*a^2-8*b^3+12*3^(1/2)*(4*c^3*a-c^2*b^2-
18*c*b*a*d+27*d^2*a^2+4*d*b^3)^(1/2)*a)^(1/3)+2/3*
(3*c*a-b^2)/a/(36*c*b*a-108*d*a^2-8*b^3+12*3^(1/2)*(4*c^3*
a-c^2*b^2-18*c*b*a*d+27*d^2*a^2+4*d*b^3)^(1/2)*a)^(1/3))

 % Clearly this is too complicated to memorize

 8. solve(ex6)

 ans =

 0

 solve(EX6)

 ans =

 0

 solve(eq6)

 ans =

 0

 solve(EQ6)

 ans =

 0

Solutions to Practice Exercises D-39

 Practice Exercises 12.4
 1. coef = [5 6 -3; 3 -3 2; 2 -4 -12];

 result =[10; 14; 24];

 x = inv(coef)*result

 % or

 x = coef\result

 x =

 3.5314

 -1.6987

 -0.8452

 2. syms x y z

 A1 = sym('5*x + 6*y - 3*z = 10');

 A2 = sym('3*x - 3*y + 2*z = 14');

 A3 = sym('2*x - 4*y -12*z = 24');

 A = solve(A1,A2,A3)

 A =

 x: [1x1 sym]

 y: [1x1 sym]

 z: [1x1 sym]

 3. A.x

 ans =

 844/239

 A.y

 ans =

 -406/239

 A.z

 ans =

 -202/239

 double(A.x)

 ans =

 3.5314

 double(A.y)

 ans =

 -1.6987

 double(A.z)

 ans =

 -0.8452

 4. [x,y,z] = solve(A1,A2,A3)

 x =

 844/239

 y =

 -406/239

 z =

 -202/239

 5. syms x y z

 A1 = sym('5.0*x + 6.0*y - 3.0*z = 10.0');

 A2 = sym('3.0*x - 3.0*y + 2.0*z = 14.0');

 A3 = sym('2.0*x - 4.0*y -12.0*z = 24.0');

 A = solve(A1,A2,A3)

D-40 Appendix D

 A =

 x: [1x1 sym]

 y: [1x1 sym]

 z: [1x1 sym]

 A.x

 ans =

 3.5313807531380753138075313807531

 A.y

 ans =

 -1.6987447698744769874476987447699

 A.z

 ans =

 -.84518828451882845188284518828452

 6. A = sym('x^2 +5*y -3*z^3=15');

 B = sym('4*x + y^2 -z = 10');

 C = sym('x + y + z =15');

 [X,Y,Z]=solve(A,B,C)

 X =

 11.560291920108418818149999909102-

 11.183481663794727000635376340336*i

 … lots more numbers-

 Y =

 3.5094002752389020636845577121798+6.973288332460366414350
1389722123*i

 … lots more numbers

 Z =

 -.696921953473208818345576212814e-1+4.2101933313343605862
852373681236*i

 … lots more numbers

 double(X)

 ans =

 11.5603 -11.1835i

 10.2173 - 4.7227i

 16.8891 - 4.2178i

 16.8891 + 4.2178i

 10.2173 + 4.7227i

 11.5603 +11.1835i

 double(Y)

 ans =

 3.5094 + 6.9733i

 1.6407 + 5.5153i

 0.8499 + 7.8114i

 0.8499 - 7.8114i

 1.6407 - 5.5153i

 3.5094 - 6.9733i

 double(Z)

 ans =

 -0.0697 + 4.2102i

 3.1420 - 0.7926i

 -2.7390 - 3.5936i

Solutions to Practice Exercises D-41

 -2.7390 + 3.5936i

 3.1420 + 0.7926i

 -0.0697 - 4.2102i

 Practice Exercises 12.5
 1. eq1

 eq1 =

 x^2 = 1

 subs(eq1,x,4)

 ans =

 16 = 1

 ex1

 ex1 =

 x^2-1

 subs(ex1,x,4)

 ans =

 15

 EQ1

 EQ1 =

 X^2 = 1

 subs(EQ1,'X',4)

 ans =

 16 = 1

 EX1

 EX1 =

 X^2 - 1

 subs(EX1,'X',4)

 ans =

 15

 % etc

 2. v = 0:2:10;

 subs(ex1,x,v)

 ans =

 -1 3 15 35 63 99

 subs(EX1,'X',v)

 ans =

 -1 3 15 35 63 99

 %subs(eq1,x,v)

 %subs(EQ1,'X',v)

 % You can’t substitute a vector into an equation

 3. new_ex1 = subs(ex1,{a,b,c},{3,4,5})

 new_ex1 =

 x^2-1

 subs(new_ex1,x,1:0.5:5)

 ans =

 Columns 1 through 5

 0 1.2500 3.0000 5.2500 8.0000

 Columns 6 through 9

 11.2500 15.0000 19.2500 24.0000

 new_EX1 = subs(EX1,{'A','B','C'},{3,4,5})

D-42 Appendix D

 new_EX1 =

 X^2-1

 subs(new_EX1,'X',1:0.5:5)

 ans =

 Columns 1 through 5

 0 1.2500 3.0000 5.2500 8.0000

 Columns 6 through 9

 11.2500 15.0000 19.2500 24.0000

 %

 new_eq1 = subs(eq1,{a,b,c},{3,4,5})

 new_eq1 =

 x^2 = 1

 %subs(new_eq1,x,1:0.5:5) % won’t work because it’s an

 %equation

 new_EQ1 = subs(EQ1,{'A','B','C'},{3,4,5})

 new_EQ1 =

 X^2=1

 Practice Exercises 12.6
 1. ezplot(ex1)

 title('Problem 1')

 xlabel('x')

 ylabel('y')

 2. ezplot(EX1)

 title('Problem 2')

 xlabel('x')

 ylabel('y')

5 0 5

0

10

20

30

40

x

Problem 1

y

5 0 5

0

10

20

30

40

x

Problem 2
y

 3. ezplot(ex2,[-10,10])

 title('Problem 3')

 xlabel('x')

 ylabel('y')

10 5 0 5 10

0

50

100

x

Problem 3

y

Solutions to Practice Exercises D-43

 5. Equations with only one variable have a single valid value of x ; there are no x - y
pairs.

 6. ezplot(ex6)

 title('Problem 6')

 xlabel('x')

 ylabel('y')

 4. ezplot(EX2,[-10,10])

 title('Problem 4')

 xlabel('x')

 ylabel('y')

10 5 0 5 10

0

50

100

x

Problem 4

y
5 0 5

1

0.5

0

0.5

1

x

Problem 6

y

5 0 5

1

0.5

0

0.5

1

x

Problem 6

y

 7. ezplot('cos(x)')

 title('Problem 7')

 xlabel('x')

 ylabel('y')

 8. ezplot('x^2-y^4 = 5')

 title('Problem 8')

 xlabel('x')

 ylabel('y')

5 0 5

5

0

5

x

y

Problem 8

D-44 Appendix D

 9. ezplot('sin(x)')

 hold on

 ezplot('cos(x)')

 hold off

 title('Problem 9')

 xlabel('x')

 ylabel('y')

5 0 5

1

0.5

0

0.5

1

x

Problem 9

y

5 0 5

2

1

0

1

2

3

x
y

Problem 10 10. ezplot('sin(t)',
'3*cos(t)')

 axis equal

 title('Problem 10')

 xlabel('x')

 ylabel('y')

 Practice Exercises 12.7

 Z=sym('sin(sqrt

(X^2+Y^2))')

 Z =

 sin(sqrt(X^2+Y^2))

 1. ezmesh(Z)

 title('Problem 1')

 xlabel('x')

 ylabel('y')

 zlabel('z')

1

0

5
5

5 5

0 0

1

xy

Problem 1

z

 2. ezmeshc(Z)

 title('Problem 2')

 xlabel('x')

 ylabel('y')

 zlabel('z')

1

0

5
5

5 5

0 0

1

xy

Problem 2

z

Solutions to Practice Exercises D-45

 3. ezsurf(Z)

 title('Problem 3')

 xlabel('x')

 ylabel('y')

 zlabel('z')

1

0

5
5

5 5

0 0

1

xy

Problem 3

z

 4. ezsurfc(Z)

 title('Problem 4')

 xlabel('x')

 ylabel('y')

 zlabel('z')

1

0

5
5

5 5

0 0

1

xy

Problem 4

z

x

y

Problem 5

5 0 5

5

0

5

 5. ezcontour(Z)

 title('Problem 5')

 xlabel('x')

 ylabel('y')

 zlabel('z')

x

y

Problem 6

5 0 5

5

0

5

 6. ezcontourf(Z)

 title('Problem 6')

 xlabel('x')

 ylabel('y')

 zlabel('z')

D-46 Appendix D

 8. t = sym('t');

 x = t;
 y = sin(t);
 z = cos(t);
 ezplot3(x,y,z,[0,30])
 title('Problem 8')
 xlabel('x')
 ylabel('y')
 zlabel('z')

 Practice Exercises 12.8
 1. diff('x^2+x+1')

 ans =

 2*x+1

 diff('sin(x)')

 ans =

 cos(x) % or define x as symbolic

 x = sym('x')

 x =

 x

 diff(tan(x))

 ans =

 1+tan(x)^2

 diff(log(x))

 ans =

 1/x

 2. diff('a*x^2 + b*x + c')

 ans =

 2*a*x+b

 diff('x^0.5 - 3*y')

 ans =

 .5/x^.5

 diff('tan(x+y)')

 ans =

 1+tan(x+y)^2

 diff('3*x + 4*y - 3*x*y')

 ans =

 3-3*y

 7. figure(7)

 ezpolar('x*sin(x)')

 title('Problem 7')
 2.5

 5

30

210

60

240

90

270

120

300

150

330

0081

Problem 7

r x sin(x)

0
10

20
30

1

0

1
1

0

1

x

Problem 8

y
z

Solutions to Practice Exercises D-47

 3. % There are several different approaches

 diff(diff('a*x^2 + b*x + c'))

 ans =

 2*a

 diff('x^0.5 - 3*y',2)

 ans =

 -.25/x^1.5

 diff('tan(x + y)','x',2)

 ans =

 2*tan(x+y)*(1+tan(x+y)^2)

 diff(diff('3*x + 4*y - 3*x*y','x'))

 ans =

 -3

 4. diff('y^2 - 1','y')

 ans =

 2*y

 % or , since there is only one variable

 diff('y^2 - 1')

 ans =

 2*y

 %

 diff('2*y + 3*x^2','y')

 ans =

 2

 diff('a*y + b*x + c*x','y')

 ans =

 a

 5. diff('y^2-1','y',2)

 ans =

 2

 % or , since there is only one variable

 diff('y^2-1',2)

 ans =

 2

 %

 diff(diff('2*y + 3*x^2','y'),'y')

 ans =

 0

 diff('a*y + b*x + c*x','y',2)

 ans =

 0

 Practice Exercises 12.9
 1. int('x^2 + x + 1')

 ans =

 1/3*x^3+1/2*x^2+x

 % or define x as symbolic

 x = sym('x')

 x =

 x

D-48 Appendix D

 int(x^2 + x + 1)

 ans =

 1/3*x^3+1/2*x^2+x

 int(sin(x))

 ans =

 -cos(x)

 int(tan(x))

 ans =

 -log(cos(x))

 int(log(x))

 ans =

 x*log(x)-x

 2. % you don’t need to specify that integration is with

 % respect to x, because it is the default

 int('a*x^2 + b*x + c')

 ans =

 1/3*a*x^3+1/2*b*x^2+c*x

 int('x^0.5 - 3*y')

 ans =

 .66666666666666666666666666666667*x^(3/2)-3.*x*y

 int('tan(x+y)')

 ans =

 1/2*log(1+tan(x+y)^2)

 int('3*x + 4*y - 3*x*y')

 ans =

 3/2*x^2+4*x*y-3/2*y*x^2

 3. int(int(x^2 + x + 1))

 ans =

 1/12*x^4+1/6*x^3+1/2*x^2

 int(int(sin(x)))

 ans =

 -sin(x)

 int(int(tan(x)))

 ans =

 -1/2*i*x^2-x*log(cos(x))+x*log(1+exp(2*i*x))-
1/2*i*polylog(2,-exp(2*i*x))

 int(int(log(x)))

 ans =

 1/2*x^2*log(x)-3/4*x^2

 int(int('a*x^2 + b*x + c'))

 ans =

 1/12*a*x^4+1/6*b*x^3+1/2*c*x^2

 int(int('x^0.5 - 3*y'))

 ans =

 .26666666666666666666666666666667*x^(5/2)-

 1.5000000000000000000000000000000*y*x^2

 int(int('tan(x+y)'))

 ans =

 -1/4*i*log(tan(x+y)-i)*log(1+tan(x+y)^2)+1/4*i*dilog(-

 1/2*i*(tan(x+y)+i))+1/4*i*log(tan(x+y)-i)*log(-

Solutions to Practice Exercises D-49

 1/2*i*(tan(x+y)+i))+1/8*i*log(tan(x+y)-

 i)^2+1/4*i*log(tan(x+y)+i)*log(1+tan(x+y)^2)-

 1/4*i*dilog(1/2*i*(tan(x+y)-i))-

 1/4*i*log(tan(x+y)+i)*log(1/2*i*(tan(x+y)-i))-

 1/8*i*log(tan(x+y)+i)^2

 int(int('3*x + 4*y -3*x*y'))

 ans =

 1/2*x^3+2*y*x^2-1/2*y*x^3

 4. int('y^2-1')

 ans =

 1/3*y^3-y

 int('2*y+3*x^2','y')

 ans =

 y^2+3*y*x^2

 int('a*y + b*x + c*z','y')

 ans =

 1/2*a*y^2+b*x*y+c*z*y

 5. int(int('y^2-1'))

 ans =

 1/12*y^4-1/2*y^2

 int(int('2*y+3*x^2','y'),'y')

 ans =

 1/3*y^3+3/2*x^2*y^2

 int(int('a*y + b*x + c*z','y'),'y')

 ans =

 1/6*a*y^3+1/2*b*x*y^2+1/2*c*z*y^2

 6. int(x^2 + x + 1,0,5)

 ans =

 355/6

 int(sin(x),0,5)

 ans =

 -cos(5)+1

 int(tan(x),0,5)

 ans =

 NaN

 int(log(x),0,5)

 ans =

 5*log(5)-5

 Practice Exercises 13.1
 1. plot(x,y,'-o')

 title('Problem 1')

 xlabel('x-data')

 ylabel('y-data')

 grid on

0 20 40 60 80 100
0

100

200

300
Problem 1

x-data

y-
da

ta

D-50 Appendix D

 2. interp1(x,y,15)

 ans =

 34

 3. interp1(x,y,15,'spline')

 ans =

 35.9547

 4. interp1(y,x,80)

 ans =

 39.0909

 5. interp1(y,x,80,'spline')

 ans =

 39.2238

 6. new_x = 10:2:100;

 new_y = interp1(x,y,new_x,'spline');

 figure(2)

 7. plot(x,y,'o',new_x,new_y)

 legend('measured data','spline interpolation')

 title('Problem 6 and 7')

 xlabel('x-data')

 ylabel('y-data')

 Practice Exercises 13.2

 y = 10:10:100';

 x = [15, 30];

 z = [23 33

 45 55

 60 70

 82 92

 111 121

 140 150

 167 177

 198 198

 200 210

 220 230];

 1. plot(y,z,'-o')

 title('Problem 1')

 xlabel('y-data')

 ylabel('z-data')

 legend('x=15','x=30')

0 20 40 60 80 100
0

100

200

300

x-data

y-
da

ta

Problem 6

measured data

spline interpolation

0 20 40 60 80 100
0

50

100

150

200

250
Problem 1

y-data

z-
da

ta

x 15

x 30

Solutions to Practice Exercises D-51

 2. new_z = interp2(x,y,z,15,20)

 new_z =

 45

 3. new_z = interp2(x,y,z,15,20,'spline')

 new_z =

 45

 4. new_z = interp2(x,y,z,[20,25],y')

 new_z =

 26.3333 29.6667

 48.3333 51.6667

 63.3333 66.6667

 85.3333 88.6667

 114.3333 117.6667

 143.3333 146.6667

 170.3333 173.6667

 198.0000 198.0000

 203.3333 206.6667

 223.3333 226.6667

 Practice Exercises 13.3
 x = [10:10:100];

 y = [23 33

 45 55

 60 70

 82 92

 111 121

 140 150

 167 177

 198 198

 200 210

 220 230]';

 1. coef = polyfit(x,y(1,:),1)

 coef =

 2.3224 -3.1333

 2. new_x = 10:2:100;

 new_y = polyval(coef,new_x)

 new_y =

 Columns 1 through 6

 20.0909 24.7358 29.3806 34.0255 38.6703 43.3152

 Columns 7 through 12

 47.9600 52.6048 57.2497 61.8945 66.5394 71.1842

 Columns 13 through 18

 75.8291 80.4739 85.1188 89.7636 94.4085 99.0533

 Columns 19 through 24

 103.6982 108.3430 112.9879 117.6327 122.2776 126.9224

D-52 Appendix D

 Columns 25 through 30

 131.5673 136.2121 140.8570 145.5018 150.1467 154.7915

 Columns 31 through 36

 159.4364 164.0812 168.7261 173.3709 178.0158 182.6606

 Columns 37 through 42

 187.3055 191.9503 196.5952 201.2400 205.8848 210.5297

 Columns 43 through 46

 215.1745 219.8194 224.4642 229.1091

 3. figure(1)

 plot(x,y(1,:),'o',new_x,new_y)

 title('Problem 3 - Linear Regression Model - z = 15')

 xlabel('x-axis')

 ylabel('y-axis')

0 20 40 60 80 100
0

100

200

300
Problem 3 - Linear Regression Model - z 15

x-axis

y-
ax

is

0 20 40 60 80 100
0

100

200

300
Problem 4 - Linear Regression Model - z 30

x-axis

y-
ax

is
 4. figure(2)

 coef2 = polyfit(x,y(2,:),1)

 coef2 =

 2.2921 7.5333

 new_y2 = polyval(coef2,new_x);

 plot(x,y(2,:),'o',new_x,new_y2)

 title('Problem 4 - Linear Regression Model -
z = 30')

 xlabel('x-axis')

 ylabel('y-axis')

 Practice Exercises 13.4
 1. x = -5:1:5;

 y1 = x.^3 + 2.*x.^2 - x + 3;

 dy_dx1 = diff(y1)./diff(x)

 dy_dx =

 42 22 8 0 -2 2 12 28 50 78

 dy_dx_analytical1=3*x.^2 + 4*x -1

Solutions to Practice Exercises D-53

 dy_dx_analytical =

 54 31 14 3 -2 -1 6 19 38 63 94

 table = [[dy_dx1,NaN]',dy_dx_analytical1']

 table =

 42 54

 22 31

 8 14

 0 3

 -2 -2

 2 -1

 12 6

 28 19

 50 38

 78 63

 NaN 94

 % We added NaN to the dy_dx vector so that the length

 % of each vector would be the same

 2. a. x = -5:1:5;

 y2a = sin(x);

 dy_dx2a = diff(y2a)./diff(x);

 dy_dx_analytical2a=cos(x);

 table = [[dy_dx2a,NaN]',dy_dx_analytical2a']

 table =

 -0.2021 0.2837

 -0.8979 -0.6536

 -0.7682 -0.9900

 0.0678 -0.4161

 0.8415 0.5403

 0.8415 1.0000

 0.0678 0.5403

 -0.7682 -0.4161

 -0.8979 -0.9900

 -0.2021 -0.6536

 NaN 0.2837

 b. x = -5:1:5;

 y2b = x.^5-1;

 dy_dx=diff(y2b)./diff(x);

 dy_dx_analytical2b = 5*x.^4;

 table = [[dy_dx2b,NaN]',dy_dx_analytical2b']

 table =

 2101 3125

 781 1280

 211 405

 31 80

D-54 Appendix D

 1 5

 1 0

 31 5

 211 80

 781 405

 2101 1280

 NaN 3125

 c. x = -5:1:5;

 y2c = 5*x.*exp(x);

 dy_dx2c = diff(y2c)./diff(x);

 dy_dx_analytical2c=5*exp(x) + 5*x.*exp(x);

 table = [[dy_dx2c,NaN]',dy_dx_analytical2c']

 table =

 1.0e+003 *

 -0.0002 -0.0001

 -0.0004 -0.0003

 -0.0006 -0.0005

 -0.0005 -0.0007

 0.0018 0

 0.0136 0.0050

 0.0603 0.0272

 0.2274 0.1108

 0.7907 0.4017

 2.6184 1.3650

 NaN 4.4524

 3. dy_dx31=gradient(y1)

 dy_dx31 =
 42 32 15 4 -1 0 7 20 39 64 78
 dy_dx3a=gradient(y2a)
 dy_dx3a =
 Columns 1 through 6

 -0.2021 -0.5500 -0.8330 -0.3502 0.4546 0.8415

 Columns 7 through 11

 0.4546 -0.3502 -0.8330 -0.5500 -0.2021

 dy_dx3b=gradient(y2b)

 dy_dx3b =

 Columns 1 through 5

 2101 1441 496 121 16

Solutions to Practice Exercises D-55

 Columns 6 through 11

 1 16 121 496 1441 2101

 dy_dx3c=gradient(y2c)

 dy_dx3c =

 1.0e+003 *

 Columns 1 through 6

 -0.0002 -0.0003 -0.0005 -0.0005 0.0007 0.0077

 Columns 7 through 11

 0.0369 0.1438 0.5090 1.7045 2.6184

 4. subplot(2,2,1)

 plot(x',[[dy_dx1,NaN]',dy_dx_analytical1',dy_dx31'])

 title('x^3+2x^2-x+3')

 ylabel('derivative')

 subplot(2,2,2)

 plot(x',[[dy_dx2a,NaN]',dy_dx_analytical2a',dy_dx3a'])

 title('sin(x)')

 legend('forward difference','analytical','gradient')

 subplot(2,2,3)

 plot(x',[[dy_dx2b,NaN]',dy_dx_analytical2b',dy_dx3b'])

 title('x^5-1')

 xlabel('x')

 ylabel('derivative')

 subplot(2,2,4)

 plot(x',[[dy_dx2c,NaN]',dy_dx_analytical2c',dy_dx3c'])

 title('5xe^x')

 xlabel('x')

 �5 0 5
�20

0

20

40

60

80

100
x3 � 2x2 � x � 3

de
ri

va
ti

ve

�5 0 5
�1

�0.5

0

0.5

1
sin(x)

forward difference
analytical
gradient

D-56 Appendix D

�5 0 5
0

500

1000

1500

2000

2500

3000

3500
x5�1

x

de
ri

va
ti

ve

�5 0 5
�1000

0

1000

2000

3000

4000

5000
5xex

x

 Practice Exercises 13.5

 1. quad('x.^3+2*x.^2 -x + 3',-1,1)

 ans =

 7.3333

 quadl('x.^3+2*x.^2 -x + 3',-1,1)

 ans =

 7.3333

 double(int('x^3+2*x^2 -x + 3',-1,1))

 ans =

 7.3333

 a = -1;

 b = 1;

 1/4*(b^4-a^4)+2/3*(b^3-a^3)-1/2*(b^2-a^2)+3*(b-a)

 ans =

 7.3333

 2. a. quad('sin(x)',-1,1)

 ans =

 0

 quadl('sin(x)',-1,1)

 ans =

 0

 double(int('sin(x)',-1,1))

 ans =

 0

 a = -1;

 b = 1;

 cos(b)-cos(a)

 ans =

 0

 b. quad('x.^5-1',-1,1)

 ans =

 -2

 quadl('x.^5-1',-1,1)

 ans =

 -2.0000

Solutions to Practice Exercises D-57

 double(int('x^5-1',-1,1))

 ans =

 -2

 a = -1;

 b = 1;

 (b^6-a^6)/6-(b-a)

 ans =

 -2

 c. quad('5*x.*exp(x)',-1,1)

 ans =

 3.6788

 quadl('5*x.*exp(x)',-1,1)

 ans =

 3.6788

 double(int('5*x*exp(x)',-1,1))

 ans =

 3.6788

 a = -1;

 b = 1;

 -5*(exp(b)-exp(a)) + 5*(b*exp(b)-a*exp(a))

 ans =

 3.6788

D
-5

8

 (blank) Not reported.

 + Occurred on one or more previous dates
during the month. The date in the Date fi eld is
the last day of occurrence. Used through
December 1983 only.

 A Accumulated amount. This value is a total that
may include data from a previous month or
months or year (for annual value).

 B Adjusted total. Monthly value totals based on
proportional available data across the entire
month.

 E An estimated monthly or annual total.
 X Monthly means or totals based on incomplete

time series. 1 to 9 days are missing. Annual
means or totals include one or more months
that had 1 to 9 days that were missing.

 M Used to indicate data element missing.
 T Trace of precipitation, snowfall, or

snowdepth. The precipitation data value
will = zero

 S Precipitation amount is continuing to be
accumulated. Total will be included in a

subsequent monthly or yearly value.
 Example : Days 1–20 had 1.35 inches of
precipitation, and then a period of
accumulation began. The element TPCP
would then be 00135S and the total
accumulated amount value appears in a
subsequent monthly value. If TPCP = "M",
there was no precipitation measured during
the month. Flag is set to "S" and the total
accumulated amount appears in a
subsequent monthly value.

Date Temperature (� F) Precipitation (inches)
Elem-> MMXT MMNT MNTM DPNT HTDD CLDD EMXT EMNP DT90 DX32 DT32 DT00 TPCP DPNP EMXP TSNW MXSD DP01 DP05 DP10

Number of Days
Total

Depart.
from

Normal Greatest Observed Snow, Sleet Number of Days

1999
Month

Mean
Max.

Mean
Min. Mean

Depart.
from

Normal

Heating
Degree
Days

Cooling
Degree
Days Highest

High
Date Lowest

Low
Date

Max
>=90�

Max
<=32�

Min
<=32�

Min
<=0� Day Date

Total
Fal l

Max
Depth

Max
Date >=.10 >=.50 >=1.0

1 51.4 31.5 41.5 5.8 725 0 78 27 9 5 0 2 16 0 4.56 2.09 1.61 2 2 .7 1 31 9 2 2

2 52.6 32.1 42.4 3.5 628 0 66 8 16 14 0 2 16 0 3.07 -0.18 0.79 17 1.2 0T 1 6 3 0

3 52.7 32.5 42.6 -4.8 687 0 76 17 22 8 0 0 19 0 2.47 -1.41 0.62 3 5.3 1 26 8 1 0

4 70.1 48.2 59.2 3.6 197 30 83 10 34 19 0 0 0 0 2.10 -1.02 0.48 27 0.0T 0T 2 6 0 0

5 75.0 51.5 63.3 -0.1 69 25 83 29 40 2 0 0 0 0 2.49 -1.12 0.93 7 0.0 0 5 2 0

6 80.2 60.9 70.6 0.3 4 181 90 8 50 18 1 0 0 0 2.59 -0.68 0.69 29 0.0 0 6 2 0

7 85.7 64.9 75.3 1.6 7 336 96 31 56 13 8 0 0 0 3.87 0.94 0.80 11 0.0 0 10 4 0

8 86.4 63.0 74.7 1.9 0 311 94 13 54 31 7 0 0 0 0.90 -2.86 0.29 8 0.0 0 4 0 0

9 79.1 54.6 66.9 0.2 43 106 91 2 39 23 3 0 0 0 1.72 -1.48 0.75 28 0.0 0 4 1 0

10 67.6 45.5 56.6 0.4 255 1 78 15 28 25 0 0 2 0 1.53 -1.24 0.59 4 0.0 0 3 2 0

11 62.2 40.7 51.5 4.0 397 0 76 9 26 30 0 0 8 0 3.48 0.56 1.71 25 0.3 0 5 3 1

12 53.6 30.5 42.1 2.7 706 0 69 4 15 25 0 0 20 0 1.07 -1.72 0.65 13 0.0T 0T 17 3 1 0

Annual 68.0 46. 3 57.2 1.6 3718 990 96 Jul 9 Jan 19 4 81 0 29.85 -8.12 1.71 Nov 9.5 1 Mar 69 21 3

 Table D.1 Annual Climatological Summary, Station: 310301/13872, Asheville, North Carolina, 1999 (Elev. 2240 ft. above sea level; Lat. 35°36'N, Lon. 82°32'W)

 Notes

 U.S. Department of Commerce National Oceanic & Atmospheric Administration.

646

Index

 %, 267
 %, 54 , 625
 %%, 250
 %%, 54 , 625
 &, 275 , 301 , 634
 ' ,' 417 , 635
 (), 54 , 624
 *, 54 , 193 , 625 , 630
 +, 54 , 193 , 625 , 630
- , 54 , 193 , 625 , 630
- , 193 , 630
 .*, 54 , 625
 ./, 54 , 625
 .∧, 54 , 625
 /, 54 , 625
= , 54 , 625
= = , 274 , 301 , 633
 [], 54 , 624
 [], 54 , 625
 ̂ , 54 , 194 , 625 , 630
| , 275 , 301 , 634
 ’, 250
 , 54 , 624
 ;, 54 , 624
 :, 54 , 193 , 624 , 630
 ., 193 , 630
- ., 193 , 630
 ..., 54 , 625
 7 (greater than), 274 , 301 , 633
 7=(greater than or equal to), 274 , 301 , 633
 6 (less than), 274 , 301 , 633
 6= (less than or equal to), 274 , 301 , 633
 '= (not equal), 274 , 301 , 633
 ', 275 , 633
= , 274 , 301 , 633

 A

 [a,b]=max(x) function, 80
 [a,b]=min(x) function, 81
 abs function, 107
 [a,b] = size(x) function, 88
 abs(x) function, 68 , 107
 Add Folder, 224
 add function, 229
 addpath function, 225 , 632
 Advanced graphics

 animation

 movies, 568 – 570
 by redrawing and erasing, 565 – 566

 handle graphics
 annotation axes, 564
 axis handles, 563
 fi gure handles, 562 – 563
 plot handles, 562
 using handles to manipulate graphics, 564 – 565

 hidden lines, 572
 images

 image function, 545
 indexed, 550 – 553
 intensity, 548 – 550
 Mandelbro and Julia sets, 554 – 558
 peaks function, 546
 pseudo color plot, 546
 scaled image function (imagesc), 545 , 547
 shading option, 547
 true color (RGB), 553 – 554

 lighting, 572 – 573
 reading and writing image fi les

 storing of information, 559 – 560
 transparency, 571 – 572
 volume visualization of scalar data, 573 – 574
 volume visualization of vector data, 574 – 576

 Aerospace engineering, 4
 Albrecht Durer’s woodcut “Melancholia,” 140
 all function, 283 , 634
 Alternating harmonic series, 325 – 327
 Analog computer, 604
 angle function, 107
 angle(x) function, 107
 Animation

 movies
 Mandelbrot image, 568 – 570

 by redrawing and erasing, 565 – 566
 Annotating plots, 158 – 159
 Anonymous functions, 226 – 227
 ans variable, 13
 Antiderivative, 460
 any function, 283 , 634
 Approximation, 484 , 494 , 512 , 515 – 518
 Arctangent, 78
 Argument, 64
 Array

 ans, 13
 cell, 408 – 409
 character, 398 , 403 – 406

 creating simple secret coding scheme, 407 – 408
 functions and operators, 343
 logical, 400 – 401
 multidimensional, 401 – 402
 multiplication, 30 , 344 , 355
 operations, 28 – 30
 radius, 23
 sparse, 401
 structure, 409 – 412

 extracting and using data from, 414 – 416
 to store information about the planets, 412 – 414

 array editor, 16
 ASCII, 44 – 45
 ASCII coding scheme, 399
 -ascii command, 45
 ASCII fi les, 260 – 261
 asind(x) function, 76
 asinh(x) function, 76
 asin(x) function, 76
 assignment operator, 22
 asterisk operator (*), 30 – 31 , 37
 A variable, 13
 axis equal command, 191
 axis equal function, 158
 axis function, 158
 Axis scaling, 158 – 159
 axis(v) function, 158

 B

 b, 193 , 248 , 630 , 633
 Backslash (/), 159 – 160 , 248
 Ballistic problem

 using symbolic capability of MATLAB ® , 444 – 446
 plotting, 452 – 454

 Bar graphs, 175
 barh(x) function, 175
 bar3h(x) function, 175
 bar(x) function, 175
 bar3(x) function, 175
 biomedical engineering and MATLAB ® , 3 – 4
 8-bit signed-integer types, 397
 16-bit signed-integer types, 397 – 398
 break function, 328 , 634
 Browse button, 15
 Built-in functions

 complex numbers, 104 – 108
 computational limitations, 108 – 109
 data analysis functions, 80 – 100
 elementary math functions, 68 – 75
 help function (help), 65 – 68
 random numbers, 100 – 104
 special values and miscellaneous functions, 109 – 111
 trigonometric functions, 76 – 80
 using, 63 – 65

 Buying gasoline, example
 using menu approach, 296 – 299
 using switch / case structure, 292 – 295

 B variable, 14
 bvp4c function, 535
 bytes, 393

 C

 c, 193 , 630
 %c, 247 , 633
 C++, 1 – 2
 calculation function, 206
 Calculus

 differential, 454 – 458
 integration, 460 – 463

 Callback function, 587 – 590
 Carburizing, 171
 cat function, 402
 ceil(x) function, 73
 Cell array, 408 – 409

 indexing system, 408
 use of, 409

 cell-array constructor, 417
 celldisp function, 408 , 417 , 633
 Cell mode, 255

 activating, 50 – 52
 cellplot function, 409
 census function, 535
 Center of gravity of the vehicle, calculating, 345 – 348

 using matrix multiplication, 353 – 354
 cftool function, 535
 Character and string data, 398 – 400
 Character array, 403 – 406
 char function, 399 , 417
 Class, 391 – 393
 Clausius–Clapeyron equation, 70 – 72 , 161 – 164
 clc command, 12 , 15
 clear command, 15 , 43 – 44
 Climatologic data, calculation of, 97 – 99
 clock function, 110 , 634
 C matrix, 16
 Coeffi cient matrix, 369 – 371
 collect function, 431 – 432 , 473
 collect(S) function, 434
 Colon operator, 123 – 125
 colormap function, 186
 colormap(map_name) function, 183
 combinations, 75
 comet3 function, 184
 comet3(x,y,z) function, 183
 command history window, 12
 Commands, 624 – 629
 command window, 12
 comment option, 135

Index 647

648 Index

 Complex numbers, 104 – 107 , 397 – 398
 complex(x,y) function, 105 , 107
 conj(x) function, 105 , 107
 continue function, 328 , 634
 contour command, 188
 Contour plots, 188
 contour(x,y,z) function, 183
 conversions, 32
 cos(x) function, 76
 cross command, 383
 Cross products, 359 – 361

 fi nding moment of a force about a point, 361 – 363
 Cubic spline interpolation technique, 487 – 488
 cumprod function, 85
 cumsum function, 84 – 85 , 395 , 418
 Cumulative sums, 395
 Curly brackets , 409 , 417 , 473 , 635
 current folder window, 15
 curve-fi tting toolbox, 508 – 509

 D

 d, 193 , 630
 %d, 247 , 633
 Data analysis functions

 determining matrix size, 88 – 89
 mean and median, 82 – 83
 minimum and maximum, 80 – 82
 sorting values, 85 – 88
 standard deviation and variance, 94 – 100
 sums and products, 83 – 85

 Database management, 412
 data_2.dat, 45
 Data types

 character and string data, 398 – 400
 logical data, 400 – 401
 numeric

 complex numbers, 397 – 398
 double-precision fl oating-point number, 392 – 394
 integer-number types, 397
 single-precision fl oating-point numbers, 394 – 396

 sparse matrices, 401
 symbolic data, 400

 date function, 110 , 634
 Debugging, 263 – 266 , 300
 decision.wav, 261
 degrees_to_radians, 32
 Degrees-to-radians function, 224
 det command, 383
 Determinants, 357 – 359
 det function, 358
 diag function, 136 , 138 – 139
 Diagonal matrices, 138
 Diary function, 42 – 43
 diary on command, 42 – 43

 Dicom fi les, 3
 Differential calculus, 454 – 458
 Differential equations, 468 – 470 , 605

 solving ordinary, using MATLAB ® , 526 – 533
 solving using numerical techniques, 531 – 532
 solving using Simulink, 613 – 614

 diff function, 455 , 457 – 458 , 472 – 473 , 512 – 519 , 535
 Discrete mathematics, 73 – 75
 disp command, 296
 disp function, 245 – 246 , 405 , 411 , 633
 distance_handle function, 227
 Document window, 16
 Document window/array editor, 16
 Dot-asterisk operator (.*), 30 – 31 , 37 , 129 , 427
 dot command, 383
 Dot multiplication, 30
 Dot operator, 30
 Dot product, 345
 double function, 394 , 418
 Double percentage sign (%%), 51
 Double-precision fl oating-point array, 13
 Double-precision fl oating-point number, 392 – 394
 Drag, calculating, 35 – 38
 dsolve function, 469 , 473
 Dynamic systems, 604

 E

 %e, 247 , 633
 EBCDIC coding scheme, 399
 edit command, 17
 edit window, 17
 Einstein, Albert, 6
 electrical engineering and MATLAB ® , 3
 Elementary math functions

 abs(x) function, 68
 Clausius–Clapeyron equation, 70 – 72
 combinations, 75
 common computations, 68 – 69
 discrete mathematics, 73 – 75
 exp(x) function, 68 – 69
 factorials, 73 – 75
 logarithm function, 69
 log(x) function, 68
 nthroot(x,n) function, 68
 permutations, 74 – 75
 rem, remainder function, 68
 rounding functions, 72 – 73
 sign(x) function, 68
 sqrt function, 68

 Element-by-element division (./) syntax, 30
 Ellipsis (…), 122
 else function, 319 , 324 , 330 , 332 , 634
 elseif function, 285 – 287 , 634
 end command, 231 , 634

Index 649

 engineering and science, problem-solving schemes in, 5 – 6
 eps function, 110
 equals sign (=), 21
 etime function, 334 – 336 , 634
 evaluate cell tool, 258
 Evenly spaced matrix, 123
 Excel spreadsheet fi le (.xls), 262
 expand function, 431 , 473
 expand(S) function, 434
 exp function, 23
 Explicit list, 28
 Exponentiation (ˆ) syntax, 30 , 37 , 383
 Exponent overfl ow, 109
 exp(x) function, 68 – 69
 “eyeballing it,” 495 – 496
 eye function, 379 , 383 , 418 , 635
 ezcontourf function, 450 , 473
 ezcontour function, 450 , 473
 ezmeshc function, 450 , 474
 ezmesh function, 450 , 473
 ezplot function, 446 – 450 , 474
 ezplot3 function, 450 , 474
 ezpolar function, 450 – 451 , 474

 ezmesh(z), 450
 ezsurf(z), 450
 subplot(2,2,1), 450
 subplot(2,2,2), 450
 subplot(2,2,3), 450
 subplot(2,2,4), 450
 title('ezmesh'), 450
 title('ezmeshc'), 450
 title('ezsurf'), 450
 title('ezsurfc'), 450

 ezsurfc function, 450 , 474
 ezsurf function, 450 , 474

 F

 %f, 247 , 633
 factor function, 474
 Factorials, 73 – 75
 factorial(x) function, 74
 factor(S) function, 434
 factor(x) function, 74
 fi gure command, 153
 fi gure window, 191
 fi le_name, 43 – 44
 File option, menu bar, 17
 fi nd command, 277 – 280 , 284 , 287 , 634
 fi ndsym command, 439
 fi x function, 73
 fl iplr function, 136 , 139
 fl ipud function, 136
 fl oor(x) function, 73
 Flowcharts, 276 – 277

 for calculating the cumulative sums of the alternating
numeric series, 332

 for changing degrees to radians, 316 – 317
 factorials with a for loop, 317 – 319
 of for loop, 315

 fl uid dynamics and MATLAB ® , 4 – 5
 Force vectors, 348 – 351
 for loop, 312 , 315 , 406 , 634
 format rat function, 418
 FORTRAN, 1 – 2
 Forward slash (/), 248
 Four signed-integer types, 397
 Four unsigned-integer types, 397
 fplot function, 182 , 227
 fprintf command, 279 – 280
 fprintf function, 247 – 250 , 633
 Franklin, Benjamin, 140
 Function plots, 182
 Functions, 626 – 629

 G

 g, 193 , 630
 %g, 247 , 633
 gallery, 381 , 635
 gallery command, 383
 Gauss, Carl Friedrich, 367 – 368
 Gaussian elimination, 364 , 367 – 369
 gcd(x,y) function, 74
 ginput command, 254 – 256 , 633
 global command, 222
 global variables, 222
 gradient function, 518 , 535
 grain_size function, 211
 Graphical user interface (GUI), 508

 adding code to the M-fi le, 586 – 590
 built-in templates

 axes and menu template, 601
 example templates, 602
 GUI with UIcontrols, 599 – 600
 modal question box, 602

 creating layout, 582 – 586
 with multiple user interaction, 590 – 592
 Ready_Aim_Fire program, 593 – 598

 Graphics window, 16 – 17 , 150
 grid command, 153
 gtext function, 166
 gtext(‘string’) function, 158
 GUIDE layout editor, 582 – 584 , 591 , 594 , 596 – 597
 GUIDE program, 412
 GUIDE Quick Start window, 582 – 591 , 599

 H

 h, 194 , 630
 Harmonic series, 395
 help command, 187
 help function, 65 – 67 , 158 , 212 , 372
 help plot command, 156
 high-level languages, 1 – 2

650 Index

 hist function, 177
 Histograms, 176 – 177
 hist(x) function, 175
 hold command, 153
 hold on command, 153

 I

 I, i maginary number, 110
 Ideal gas law, 428
 ideal_gas_law, 428 , 430
 Identity matrices, 379 – 381 , 401
 IEEE Standard 754 , 392
 if/else/elseif function, 291
 if/else function, 285 , 300
 if statement, 284 , 634
 Ill-conditioned matrices, 357
 Image Processing Toolbox, 4
 Images

 image function, 545
 indexed, 550 – 553
 intensity, 548 – 550
 Mandelbro and Julia sets, 554 – 558
 peaks function, 546
 pseudo color plot, 546
 scaled image function (imagesc), 545 , 547
 shading option, 547
 true color (RGB), 553 – 554

 imag(x) function, 106 – 107
 imfi nfo function, 633
 Indexing, into an array, 122
 Inf function, 110
 ± infi nity, 394
 Initial value problem, 530 – 531
 input command, 291
 Insert menu option, 189 , 191
 Integer-number types, 397
 Integration, 460 – 463
 interp1 function, 485 – 488 , 535
 interp2 function, 488 , 535
 interp3 function, 488 , 535
 interpn function, 535
 Interpolation

 cubic spline, 487 – 488
 linear, 484 – 487
 multidimensional, 493
 thermodynamics, 488 – 492

 int function, 461 – 463 , 474 , 535
 int8 function, 418
 int16 function, 418
 int32 function, 418
 int64 function, 418
 intmax function, 108 , 397 , 418
 intmin function, 108 , 418
 inv command, 383
 Inverse matrix, 356 – 357

 solutions of systems of linear equations, 364

 inv function, 364
 iskeyword command, 19
 isprime(x) function, 74 , 634
 isreal(x) function, 105 , 107 , 634
 isvarname command, 18

 J

 J, i maginary number, 110
 JAVA, 1 – 2
 .jpg fi le, 260

 K

 k, 193 , 630
 Kirchhoff, Gustav, 365

 L

 Last squares fi t, 496
 lcm(x,y) function, 74
 Left division operator (), 369 , 383
 legend function, 159
 legend(‘string1,’ ‘string 2 ,’ etc) function, 158
 length function, 89
 length(x) function, 88
 Linear interpolation, 484 – 487
 Linefeed command, 248
 Line plots, 183 – 184
 linspace command, 29
 Linux operating systems, 2
 ln function, 227
 load command, 45 , 633
 Lobatto quadrature:, 522
 local variables, 221 – 222
 Logarithmic plots, 170 – 171
 log2 function, 69
 log10 function, 68 – 69
 Logical data, 400 – 401
 Logical functions and selection structures

 debugging, 300
 disp function, 278 – 280
 fi nd command, 277 – 278 , 280 , 283
 fl owcharting and pseudocode for fi nd commands,

 280 – 281
 fl owcharts and pseudocode, 276 – 277
 fprintf functions, 278 – 280
 regional and logical operators, 274 – 275
 selection structures

 assigning grades example, 288 – 290
 elseif, 285 – 287
 if/else, 285
 switch/case, 291 – 295

 signal processing using sinc function, 281 – 283
 loglog(x,y) function, 170
 logspace command, 29
 log(x) function, 68
 Loops

 for, 312 , 315 , 406
 improving effi ciency of, 334 – 336

Index 651

 midpoint break, 329 – 330
 cumulative sum of the alternating numeric series,

 330 – 333
 while, 312 , 320 – 322 , 634

 alternating harmonic series, 325 – 327
 calculating factorials using, 324 – 325
 creating a table for converting degrees to radians,

 323 – 324
 midpoint break loops, 329 – 330

 M

 m, 193 , 630
 Mac OSX, 2
 magic command, 383 , 635
 Magic matrix, 138 – 140 , 381
 magic(m) function, 136
 Mandelbro and Julia sets, 554 – 558
 .mat fi les, 227
 MathWorks packages, 2
 MATLAB ® , 1

 in Apple environment, 9
 approaches for fi nding the inverse of a matrix, 357 , 364
 binary-to-decimal conversions, 399 – 400
 in biomedical engineering, 3 – 4
 built-in determinant function, 358
 calculation of derivative, 457 – 458
 character array, 403
 coding schemes, 399
 command window, 10
 common uses of transpose operation, 344
 conversion of character information to numeric

 information, 404
 cross products, 360 – 361
 debugging tools, 300
 default data type in, 396
 difference between professional and student editions, 3
 display windows

 command, 12
 command history window, 12
 current folder window, 15
 document window/array editor, 16
 edit window, 17
 graphics window, 16 – 17
 start button, 17
 workspace window, 13 – 15

 dot product in, 345
 double-precision fl oating-point number, 394 , 404 , 458
 in electrical engineering, 3
 exiting, 10
 in fl uid dynamics, 4 – 5
 folding capability available, 300
 font control, 405
 force vectors, 348 – 351
 Functions-By Category link, 66
 getting started, 9 – 11

 graphical user interface (GUI)
 adding code to the M-fi le, 586 – 590
 built-in templates, 599 – 602
 creating layout, 582 – 586
 with multiple user interaction, 590 – 592
 Ready_Aim_Fire program, 593 – 594

 identity matrices, 379 – 380
 inserting code into the M-fi le, 276
 integer-number types, 397
 interp1 function, 485 – 488
 inverse of an ill-conditioned matrix in, 357
 inverse of zero determinant, 359
 least squared approach to fi nd the set of X values, 370
 manipulation of symbolic expressions, 425
 Mathematics link, 67
 multidimensional array, 401 – 402
 multidimensional matrix, 379
 MuPad notebook interface in, 425
 opening window, 10
 and operating system, 9
 primary data type, 392
 Release R2011a, 2
 saving work in

 activating cell mode, 50 – 52
 diary function, 42 – 43
 saving variables, 43 – 45
 script M-fi le, 45 – 47

 secondary data type, 392
 single-precision values, 396
 solve ordinary differential equations, 526 – 533
 solving problems

 assignment operator, 22
 mathematical constant e, 23
 matrices, 20 – 24
 number display, 38 – 42
 scalar operations, 21 – 22
 standard algebraic rules, 10 , 22
 using variables, 18 – 20

 solving problems using left division, 369
 storing of character information, 398
 student edition, 2 – 3
 symbolic capability, 424

 ballistic problem, 444 – 446
 ezplot function, 446 – 449
 to fi nd the optimum launch angle, 459 – 460
 functions used to manipulate expressions and equa-

tions, 434
 MuPad calculations, 436
 solve function, 435 – 437 , 439
 solving math, 438 – 439

 system of equations, 363 – 364 , 370 – 375
 “un-executing” a command, 11
 in UNIX environment, 9
 up arrow, 11
 in Windows OS, 9

652 Index

 matlabFunction function, 470 – 471 , 474 , 632
 matlab.mat, 43
 matrices, in MATLAB ® , 20 – 24

 calculating distance to horizon, 131 – 132
 calculations with two variables, 128 – 130
 colon operator, 123 – 125
 defi ning, 121 – 123 , 344

 in terms of another matrix, 122
 empty, 124
 equation for distance of a freely falling body, 132 – 135
 evenly spaced matrix, 123
 indexing, into an array, 122
 mapping the vectors into a two-dimensional array, 130
 matrix calculation with scalars, 32 – 34
 special

 diagonal, 138
 magic, 138 – 140
 of ones, 137
 placeholder, 137
 of zeros, 136 – 137

 using temperature data, 126 – 128
 Matrix algebra

 operations and functions
 cross products, 359 – 361
 determinants, 357 – 359
 determine the center of gravity of the vehicle, 345 – 348
 dot product, 345
 inverse, 356 – 357
 multiplication, 351 – 353
 raising a matrix to a power, 354 – 355
 singular matrices, 357
 study of force vectors, 348 – 351
 transpose operator, 344

 solutions of systems of linear equations
 an electrical circuit problem, 365 – 367
 force balance on a statically determinate truss

(example), 375 – 378
 material balances on a desalination unit (example),

 372 – 374
 three equations with three unknowns, 363 – 364
 using matrix inverse, 364
 using matrix left division, 364 – 371
 using reverse row echelon function, 371 – 372

 special matrices
 gallery, 381
 identity matrix, 379 – 381
 magic, 381
 ones and zeros functions, 379
 Pascal, 381
 rosser, 381

 Matter, converting to energy, 6 – 8
 max(x) function, 80
 max(x,y) function, 81
 mean(x) function, 83
 median(x) function, 83

 medical imaging and MATLAB ® , 4
 menu function, 295 – 296 , 634

 buying gasoline (example), 296 – 299
 mesh function, 185
 meshgrid command, 129 – 130
 meshgrid function, 187
 mesh plot function, 187
 Mesh plots, 184 – 185
 mesh(x,y,z) function, 183
 M-fi les, 12 , 45 – 47 , 192

 accessing code of, 223 – 224
 advantages, 47
 to calculate the acceleration of a spacecraft, 48 – 50

 Microsoft Windows, 2
 Midpoint break loops, 329 – 330

 cumulative sum of the alternating numeric series,
 330 – 333

 min(x,y) function, 81
 mode(x) function, 83
 Moment of a force about a point, 361 – 363
 Monster.com, 3
 More plots option, 191
 motion function, 213
 MRI data set, 4
 Multidimensional array, 401 – 402
 Multidimensional interpolation, 493
 multiplication, matrix, 351 – 353

 calculating center of gravity, 353 – 354
 syntax (*), 383

 Multiplicative inverses, 356
 MuPad notebook, 424
 my_3D_array, 401 – 402
 my_example_fi le, 43
 my_function, 206 , 224
 my_ln_function.mat, 227
 my_new_fi le.mat, 44
 my_output_fi le.txt, 250
 my_structure, 409

 N

 n, 248 , 633
 namelengthmax command, 18
 NaN function, 110
 nargin function, 224
 nargout function, 219 – 220 , 224 , 632
 nchoosek function, 74 – 75
 Nested loops, 333 – 334
 nesting functions, 65
 New Script button, 17
 Normal vector, 359
 nthroot(x,n) function, 68
 “Number-crunching” program, 1 – 2
 numden function, 474
 [num,den]=numden(S) function, 434
 numden(S) function, 434

Index 653

 numel function, 89
 numel(x) function, 88
 Numerical techniques

 curve fi tting
 determining heat capacity of a gas, 502 – 505
 determining water fl ow, 500 – 502
 linear regression, 495 – 497
 polyfi t function, 498 – 499
 polynomial regression, 497 – 498

 differences and numerical differentiation
 diff function, 512 – 515
 forward, backward, and central difference tech-

niques, 515 – 519
 interactive plotting tools, 505 – 508

 curve-fi tting toolbox, 508 – 509
 population of the earth, 510 – 511

 interpolation
 cubic spline, 487 – 488
 linear, 484 – 487
 multidimensional, 493
 thermodynamics, 488 – 492

 numerical integration, 520 – 523
 calculating moving boundary work, 524 – 525

 for solving differential equations
 boundary value problems, 531 – 532
 function handle input, 526 – 528
 higher-order, 529 – 530
 partial, 532 – 533

 num2str function, 246 , 405 , 418

 O

 o, 193 , 630
 ode23 function, 527 , 535
 ode45 function, 527 , 535
 ode113 function, 527 , 535
 ode15i function, 527 , 536
 ode15s function, 527 , 535
 ode23s function, 527 , 535
 ode23tb function, 527 , 536
 ode23t function, 527 , 536
 ones function, 137 , 379 , 383 , 635
 order of operation, standard algebraic rules for, 22
 Orthogonality, 359
 Oscilloscope, 604
 otherwise syntax, 292 , 295 , 634

 P

 p, 194 , 630
 Pages, 401
 Partial sums, 395
 pascal function, 383 , 635
 Pascal matrix, 381
 pause command, 153 , 633
 pause function, 246
 pause(n) command, 152

 pcolor(x,y,z) function, 183
 peaks function, 154 – 155 , 188 – 189
 percentage sign (%), 47
 permutations, 74 – 75
 pi, value of, 31 , 76 , 110 , 219
 Pie charts, 175
 pie(x) function, 175
 pie3(x) function, 175
 Placeholder (%), 247
 Placeholder matrix, 137
 planetary_information fi le, 412 – 415
 plot command, 17 , 150 , 153 – 156 , 158
 Plotting

 creating plots from workspace window, 191 – 192
 editing of plots, 189 – 191
 saving plots, 192
 subplots, 166 – 167
 three-dimensional plots

 contour plots, 188
 line plots, 183 – 184
 pseudo color plots, 188 – 189
 surface plots, 184 – 189

 two-dimensional plots
 axis scaling and annotating plots, 158 – 159
 of ballistics, 164 – 166
 bar graphs and pie charts, 175
 of Clausius–Clapeyron equation, 161 – 164
 creating multiple plots, 152 – 153
 function plots, 182
 histograms, 176 – 177
 line, color, and mark style, 156 – 158
 logarithmic plots, 170 – 171
 plots of complex arrays, 155 – 156
 plots with more than one line, 153 – 155
 polar plots, 168
 properties of elements, 180 – 182
 rates of diffusion, 171 – 174
 simple x–y plots, 149 – 150
 titles, labels, and grids, 150 – 151
 weight distributions, 177 – 178
 x – y plots with two y values, 178 – 180

 plotting icon, 191 – 192
 plot(x,y) function, 170
 plot3(x,y,z) function, 183
 plotyy function, 179
 Polar plots, 168
 polyfi t function, 496 – 499 , 536
 poly function, 207
 polygon_gui.fi g window, 586
 Polynomial, defi ning, 24
 polyval function, 498 – 499 , 536
 potential_energy function, 229
 power of matrix, 354 – 355
 precision fi eld, 248
 primes(x) function, 74

654 Index

 problem-solving schemes, in engineering and science,
 5 – 6

 prod(x) function, 84
 Property Editor, 189 , 191
 Property inspector, 583 – 586 , 588 , 591 , 593 – 598
 Pseudocode, 276 – 277
 Pseudo color plots, 188 – 189
 Pythagorean theorem, 106

 Q

 quad function, 521 , 536
 quad1 function, 522 – 523 , 536
 Quadrature, 521 – 523
 quit/exit command, 10

 R

 r, 193 , 248 , 630 , 633
 Radians, 31
 radians-to-degrees function, 224
 randn function, 355
 Random numbers

 Gaussian, 101 – 102
 uniform, 100 – 101

 Rational numbers, 395
 rats function, 73 – 74
 Ready_Aim_Fire program, 593 – 598 , 642 – 646
 realmax function, 108 , 394 , 418
 realmin function, 108 , 394 , 418
 real(x) function, 106 – 107
 Rectangular plots, 170
 rem function, 64 , 68 , 212
 rename command, 16
 Residual, 495
 restore sin function, 110
 Rosser matrix, 381
 round function, 67 – 68
 Rounding functions, 72 – 73
 round-off error, 395 , 396
 round(x) function, 73
 rref function, 371 , 383

 S

 s, 193 , 630
 %s, 247 , 633
 Save, 51 , 633
 Save As, 51
 save command, 405
 Scalar, 20
 Scalar operations, 21 – 22 , 25 – 28
 Scalar product, see Dot product
 Scaling techniques

 exponential relationship, 640
 linear relationship, 639
 logarithmic relationship, 640
 power relationship, 641

 Script M-fi les, 42 , 45 – 47
 Secret coding scheme (example), 407 – 408
 Semicolon operator, 14 , 16 – 17 , 28 , 121 , 154
 semilogx(x,y) function, 170
 semilogy(x,y) function, 170
 shading command, 186
 shading fl at function, 183
 shading interp function, 183
 sign(x) function, 68
 simple function, 431 , 474
 simple(S) function, 434
 simplify function, 431 , 472 , 474
 simplify(S) function, 434
 Simpson quadrature, 521
 Simulink, 2

 applications, 604 – 605
 getting started, 605 – 609
 Library Browser, 605 – 606
 solving differential equations, 613 – 614

 position of a falling skydiver, 616 – 618
 velocity of a skydiver, 614 – 616

 solving random number problem, 610 – 612
 sinc function, 281 – 283
 sind(x) function, 76
 sin function, 19 – 20 , 76
 single function, 394 , 418
 Single-precision fl oating-point numbers, 394 – 396
 Single quote (’), 151 , 383 , see Transpose operator (’)
 Singular matrices, 357
 sinh(x) function, 76
 sin(t) .ˆ2 syntax, 183
 sin - 1 . (x) function, 356
 SI units, 32
 size function, 64 , 88 , 380 , 383 , 405
 solve function, 435 – 437 , 439 , 474

 using, 441
 some_letters, 410 – 411
 some_more_numbers, 410 – 411
 some_numbers, 410
 sortrows function, 86 , 88
 sort(x,‘descend’) function, 86
 sort(x) function, 86
 sparse function, 418
 Sparse matrices, 401
 Special characters, 54 , 112 , 142 , 193 – 194 , 232 , 267 , 383 ,

 417 , 473
 sphere command, 189
 sphere function, 223 – 224
 sphere.m fi le, 223
 sprintf function, 252 , 633
 sqrt function, 64 – 65 , 68
 squeeze function, 402 , 418
 Standard deviation, 94 – 100
 standard graphics formats, 192
 star function, 218

Index 655

 Start button, 17
 Statically determinate truss (example), 375 – 378
 std(x) function, 96
 ' ' string data (character information), 417
 str2num function, 418
 Structure arrays, 409 – 412

 extracting and using data from, 414 – 416
 to store information about the planets, 412 – 414
 use in engineering calculations, 412

 Subfunctions, 228 – 231 , 586 – 588
 subplot command, 166 – 167
 subplot function, 170 , 175
 subs function, 474
 Substitutions, 442 – 443
 subtract function, 229
 sum(diag(A)) function, 139
 sum(x) function, 84
 Surface plots, 184 – 189
 surfc command, 188
 surf command, 185 – 186
 surfc(x,y,z) function, 183
 surf function, 220
 surf plot function, 187
 Surf plots, 185 – 186
 surf(x,y,z) function, 183
 switch / case structure, 291 – 292 , 634

 buying gasoline, example, 292 – 295
 @ symbol, 227 , 632
 Symbolic data, 392 , 400
 Symbolic equation, 430
 Symbolic expressions, 430
 Symbolic mathematics

 algebra
 creating symbolic variables, 426 – 428
 manipulating symbolic expressions and symbolic

equations, 430 – 433
 manipulation of numerator and denominator, 426

 calculus
 differential, 454 – 458
 to fi nd the optimum launch angle, 459 – 460
 integration, 460 – 463
 solving of Piston–cylinder devices, 464 – 468

 converting symbolic expressions to MATLAB ®
 functions, 470 – 471

 differential equations, 468 – 470
 plotting

 ballistic problem, 452 – 454
 ezcontourf function, 450
 ezcontour function, 450
 ezmeshc function, 450
 ezmesh function, 450
 ezplot function, 446 – 450
 ezplot3 function, 450
 ezpolar function, 450 – 451
 ezsurf function, 450

 three-dimensional peaks function, 451
 two-dimensional plots and contour plots, 451

 solving expressions and equations
 Piston–cylinder devices, 464 – 468
 solve function, 435 – 437
 solving systems of equations, 439 – 441
 substitution, 442 – 443

 Symbolic toolbox, 400
 sym function, 400 , 428 , 474
 syms function, 474
 System of equations, 363 – 364 , 370 – 375

 T

 t, 248 , 633
 tangent function, 66
 tan(x) function, 76
 Temperature data analysis, using matrix, 126 – 128
 text drop-down menu, 135
 text function, 159
 text(x_coordinate,y_coordinate, ‘string’) function, 158
 Thrust-vector control, 5
 tic function, 219 , 634
 title command, 152 – 153
 toc function, 219 , 634
 Transpose operator (’), 81 , 105 , 151 , 344 , 383
 Transposition, 32
 Trapezoidal rule, 534
 trapz function, 520 , 536
 Trigonometric functions, 76 – 80

 sin(x) function, 76
 Two-dimensional matrices, 14 , 391
 .txt fi le, 260
 type command, 223

 U

 uiimport function, 261 , 633
 uint8 function, 418
 uint16 function, 418
 uint32 function, 418
 uint64 function, 418
 uncomment option, 135
 Underscore (_), 46
 Unit vector, 349 , 359 – 360 , 382
 unnamed variable, 16
 User-controlled input/output

 calculation of interactively adjusting parameters,
 258 – 260

 debugging, 263 – 266
 graphical input, 254 – 255
 more cell mode features, 255 – 258
 output options, 244 – 250

 equation for range of projectile motion, 253 – 254
 formatted output, 251 – 252
 fprintf function, 247 – 250
 sprintf function, 252

656 Index

 reading and writing data from fi les
 data fi le types supported MATLAB ® , 261
 exporting data, 262
 import commands, 262
 Import Wizard, 261

 user-defi ned input, 240 – 242
 behavior of a freely falling object, 242 – 244

 User-defi ned functions
 anonymous functions and function handles, 226 – 227
 creating M-fi les

 accessing fi les, 223 – 224
 ASTM grain size, 210 – 212
 comments, 212
 converting between degrees and radians, 208 – 210
 functions with multiple inputs and outputs, 212 – 216
 functions with no input or no output, 218 – 222
 global variables, 222
 kinetic energy of a moving object, 217
 syntax, 206 – 208

 creating toolboxes, 224 – 226
 execution of primary function, 230
 function functions, 227 – 228
 subfunctions, 228 – 231

 V

 v, 194 , 630
 varargin function, 224 , 632
 variable_list, 44
 Variance, 94 – 100
 var(x) function, 96
 Vector, 20

 W

 Water desalination plants (example), 372 – 374
 .wav fi le, 260
 wavread function, 262 , 633
 Weather data, calculation of, 89 – 93
 what command, 46
 which command, 19
 while loops, 312 , 320 – 322 , 634

 alternating harmonic series, 325 – 327
 calculating factorials using, 324 – 325
 creating a table for converting degrees to radians,

 323 – 324
 midpoint break loops, 329 – 330

 whos command, 15
 Workspace window, 13 – 15 , 34 , 410

 X

 x, 193 , 630
 xlabel command, 152 – 153
 xlsimport function, 267 , 633
 xlsread function, 262
 xlswrite function, 262 , 633
 xor, 275 , 301 , 634

 Y

 y, 193 , 630
 ylabel command, 152 – 153

 Z

 zeros function, 136 – 137 , 379 , 383 , 635

	Cover
	Title Page
	Copyright Page
	CONTENTS
	ABOUT THIS BOOK
	DEDICATION AND ACKNOWLEDGMENTS
	1 ABOUT MATLAB[sup(®)]
	1.1 What Is MATLAB[sup(®)]?
	1.2 Student Edition of MATLAB[sup(®)]
	1.3 How Is MATLAB[sup(®)] Used in Industry?
	1.4 Problem Solving in Engineering and Science

	2 MATLAB[sup(®)] ENVIRONMENT
	2.1 Getting Started
	2.2 MATLAB[sup(®)] Windows
	2.3 Solving Problems with MATLAB[sup(®)]
	2.4 Saving Your Work
	Summary
	MATLAB[sup(®)] Summary
	Key Terms
	Problems

	3 BUILT-IN MATLAB[sup(®)] FUNCTIONS
	Introduction
	3.1 Using Built-In Functions
	3.2 Using the Help Feature
	3.3 Elementary Math Functions
	3.4 Trigonometric Functions
	3.5 Data Analysis Functions
	3.6 Random Numbers
	3.7 Complex Numbers
	3.8 Computational Limitations
	3.9 Special Values and Miscellaneous Functions
	3.10 Summary
	MATLAB[sup(®)] Summary
	Key Terms
	Problems

	4 MANIPULATING MATLAB[sup(®)] MATRICES
	4.1 Manipulating Matrices
	4.2 Problems with Two Variables
	4.3 Special Matrices
	Summary
	MATLAB[sup(®)] Summary
	Key Terms
	Problems

	5 PLOTTING
	Introduction
	5.1 Two-Dimensional Plots
	5.2 Subplots
	5.3 Other Types of Two-Dimensional Plots
	5.4 Three-Dimensional Plotting
	5.5 Editing Plots from the Menu Bar
	5.6 Creating Plots from the Workspace Window
	5.7 Saving Your Plots
	Summary
	MATLAB[sup(®)] Summary
	Problems

	6 USER-DEFINED FUNCTIONS
	Introduction
	6.1 Creating Function M-Files
	6.2 Creating Your Own Toolbox of Functions
	6.3 Anonymous Functions and Function Handles
	6.4 Function Functions
	6.5 Subfunctions
	Summary
	MATLAB[sup(®)] Summary
	Key Terms
	Problems

	7 USER-CONTROLLED INPUT AND OUTPUT
	Introduction
	7.1 User-Defined Input
	7.2 Output Options
	7.3 Graphical Input
	7.4 More Cell Mode Features
	7.5 Reading and Writing Data from Files
	7.6 Debugging Your Code
	Summary
	MATLAB[sup(®)] Summary
	Key Terms
	Problems

	8 LOGICAL FUNCTIONS AND SELECTION STRUCTURES
	Introduction
	8.1 Relational and Logical Operators
	8.2 Flowcharts and Pseudocode
	8.3 Logical Functions
	8.4 Selection Structures
	8.5 Debugging
	Summary
	MATLAB[sup(®)] Summary
	Key Terms
	Problems

	9 REPETITION STRUCTURES
	Introduction
	9.1 For Loops
	9.2 While Loops
	9.3 Break and Continue
	9.4 Midpoint Break Loops
	9.5 Nested Loops
	9.6 Improving the Efficiency of Loops
	Summary
	Key Terms
	Problems

	10 MATRIX ALGEBRA
	Introduction
	10.1 Matrix Operations and Functions
	10.2 Solutions of Systems of Linear Equations
	10.3 Special Matrices
	Summary
	MATLAB[sup(®)] Summary
	Key Terms
	Problems

	11 OTHER KINDS OF ARRAYS
	Introduction
	11.1 Data Types
	11.2 Multidimensional Arrays
	11.3 Character Arrays
	11.4 Cell Arrays
	11.5 Structure Arrays
	Summary
	MATLAB[sup(®)] Summary
	Key Terms
	Problems

	12 SYMBOLIC MATHEMATICS
	Introduction
	12.1 Symbolic Algebra
	12.2 Solving Expressions and Equations
	12.3 Symbolic Plotting
	12.4 Calculus
	12.5 Differential Equations
	12.6 Converting Symbolic Expressions to MATLAB[sup(®)] Functions
	Summary
	MATLAB[sup(®)] Summary
	Problems

	13 NUMERICAL TECHNIQUES
	13.1 Interpolation
	13.2 Curve Fitting
	13.3 Using the Interactive Fitting Tools
	13.4 Differences and Numerical Differentiation
	13.5 Numerical Integration
	13.6 Solving Differential Equations Numerically
	Summary
	MATLAB[sup(®)] Summary
	Key Terms
	Problems

	14 ADVANCED GRAPHICS
	Introduction
	14.1 Images
	14.2 Handle Graphics
	14.3 Animation
	14.4 Other Visualization Techniques
	14.5 Introduction to Volume Visualization
	Summary
	MATLAB[sup(®)] Summary
	Key Terms
	Problems

	15 CREATING GRAPHICAL USER INTERFACES
	Introduction
	15.1 A Simple GUI with One User Interaction
	15.2 A Graphical User Interface with Multiple User Interactions—Ready_Aim_Fire
	15.3 An Improved Ready_Aim_Fire Program
	15.4 A Much Better Ready_Aim_Fire Program
	15.5 Built-In GUI Templates
	Summary
	Key Terms
	Problems

	16 SIMULINK[sup(®)]—A BRIEF INTRODUCTION
	Introduction
	16.1 Applications
	16.2 Getting Started
	16.3 Solving Differential Equations with Simulink[sup(®)]
	Summary
	Key Terms
	Problems

	APPENDIX A: SPECIAL CHARACTERS, COMMANDS, AND FUNCTIONS
	APPENDIX B: SCALING TECHNIQUES
	APPENDIX C: THE READY_AIM_FIRE GUI
	APPENDIX D: Solutions to Practice Exercises
	INDEX

