Model-Based Design & an NXT Scanner
- Image Scanner built with LEGO Mindstorms NXT -

B Author (First Edition)
Yoshiaki Banno : banno@cybernet.co.jp

Tomoki Fukuda : t fukuda@cybernet.co.jp

Application Engineer

Advanced Support Group 1 Engineering Department
Applied Systems First Division

CYBERNET SYSTEMS CO., LTD.

B Revision History

Revision Date Description Author/Editor

Yoshiaki Banno
First Edition
banno@cybernet.co.jp
First Edition (chapter 6.2, 6.4, 11.1, 11.2 and | Tomoki Fukuda

11.3) t fukuda@cybernet.co.jp

1.0 May 2009

The contents and URL described in this document can be changed with no previous notice.

B Disclaimer
LEGOewis a trademark of the LEGO Group of companies which do not sponsor, authorize or endorse this
project. LEGOe and Mindstormse are registered trademarks of The LEGO Group. According to LEGO
Mindstorms NXT Hardware Developer Kit.
Disclaimer about the MathWorks and the products which are used for this demo, please check the following:

URL.: http://www.mathworks.com/matlabcentral/disclaimer.html

mailto:banno@cybernet.co.jp
mailto:banno@cybernet.co.jp

Introduction

This document describes the required products for an NXT Scanner and how to build it. An NXT Scanner is a
sheet feed image scanner and is built with Lego Mindstorms NXT. An NXT Viewer is an image viewer and
image processing in MATLAB. This document presents Model-Based Design of an NXT Scanner by using
MATLAB/Simulink. An NXT Scanner which illustrates MBD using UML and Simulink/Stateflow and using
R2008b new features and using many MATLAB/Simulink optional products. The main contents are the

following:

Summary of the NXT Scanner and the NXT Viewer
The NXT Scanner system

The NXT Scanner Design

The NXT Scanner Modeling

Simulation and Results

Image Viewer and Image Processing with the NXT Viewer

Preparation
To build an NXT Scanner, please read “NXT Scanner Building Instructions (NXT Scanner Building
Instructions.pdf)”. You need to download Embedded Coder Robot NXT from the following URL because it is

used as Model-Based Design Environment in this document.

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectld=13399

Please read “Embedded Coder Robot NXT Instruction Manual (Embedded Coder Robot NXT Instruction
En.pdf)” and test sample models / programs preliminarily. The software versions used in this document are as

follows.

Software \ersion
Embedded Coder Robot NXT 3.16+
nxtOSEK/JSP 2.06
Cygwin 1.5.24
GNU ARM 4.0.2

Required Products

Product \ersion Release
MATLAB® 7.7 R2008b
Simulink® 7.2 R2008b
Stateflow® 7.2 R2008b
Real-Time Workshop® 7.2 R2008b
Real-Time Workshop® Embedded Coder™ 5.2 R2008b
Stateflow® Coder™ 7.2 R2008b
Image Processing Toolbox™ 6.2 R2008b
PolySpace® Server™ for C/C++ 6.0 R2008b
PolySpace® Client™ for C/C++ 6.0 R2008b
PolySpace® Model Link™ SL 5.2 R2008b
Simulink® Verification and Validation™ 24 R2008b
Simulink® Design Verifier™ 1.3 R2008b

File Lists

Category File Name Description

Common setup_nxtscanner.m Path for MATLAB
nxtscanner_ctrl.mdl The NXT Scanner controller model
nxtscanner_lib.mdl The NXT Scanner library model
mode_control_verification_lib.mdl [sample] Verification for mode_control.mdl

Data object nxtscanner.xls Simulink Data Object management
I el Excel Interface APl for Simulink Data

Object Tool
Mode control mode_control_prm.m Parameters

mode_control.mdl

Functional unit model

Paper feed control

paper_feed_mechanism.mdl

Functional unit model

Scan control

scanner_head_prm.m

Parameters

scanner_head.mdl

Functional unit model

USB control

data_communication.mdl

Functional unit model

usb_test signal.mdl

Validation model

usb_test data.mat

Validation data

usb_test_number.mat

Validation data

usb_test state.mat

Validation data

Enumerated data types

ControlModeEnum.m Definition
ErrorCodeEnum.m Definition
FeedModeEnum.m Definition
ScanModeEnum.m Definition
ScannerBufferInfoEnum.m Definition

NXT Viewer NXTScannerViewer.fig The NXT Viewer GUI design
NXTScannerViewer.m The NXT Viewer M-script
PolySpace nxtscanner_ctrl_polyspace.cfg Configure file

polyspace_main.c

Verification file of dummy main loop

polyspace.h

Verification file for avoidable compile error

polyspace_additional_file_list.txt

Configure file

Index

T 0o [8 o3 1T o ISP i
PrEPAIALION.eiiiieece ettt ettt et et et e e beete e st et e beeteea e e beeheeteeab e beeteeRe et e ebeehe e st e nbeereeneenreareareers i
REQUITEA PIOGUCEScoiiiiiiiciicee ettt ettt ettt e e be st e e s beeteese et e sbeeaeessebesbeebeesbesbeebeensessesaeensens i
1 S 1 £SO iii
a0 = OSSOSO PRRSRRSPRTN 4
1 MOAEIFBASEA DESIGN ..ottt et ettt et e b et e s beeteesbeebesbeete e st e eteebeereeneesreereens 1
1.1 What is MOdel-Based DESIGN?.......c.coiiieieieiie ettt ettt st te s te e s besbe e et e sbeeraesaesresreareas 1
Y A o {0 o =11 PSPPI 2
G T |V =T 41 (30 1Y = 2SSOSR PSP 3
2 PrOOUCE GESION.....iiiiiticieiete ettt ettt ettt et e te et e st e e beete e st e s beeteeseessesbeebeessessesbeebaessessesbeeseesseresbeaneas 4
2.1 Whatis an NXT Scanner and an NXT VIBWEI?c..ci oottt s sne s 4
3 Mechanisms fOr the NXT SCANNETcccoiiiiiieee ettt sttt be e et seere st s 6
3.1 HAIOWAIE SEIUCTUIEcviiiiieeeeeie ettt et s et et e st e e s e e besbe e e seereebesbe e eneabentennen 6
3.2 BACKIASK ...ttt R et r et ettt neeteneens 11
3.3 SENSOIS AN ACLUBLOISc.eovieiieiiieeieieee ettt ettt e e s e tesbe st eseebeebe st e e e s e ebesbesseneaneseeseens 11
A SYSTEIM AESIGN ..ttt t ettt e e beete et e s beeteehe e be e beehe e st e beeheeRe e st e beebeeteenrenbeebeenbenreareeneas 12
4.1 OVerview Of tOTAl SYSTEIMc..oiviiiiiccce et te bt e be s ae e e sresreens 12
4.2 MODE CONTROL SYSTEMociiiiiicieieetste ettt ettt s s et se s senassenessans 13
4.3 PAPER FEED CONTROL SYSTEMcooiiiiiiiiieieese ettt st ssesesnans 15
4.4 SCAN CONTROL SYSTEM ...oociiiiiiiiciieeise ettt sttt st s e s e s asa e stesessasessans 16
4.5 USB COMMUNICATION CONTROL SYSTEM......cccoiiiiiirieiieiieet e 18
5 Module design for the NXT SCANNETcccvci ittt sttt reera e beere e e saeeae e 19
5.1 Using library model for functional unit MOdelS...........ccoooviiiiiiiiciiccceee e 19
5.2 Shared data (Global variable data) for the total SyStem.........ccccooeiiiiiiiiici e, 19
B UNIE AESIGN ottt b ettt b e teea e et e b e e beeh e et e beebeeat e beebeeReenreereeaeereetenaeeneens 22
6.1 Using enumerated type (New feature of R2008D)c.ccccoeiiiiiiiiii i 22
6.2 Utilize Simulink function (New feature of R2008D)ccccceoiiiiiieieieccece e 24
6.3 MODE CONTROL MODEL......ccotiiitieiieieiisieesie ettt sae e s s e ssesessesessasesassesens 25
6.4 PAPER FEED CONTROL MODEL......c.c.cceitiiitiieiiseiseiesisees et sse e sse e saesesassenens 28
6.5 SCAN CONTROL MODELccoiviiiiieieisieisieiesie ettt ettt sttt sesasse e s esesassesessasessasessssasens 39
6.6 USB COMMUNICATION CONTROL MODELcccoviiiiiieiiieieisieesieesesee s a s 46
7 Simulation for @aCh MOUEISoiiiiecc ettt sttt see s 49
7.1 Test signals for SIMUIALION ..ottt e b s beere e resbeereas 49
7.2 Introduce of verification tools and fUNCHION...........ccooviiiiiiiic e 50
8 The NXT Scanner controller model (integrated each models)...........ccocoviiiiiiiiininenee e 53
8.1 CONtrol Program SUMMIATYccciveueireireateitesteeeestessesreaseessessesseessessessesseassessessesseassessessessesssessessessens 53
8.2 The NXT Scanner MOdel SUMMAIYccooiiiiiiiiiiie ettt ta et re s resbeareas 54

8.3 Initialization task: taSK NIccoiiiiiii e ere s 57

8.4 2MS LASK: TASK TS ..uiiiiiiiicicie ettt et b et et e beere et e beebeereeresrearaas 57

8.5 10MS tASK: TASK TS2uiiiiciiciiiiie ettt ettt b e re et eabe e beeraeresrearas 58
8.6 20MS tASK: TASK 1S3 ...ttt et e e ra et e te e reera e rearearas 58
8.7 BOMS tASK: TASK 1S4 ..ottt ettt e et e et e st e beete et e sbeebeera e b e sreeraas 59
8.8 TUNING PATAMELEIScuiiiiciietiete ettt ettt et ettt e e te st et e s beebeessebesbeeteessesbesbeataessesbesbeessesresrenreas 60
9 Code generation and implemMEeNntatioNc.ccuiiiiiiiiieie e eae e 61
9.1 Target hardware and SOIWEAIE............cciiiiiiicce et reereas 61
9.2 How to generate code and dOWNIOAdc..cceoiiiiiiiiicicce e 62
10 Verification of gENEIrated COUEcvoviii ettt s beere et esreaae s 63
10.1 WhAL QS @ POIYSPACET ..ottt sttt st te et e st eebe e s e beabeere e e e sbesre e 63
10.2 PolySpace CONFIQUIALIONcciiiiiiiiiiecicce ettt et st e re e e sbesbeere e s e sbeere e 64
10.3 PolySpace can find rUNtiME EITOISc.cviiiiiiiciee ettt be et sbeere e 66
10.4 Results of PolySpace VEfICAtION..........cccouiiiiiieciecc ettt re e sbeeae e 68
11 WhAt iS @N NXT VIBWET? ...ttt sttt st e e st be s be st et e st abe st e e e st abesbe s eneareetenens 69
11,1 HOW tO USE the NXT VIBWET ..ottt sttt et st neenesae s 69
11.2 Command for USB communication (NXTUSD)cccooiiiiiiiiieccece e 71
11.3 Overview of the IMAge AISPIAYcoviiiiicieece et sbe e re e 72
11.4 ADOUL IMAQJE PrOCESSING ..oouviviiiietieieite ettt st ettt et e st e te et e st e s beeteessearesteeteesbestesbeessessesbeabeersessesresreans 73
12 EXPErMENTAl FESUILSocviiiicieceec ettt b et e s beeae b e sbeeteeneeaesreans 76
13 ChallENgES fOr FEAUEBISocuvieie ettt st e te e et e b e e te e st et e sbeeteensesreabeanis 77
APPENTIX GENEIALEA COUE........cviitiiticiieie ettt et e e et et e e te e e e besbeeteessesbesbeebeessesbesbeessensesreaneas 78

(R I 0=] (oL T TR 95

1 Model-Based Design

This chapter describes the outline Model-Based Design briefly.

1.1 What is Model-Based Design?

Model-Based Design is a software development technique that uses simulation models. Generally, it is
abbreviated as MBD. For control systems, a designer models a plant and a controller or a part of them, and tests
the controller algorithm based on a PC simulation or real-time simulation. The real-time simulation enables us to
verify and validate the algorithm in real-time, by using code generated from the model. It is Rapid Prototyping
(RP) that a controller is replaced by a real-time simulator, and Hardware In the Loop Simulation (HILS) is a plant
version of Rapid Prototyping.

Furthermore, auto code generation products like RTW-EC enables us to generate C/C++ code for embedded
controllers (microprocessor, DSP, etc.) from the controller model. Figure 1-1 shows the concept of MBD for

control systems based on MATLAB product family.

=~
/’

Data based el
Modeling ‘\ o - Al \
/ '~..
Y Y
Engineering Control System ® simulation > Code Prototyping Embedded
Problem Design & Analysis | - - & -- Generation | Code (RTW) System
A
\> Mathematical ‘/ ‘/
Modeling
Embedded
Code (RTW-EC)
MATLAB
Data Acquisition Control System Simulink Real-Time Workshop
Instrument Control System Identification Stateflow Real-Time Workshop
OPC Fuzzy Logic Simulink Control Design Embedded Coder
Robust Control Simulink Response Optimization Stateflow Coder
Model Predictive Simulink Parameter Estimation xPC Target
Control SimMechanics
Neural Network SimPowerSystems
Optimization SimDriveline
Signal Processing SimHydraulics
Fixed-Point Signal Processing Blockset
Simulink Fixed Paoint
< > < >
MATLAB Products (Toolbox) Simulink Products

Figure 1-1 MBD for control systems based on MATLAB product family

1.2 V-process

The V-process showed in Figure 1-2 describes the MBD development process for control systems. The V-process
consists of the Design, Coding, and Test stage. Each test stages correspond to the appropriate Design stages. A
developer makes plant/controller models in the left side of the V-process for early improvement of controller

algorithm, and reuses the models in the right side of it for improvement of code verification and validation.

Improvement of Code
Verification & Validation

Early Improvement of
Controller Algorithm

[Module Design]4 ------------ >[Module Test]

Controller Algorithm [Unit Design]"’[Jnitest] Verification

Design Static Analysis
Coding Rule Check

[Coding]

Code Generation for
Embedded Systems

Figure 1-2 V-process for control systems

1.3 Merits of MBD

MBD has the following merits.

Detection pf specification errors in early stage of development
Hardware prototype reduction and fail-safe verification by real-time simulation
Efficient test by model verification

Effective communication by model usage

Coding time and error reduction by auto code generation

2 Product design

This chapter describes the outline product design of Model-Based Design.

2.1 What is an NXT Scanner and an NXT Viewer?

The NXT Scanner is a sheet feed image scanner and is built with Lego Mindstorms NXT. The NXT Viewer is
an image viewer and an image processor in MATLAB. The NXT Scanner and The NXT Viewer are expressed

by UML use case diagram as in Figure 2-1 and Figure 1-2. Each case is shown by use case description as shown

in Table 2-1 to Table 2-4.

Scanner of image

Viewer of results

The NXT Scanner

Adjust a paper

Image viewing
Image
processing

The NXT Viewer

Figure 2-1 Essential UML use case diagram

Table 2-1 Use case description (adjust a paper position)

Use case name

The NXT Scanner

Adjust a paper position

Normal flows

1. Actor requests “paper feed” or “paper exhaust” to the NXT
Scanner.

2. The NXT Scanner starts adjusting the position of paper.

3. Actor requests stopping to adjust to the NXT Scanner.

4. The NXT Scanner stops adjusting.

Alternate flows

If the NXT Scanner does not succeed, it should stop the whole

process.

Table 2-2 Use case description (Scan an image)

Use case name

The NXT Scanner

Scan an image

Normal flows

1. Actor requests “start scan” to the NXT Scanner

2. The NXT Scanner starts scan.

3. The NXT Scanner gets data from the light sensor and moves
scanner head.

4. The NXT Scanner sends scanning data to the NXT Viewer via
the USB port.

5. The NXT Scanner feeds a paper after the end of scan of line.

6. The NXT Scanner keeps on scanning until finished all scan or

actor requests to stop scan.

Alternate flows

If the NXT Scanner does not success, it should stop the full process.

Table 2-3 Use case description (View an image)

Use case name

The NXT Viewer

View an image

Normal flows

<<inreal time >>

1. Actor requests “start scan” to the NXT Scanner.

2. The NXT Viewer receives an image data from the Scanner via
USB.

3. The NXT Viewer updates the display every line of scanning
image.

4. Actor can save scan image.

<< load >>

1. Actor can load scan image.

Alternate flows

Nothing

Table 2-4 Use case description (Image processing)

Use case name

The NXT Viewer

Image processing

Normal flows

1. Actor requests “image processing” for desired image (real time
or load).
2. The NXT Viewer processes image processing.

3. The NXT Viewer displays the result of image processing.

Alternate flows

Nothing

3 Mechanisms for the NXT Scanner

This chapter describes the hardware structure that consist sensors and actuators.

3.1 Hardware structure

Figure 3-1 shows structure of the NXT Scanner.

DC Motor2
(paper feed)

USB
(data send) DC Motorl

(scanner head)

Touch sensorl,
(paper adjust)

Light sensorl
(get scanning data)

Touch sensor3
(initial position switc

Figure 3-1 The NXT Scanner

The NXT Scanner has following functional categories:
® Auser interface unit
® Ascanner head unit
® A paper feed unit

A user Interface unit

Figure 3-2 is the user interface unit of the NXT Scanner.

| Paper feed button

I Paper exhaust button Scanner control button

Figure 3-2 The NXT Scanner user interface

A scanner head unit

The scanner head unit moves on the NXT Scanner in order to acquire scan data. Figure 3-3 is an overview of
the scanner head unit. The scanner head unit is converted by rotation of scanner head control motor into
horizontal position control by the rack and pinion gear system. The scanner head unit has a scan sensor which
can receive image data. The purpose of using the scanner head initial position switch is detect the initial position

and for protection against overrun.

Scanner head control motor |

Scan sensor

S0 AN

canner head initial position switch

S

Figure 3-3 Scanner head unit

Gear3 (40 teeth)

Figure 3-4 Scanner head gear system

The gear reduction ratio g is obtained by the following equation:

_ gear2teeth 20

== =1667 (2.1)
gearlteeth 12

Gear3 is 2.0292 [cm] in radius, and a circumference of 12.75 [cm]. So the moving distance of the scanner head
unit per degree of motor rotation d is given by:

12.75[cm]

= =0.0215[cm] (2.2)
360[deg]*1.667

A paper feed unit

The paper feed unit has a rubber roller. It is rolled for adjusting the paper position by the paper feed control
motor. Figure 3-5 and Figure 3-5 are overviews of the paper feed unit. The paper feed unit uses a worm gear
which can change the axis of rotation based on the power of the paper feed control motor. So the paper feed unit
can control the position of a paper.

e e e et it s

' - et
e WM Paper feed control motor _

| Rubber roller for paper feed |

| al3dl

Figure 3-5 Paper feed unit

L
Gearl (24 teeth) | =

‘ Worm gear (1 tooth)
(S
—
P~ / =

Figure 3-6 Paper feed gear system

The gear reduction ratio g is found by using the following equation:

9= gearlteeth 24 _

24 (2.3)
1 1

-10 -

The rubber roller for paper feed is 1.24141 [cm] in radius, and a circumference of 7.8 [cm]. So the moving
distance of the paper feed per degree of motor rotation d is given by:

7.8[cm]

=——————=9.0278 *10~*[cm] (2.4)
360[deg] * 24

3.2 Backlash

There is a backlash, sometimes called lash or play, between the gears. The backlash has a negative impact on
the tracking accuracy because it results in some lost motion when movement is reversed and contact is
reestablished. It is necessary to compensate for backlash when engaging the gears. Figure 3-7 shows a basic
concept of the backlash. Here, the engaged state means, gears are engaged and the disengaged state means, they
are not engaged.

Direction of ——p

Movement

4—— Direction of

Movement

44— Direction of

ERENrEY T

Engaged State

Disengaged State Engaged State

Figure 3-7 Backlash (The upper side is drive gear and under side is driven gear)

3.3 Sensors and Actuators

Table 3-1 and Table 3-2 show sensors and actuators properties:

Table 3-1 Sensor properties

Sensor Output Unit Data Type Maximum Sample [1/sec]
Rotary encoder Angle deg int32 1000
Touch sensor Touch ON/OFF int8 1000
Light sensor Reflected infrared uintl6 1000

Table 3-2 Actuator properties

Actuator

Input

Unit

Data Type

Maximum Sample [1/sec]

DC motor

PWM

%

int8

500

The reference [2] illustrates many properties of the DC motor. In general, sensors and actuators are individually

different.

-11 -

4 System design

This chapter describes the system design.

4.1 Overview of total system

Figure 4-1 is an architectural concept for the NXT Scanner. The NXT Scanner has four control algorithms,

“MODE CONTROL SYSTEM”, “PAPER FEED CONTROL SYSTEM”, “SCAN CONTROL SYSTEM” and
“USB COMMUNICATION CONTROL SYSTEM”.

MODE uUsB
CONTROL COMMUNICATION [~ 1
SYSTEM CONTROL SYSTEM
Control button USB
Touch sensor
Touch sensor
SCAN
CONTROL >
. SYSTEM
Light sensor Scan control motor

/

Touch sensor

Motor encoder
PAPER FEED
> CONTROL

SYSTEM
Motor encoder Paper feed control motor

y

Input devices Control algorithm Output devices

Figure 4-1 An architectural concept

-12 -

4.2 MODE CONTROL SYSTEM

An internal control mode of the NXT Scanner is changed by active invents (user operation etc.) in the MODE
CONTROL SYSTEM. The control mode has six states, “initialization mode”, “idle mode”, “paper feed mode”,
“paper exhaust mode”, “scan mode” and “error mode”. Figure 4-2 is state transition diagram for the MODE
CONTROL SYSTEM.

Normal Initialization mode
*1
¢Ready for Everything is set
Release paper feed button Idle mode P Release paper exhaust button
» *2 h
A
Push scan control button
or
Finished scanning
Push paper feed button Push paper exhaust button Push scan control button
A 4 A 4 A 4
Paper feed mode Paper exhaust mode Scan mode
*3 *4 *5
4
A
Error mode
*6

Figure 4-2 State transition diagram for the MODE CONTROL SYSTEM

Table 4-1 The MODE CONTROL SYSTEM additional information

system name | MODE CONTROL SYSTEM
the point Control the control mode
1. Initialization mode: during initialization the SCAN CONTROL SYSTEM or the
PAPER FEED CONTROL SYSTEM

Idle mode: ready and waiting event

. Paper feed mode: doing paper feed
explain state .
Paper exhaust mode: doing paper exhaust

Scan mode: doing scan

Error mode: an error has just happened in the SCAN CONTROL SYSTEM or
the PAPER FEED CONTROL SYSTEM

Sound a buzzer during error mode because it differentiates the system in which

o g M DN

the error happened.
The MODE CONTROL SYSTEM should keep checking the SCAN CONTROL
SYSTEM because the control mode should change when scanning is finished.

note

-13 -

The SCAN CONTROL SYSTEM and the PAPER FEED CONTROL SYSTEM are controlled by the control
mode. Figure 4-3 and Figure 4-4 below are examples of normal and abnormal cases. The control mode is an
event request to the SCAN CONTROL SYSTEM and the PAPER FEED CONTROL SYSTEM.

User operation MODE CONTROL PAPER FEED
P SYSTEM CONTROL SYSTEM
Push paper exhaust button ﬁ
The control mode)
= paper exhaust mode
J
Release paper exhaust buton —————————— *
A 4 < Doing paper exhaust
The control mode (continue)
= idle mode
J

A
[Finished paper exhaust]

Figure 4-3 Handling the control mode PAPER FEED CONTROL SYSTEM flow in normal case

The system in which an abnormal operation occurred should inform the MODE CONTROL SYSTEM by an
error message. The CONTROL MODE SYSTEM receives it and sends it to the whole system by changing the

control mode to error mode.

. CONTROL MODE PAPER FEED SCAN CONTROL
Use operation SYSTEM CONTROL SYSTEM SYSTEM
Push paper exhaust button +
The control mode
= paper feed mode
L 4

Doing paper feed
(continue)

Error message

A 4

The control mode
= error mode
| Error happen
[Doing error processing] [Doing error processing]

Figure 4-4 Handling the control mode PAPER FEED CONTROL SYSTEM flow in abnormal case

-14 -

4.3 PAPER FEED CONTROL SYSTEM

The role of the PAPER FEED CONTROL SYSTEM is to adjust the paper position on the NXT Scanner. There
are these cases for positioning a paper i.e., before scanning and during scanning. Before scanning case uses the
control mode but during scanning case uses the control mode followed by an instruction for the SCAN
CONTROL SYSTEM.

Normal —
Initialization
*1
A 4
) Idle)
The control mode = idle mode | The control mode = idle mode
Lad *2 al
A
The control mode = idle mode
The control mode = pgper feed mode The control mode = pafjer exhaust mode The control mode = 4can mode
A 4 A 4 A 4
Paper feed Paper exhaust Scanning
*3 *4 *5

A
Follow an instruction for
SCAN CONTROL SYSTEM

A
Paper feed with scanning

*6

A 4
Error processing

*7

Figure 4-5 State transition diagram for the PAPER FEED CONTROL SYSTEM

Table 4-2 PAPER FEED CONTROL SYSTEM additional information
system name | PAPER FEED CONTROL SYSTEM

the point Control paper position on the NXT Scanner

Initialization: doing paper feed for initial processing
Idle: ready and waiting event

Paper feed: doing paper feed

. Paper exhaust: doing paper exhaust

explain state Scanning: scanning and do not paper feed

Scanning with paper feed: scanning and doing paper feed

Error processing: an error has just happened in the SCAN CONTROL SYSTEM
or the PAPER FEED CONTROL SYSTEM

If an error has happened in the PAPER FEED CONTROL SYSTEM then it

note should inform the MODE CONTROL SYSTEM by an error message.

N o g M 0P

Stopped paper feed in error processing.

-15 -

4.4 SCAN CONTROL SYSTEM

The SCAN CONTROL SYSTEM’s working to move the scanner head unit and scanning. Figure 4-6 shows the
scanning points. It scans the range of about 10cm? on the paper for 255*127 points. To speed up the scan, the
number of the scan points in the lengthwise direction is half that of the cross direction. Instead, the NXT
Viewer adjusts the missing data of the lengthwise direction by image processing. The result is 255*%254 data
points.

255 points scanning at equal spaces
p g q P

— —
(00000000

e 00000000
at equal spaces

1 Skip over a line because it can be adjusted by image processing

L 00000000

Figure 4-6 Scanning points image (interlace scan)

The SCAN CONTROL SYSTEM has a sequentially algorithm. When scanning, it should take turns at moving
the scanner head, getting an image data and requests for paper feed.

Normal

Initialization for the scanner
head position

*1 Finish scanning or abort

The control mode = idle mode

A

Ready initial position

A 4

Idle
*2

Start scanning
The control mode = scan mode
A
The scanner head move
from left to right

*3

Reach the right edge
Paper feed Request to PAPER FEED CONTROL SYSTEM

A

Finish paper feed a line

A 4

— — The scanner head move
Reach the left edge
Y\éaltlng paper feed finished < g from right to left

*4

A
Error processing

*6

Figure 4-7 State transition diagram for the SCAN CONTROL SYSTEM
-16 -

Table 4-3 SCAN CONTROL SYSTEM additional information

system name

SCAN CONTROL SYSTEM

the point

Control of scanning of the NXT Scanner

explain state

1.

Initialization for the scanner head position: the scanner head is moving to start
position

(continue scanner head move from right to left for detect switch of the scanner
head detection switch)

Idle: the scanner head has been ready and waiting for an event

The scanner head moves from left to right: receiving from the light sensor
(paper feed request will send to the right edge)

The scanner head moves from right to left: only moving and do not scanning
(paper feed processing is background process)

Waiting paper feed processing: waiting message from the PAPER FEED
CONTROL SYSTEM

Error processing: an error has just happened in the SCAN CONTROL SYSTEM
or the PAPER FEED CONTROL SYSTEM

note

If the SCAN CONTROL SYSTEM has failed then it should inform the MODE
CONTROL SYSTEM by an error message.

Getting from the light sensor only when the scanner head moves left to right.
After finishing the scan, the scanner head unit should go back to the initialize
position.

An error occurs, Scanner head stops.

-17 -

4.5 USB COMMUNICATION CONTROL SYSTEM

The USB COMMUNICATION CONTROL SYSTEM sends scanning data to the NXT Viewer via the USB port.
USB communication uses original protocol between the NXT Viewer and the NXT Viewer. The USB
COMMUNICATION CONTROL SYSTEM has two buffers for scan data as shown in Figure 4-8, and they are
checked every time. When full, it will send the buffer data. It is an asynchronous process between the SCAN
CONTROL SYSTEM and the USB COMMUNICATION CONTROL SYSTEM. You should require scrupulous
attention to the task cycle of the USB COMMUNICATION CONTROL SYSTEM. Generally if the task cycle

design is not good, buffer overflow will happen, overwriting, and badly impacts system performance.

| SCAN CONTROL SYSTEM | | USB COMMUNICATION CONTROL SYSTEM

Continue or not

Select current using buffer If it has full buffer or finished the scan buffer then it send.

[scan

v Y v
Store to Store to Send bufferl Send buffer2 Do nothing
bufferl buffer2

Figure 4-8 The flow chart for USB COMMUNICATION CONTROL SYSTEM

-18-

5 Module design for the NXT Scanner

This chapter describes the outline module design for the NXT Scanner.

5.1 Using library model for functional unit models

The NXT Scanner has functional unit models which are designed by system design. Each functional unit model

has test environmental. It will be registered pass a validation model with the library model. Each functional unit
model is described at next section.

DezHES EE

Pumg|

ata_Communica tinn

MODEL CONTROL SCAN CONTROL PAPER FEED usB
SYSTEM SYSTEM CONTROL COMMUNICATION
| N SYSTEM CONTROL SYSTEM

Figure 5-1 Library model

5.2 Shared data (Global variable data) for the total system
Table 5-1 shows shared data for the total system. It means global variable data for the total system.

Table 5-1 Shared data for total system

Data name Detail

The control mode:
(ControlMode)

Control mode for total system and data type is enumerated type
ERROR (error states)

INITIALIZE (each unit is doing initializing)

IDLE (do nothing)

PAPERFEED (doing paper feed)

PAPEREXHAUST (doing paper exhaust)

SCAN (scanning)

Initial value is INITIALIZE.

Data scope is total system

Writable is only the MODE CONTROL SYSTEM

-19-

The error code:
(ErrorCode)

Error status for total system and data type is enumerated type
NO_ERROR (expected states)

ERROR_001 (the scanner head system has error)
ERROR_002 (paper feed has error)

Initial value is NO_ERROR.

Data scope is total system.

The scan mode:
(ScanMode)

Scan mode in the SCAN CONTROL SYSTEM and data type is
enumerated type

SCANL_INIT (initialization)

SCAN_IDLE (ready and waiting event)

SCAN_SCAN (scanning)

SCAN_FEED (paper feed with scanning)

Initial value is SCAN_INIT.

Data scope is total system.

Writable is only the SCAN CONTROL SYSTEM

The paper feed mode:
(FeedMode)

Paper feed mode for the SCAN CONTROL SYSTEM and the PAPER
FEED CONTROL SYSTEM and data type is enumerated type
FEED_INIT (initialization)

FEED_IDLE (ready and waiting event)

FEED_PAPERFEED (doing paper feed or exhaust)

Initial value is FEED_INIT.

Data scope is total system.

Writable are only the SCAN CONTROL SYSTEM and the PAPER
FEED CONTROL SYSTEM.

The scan buffer
information:

(ScannerBuffer_Info)

Basically buffer information for between the SCAN CONTROL
SYSTEM and the USB COMMUNICATION CONTROL SYSTEM and
data type is enumerated type

TRANS_FINISH (finished data transfer)

STORING (storing buffer)

FULL_UP (full buffer)

Initial value is TRANS_FINISH.

Data scope is total system.

Writable are only the SCAN CONTROL SYSTEM and the USB
COMMUNICATION CONTROL SYSTEM.

The scan buffer status:

(ScannerBuffer_Status)

Buffer status for between the SCAN CONTROL SYSTEM and the USB
COMMUNICATION CONTROL SYSTEM

After using the scan buffer, it has to initialize to ZERO.

Initial value is ZERO.

ELP (end-of-line packet information) :bit4

0: other than end-of-line packet (it means beginning or mid-packet)

-20 -

1: end-of-line packet (include final packet for scan end)
START (START information) :bit3

0: normal scanning

1: START

STOP (STOP information) :bit2

0: normal scanning

1: STOP

DIR (direction for scanning) :bitl

0: to the right

1: to the left

VALID (identification information of valid data) :bit0

0: invalid data

1: valid data

Data scope is total system.

Writable are only the SCAN CONTROL SYSTEM and the USB
COMMUNICATION CONTROL SYSTEM.

The scan buffer number:

(ScannerBuffer_Number)

Number (0 to 30) of send data information for between the SCAN
CONTROL SYSTEM and the USB COMMUNICATION CONTROL
SYSTEM.

After using the scan buffer, it has to initialize to ZERO.

Initial value is ZERO.

Data scope is total system.

Writable are only the SCAN CONTROL SYSTEM and the USB
COMMUNICATION CONTROL SYSTEM.

The scan buffer data:

(ScannerBuffer_Data)

Data of scan data for between the SCAN CONTROL SYSTEM and the
USB COMMUNICATION CONTROL SYSTEM.

After using the scan buffer, it has to initialize to ZERO.

Initial value is ZERO.

Data scope is total system.

Writable are only the SCAN CONTROL SYSTEM and the USB
COMMUNICATION CONTROL SYSTEM.

The scan packet number:

(ScannerBuffer_Pnum)

The total number of current scanning packets for between the SCAN
CONTROL SYSTEM and the USB COMMUNICATION CONTROL
SYSTEM.

After using the scan buffer, it has to initialize to ZERO.

Initial value is ZERO.

Data scope is total system.

Writable is only the SCAN CONTROL SYSTEM.

-21-

6 Unit design

This chapter describes the unit design and introduces new features of R2008b.

6.1

Using enumerated type (New feature of R2008b)

Each functional unit model uses enumerated type which is a new feature of R2008b. The NXT Scanner is:

® Enumerated type used in Data Store Memory block for using global variable data

® Using Simulink Data Object for setting custom storage class

How to use enumerated type

Enumerated type setting:

1. Define for enumerated type in M-script

2. Data Store Memory block property sets enumerated type

Concrete examples of setting

The control mode in the MODE CONTROL SYSTEM is defined by the global variable the ControlMode. It

registers enumerated type named ControlModeEnum. The M-script has to register enumerated type as follows:

s

classdef(Enumeration) ControlModeEnum < Simulink.IntEnumType

enumeration
ERROR(-1) % error status
INITIALIZE(O) % each unit are doing initialization
IDLE(1) % doing nothing (no operation)

PAPERFEED(2) % doing paper feed
PAPEREXHAUST(3) % doing paper exhaust
SCAN(4) % scanning

-22 -

_—

Specifically, Figure 6-1 shows how to set for enumerated type for Data Store Memory block. Data type sets
ControlModeEnum from M-script (ControlModeEnum.m). Initial value also sets INITIALIZE from M-script.

ControlMode

[Z)Block Parameters: Data Store Memory X
DataStoreMemory

Define a memaory region for use by the Data Store Read and Data
Stors Wiite hlocks. All Read and Write blocks that ars in the
current (sublsystem level or below and have the same data store
name will be able to read from or write to this block

i Main | Signal Attributes | Diagnostics

Data store name: [Controlibds |

GCorresponding Data Store Read/Write blocks:
mtscanner ctrl/Controller/NXT SCANMER/Fcn ts1/Scanner b
Store Read?

Initial value for
enumerated type

Z] Block Parameters: Data Store Memory X
DataStorehemory

Define a memory region for use by the Data Store Read and Data
Store Write hlocks. All Read and Write hlocks that are in the
current (sublsysterm level or helow and have the same data store
name will be able to read from or write to this block

Main Signal Attributes ‘ Diagnostics

Minimum: |[| ‘ Masximum: |[|
Jata type:_| Enum: ControlVbdeEnum ‘p\ >]
Signal type: |r’ea\ v‘

N\

Entry enumerated type from

_ M-script
| value: [ControllodeE num INITIALIZE |
Data gtore name must resolve to Simulink sigral chject
RTW storage class: |Auto v‘
RTW type qualifier: | |
Interpret vector parameters as 1-D
[o][Gancel | [Helo] fmoy ok | [gancel [Hele Apply

Figure 6-1 Enumerated type parameters

-23-

6.2 Utilize Simulink function (New feature of R2008b)

The PAPER FEED CONTROL MODEL uses Simulink function in Stateflow which is a new feature of R2008b.
Simulink function can model Simulink subsystem of a function in Stateflow. Double-clicks the Simulink
Function block to view or edit the Stateflow chart.

Graphical function

E=====
N =

_| Viewing Stateflow chart window [

Simulink function

Double-click

Viewing Simulink model window

Figure 6-2 Difference between graphical and Simulink function

=24 -

6.3 MODE CONTROL MODEL

The mode_control.mdl is a model for the MODE CONTROL SYSTEM. Figure 6-3 shows top layer of the
CONTROL MODEL.

Eie [dn e fimuiston Fgmst Tk g

OFES B C =R T |

s v » el e DI ReBd . RERE

Put this subsystem
| down as the MODEL
CONTROL SYSTEM
with library model

Top layer of the MODE
CONTROL MODEL

Figure 6-3 Relating the MODEL CONTROL MODEL to library model

This model provides input signals for simulation, and output signals for the purpose of monitoring in the top

layer, just like in case of the other function models. By running the model, we can validate this model in unit

function.
[l made contral
B Edl Yew Zmulston Formal Tooks Hel
[NER- = N L FouF0 [Hormal AREumREe s hEEe
e | ’ e] | e | I ER | alrsatalol Tl sazinres ak?, mpl)
FTTTTTTTS \ ———— N
: ! "
1 e : | I Ll Duth —'-G'T) I
1 \ 1,4 1
T Traceml =
1 L sel—w(T) i
1) | ou 1 .
! e e : Monitors of
1 L'_pm_.m [. ’ output for
| P77 Al : :
o ' validation
]
| - \
] :]
Input ! '
signals for | !)
validation X !
|
' |
\ 1
ooy N _m FrendSanplimerey £

Figure 6-4 Top layer of the MODE CONTROL MODEL

-25-

Shared data
Global variable data to share between other tasks by uses of Data Store Memory blocks. Also the ErrorCode, the
ScanMode and the FeedMode use the enumerated type and Data Store Memory block. The setup step is the

same as that of the ControlMode.

sHE » ED Marmal BB REE®

———
h | - —

” ContrelMade [EnerCode L J ScanMeds J | FredMads i [xsreadsdoUnxtscanner. xIs”, ' mpt}]
~ - - -

Shared data (global variable data) for total system |

Figure 6-5 Shared data of the MODE CONTROL MODEL

Algorithm implementation

Figure 6-6 shows the main algorithm model. Input signals (the ScanControl) to Stateflow are shown by Figure
6-7. The ScanControl has two trigger patterns which are all finished and user operation. All finished trigger
happens when the ScanMode changes state of to send a latest scan data. As shown in Figure 6-8, the Stateflow

is the same as the one shown in system design of state transition diagram.

=] mode_control/mode_control_test/ModeControl

File Edit Wiew Simulation Format Tools Help

= = = T » = B Hormal] EHe RS rPEE®

| Manage scan start/stop states |

/ L
i

W] »
U8 L L/ | Lo ML / Controlhade ControlMode
-
P I : e Jo|FaperFesdEin
CO—T D L PaperFezdBin
m SoundFreq 4@
-
e rfouen oftzon P! Sean Control e
SeanCentrolBin | Main algorithm
BinOnDetest
Frereads
— SoundDur ——w{_Z)
Soundbur
Feamils
Soundibl ——{ 3)
Ready vam Frndimslia F » \ Soundvol
made_control_main
Ready 100% FizedStepDizcrete

Figure 6-6 The MODE CONTROL MODEL and library model

-26 -

"I mode_control/mode_central b
B £t Vew Semulston Formst ook belp
[sRy- 3=}] i

AMndeControl

mode_control/.../ModeGontrol/BtnOnDetect

Format Tnols

B » F0 Mormal -
Scan stop request trigger control
for when all finished

Eile Help

O

Edit Miew Simulstion

== =] e B e BEEE

p AY
I e et ScanMode P
al ‘2 Scope
oo ITIITIITIITIITITIITIITIITIIIIC
1
button
» L
o :
™~ -
Pt = - - Scan control fF--------------- D)
button states T
Ready 100% F ixedStepDiscrate
Figure 6-7 Manage scan start/stop states
MNORMALS [ScanMode == SCAM IDLE && FeedMode == FEED IDLE] 5

IDLE/S

en:
% no contral
ControlMode = IDLE;

&
% mecha initialize
GontrolMode = INITIALIZE;

Idle mode Initialization mode

[PaperFesdBtn == 11 b

PAPER_FEEDS
% paper feed button operation

Br.
ControlMode = PAPERFEED,

[PaperFeedBtn == 0]

T 1
[PaperExhaustEtn == 113 [ScanGaontrol == 1]

[PaperExhaustBtn == 0] [ScanCaontral == 01

PAPER_EXHAUSTS

% paper exhaust button operation

en:
GontrolMode = PAPEREXHALST:

SCAN CONTROLS
% scan control button aperation

en
ControlMode = SCAN;

Paper feed mode Paper exhaust mode Scan mode
normal
[ErrorCode |= MO_ERROR]
[ErrarCiode == ERROR_001]
a -
Rt A e i e ~
¥ saund select % =ound zelect |
}SoundFreq = ERROFR 002 S0OUMD_FREC, }SoundFraq = ERROR_001_SOUMD_FREQ; |
]
| Sound a buzzer control
ERROR/S
% error job
B
CaontrolMode = ERROR;
% sound for svstem errar
SoundDur = ERROR_SOUMD_DUR;
Sound¥al = ERRORSOUNDVOL:
Abnormal

Figure 6-8

Main algorithm of the MODE CONTROL MODEL in stateflow

-27-

6.4 PAPER FEED CONTROL MODEL

The paper_feed_mechanism.mdl is a model for the PAPER FEED CONTROL SYSTEM. Figure 6-9 shows the
top layer of the PAPER FEED CONTROL MODEL.

=1 paper_feed_mechanism/Paper Feed_Test

. File Edit Wew Simulation Format Tooks Help
Eik Edt Ywow Gieulton Foreal Jook Help 0o = u é '} » ﬁ ,m E
0D FES R e e T
B{ERRILAET
s | o || e || e
p— o]J b e] = r(r T D
{=n } = Ctrtate G Paper Feed
[;.:: Ready Register this subsystem as a library
o (PAPER FEED CONTROL SYSTEM)
P T — .- I [—— - ‘
i | \

Top layer of the PAPER FEED
CONTROL MODEL

Figure 6-9 Relation the PAPER FEED CONTROL MODEL to library model

This model provides input signals for simulation, and output signals for the purpose of monitoring in the top

layer, just like in case of the other function models. By running the model, we can validate this model in unit

function.
Formal Took Help
D@@S (DR |cstozreafp [IREBS: RRES
BABIIATETL = ———m -
A el | el % i
- . B e)
' \ J ‘ : :
" ' | |
" et o} Moo o " It 'El :
: | I L = !
| | 1 1
f : Fora ! N
, ! e e | [T }—:—. :
: : [MT’_:_. : Monitors of
! : —_— ! : output for
Input i e L e = - | validation
signals for | | I : : |
validation ||\ ‘===z M- ’
Pty 1008 FeoadStenDiscrats

Figure 6-10 Top layer of the PAPER FEED CONTROL SYSTEM

-28-

Algorithm implementation
The PAPER FEED CONTROL SYSTEM consists of two parts, the control flow part (written by Stateflow) and

the error detection part (written by Simulink model). See Figure 6-11.

=] paper_feed mechanism/PaperFeed Test/Paper_Feed

File Edit View Simulation Formst Tooks Help

hi=eEd& T » = F Hormal || B B S REE®

‘ ROTORFLAG ‘ ‘ ROTORIMT ‘

[<Encader?
Encader
wcoder

S3
s

ewan| The control

flow part
o L A A
<Ensade> : > — > E— :
@B — — _ _ o _________-_---- 4
Ready The error FixedStepDiscrate

detection part

Figure 6-11 Top layer of the PAPER FEED CONTROL

The control flow part

Figure 6-12 is the control flow part written in the flow chart style. The branching algorithm processes the data
(the ControlMode, the PaperFeedMode) shared with the other control system models. The Simulink Functions

called from this chart are placed at the bottom of this chat. See Table 6-1 for details of each Simulink Function.

The control mode The paper feed mode
checking (ErrorMode) checking (FeedMode) Co o,

| Call Simulink function

Simulink functions |77 |

Each function is defined as
Simulink Subsystem

Figure 6-12 The control flow part of the PAPER FEED CONTROL

-29-

Table 6-1 Simulink function list in the PAPER FEED CONTROL MODEL

Simulink function

Arguments

Return value

Note

task_init

encoder value
(DC motor?2 for
paper feed)

current PWM value
enable/disable flag

(error judge)

initialize processing
(After power-on, automatically

move for initialization)

task_paperfeed

current PWM value
paper move direction
enable/disable flag
(Error judge)

paper feed processing

(paper feed button operation)

task_paperexhaust

current PWM value
paper move direction
enable/disable flag
(Error judge)

paper exhaust processing

(paper exhaust button operation)

task_stop

current PWM value
enable/disable flag
(Error judge)

stop of paper feed and exhaust

processing

task_feed paperfeed

encoder value
(DC motor?2 for
paper feed)

current PWM value
paper move direction
enable/disable flag
(Error judge)

paper feed with scanning

processing

-30-

The algorithm of the control flow part

Figure 6-13 is the flow chat of the branching algorithm of the control flow part.

ControlMode == INITIALIZE
(initialized for unit)

FeedMode == FEED_INIT
(initialization mode)

v v

task_stop (stop paper feed/exhaust) task_init (initialization)

ControlMode == PAPERFEED
(doing paper feed)

\ 4

task_paperfeed (doing paper feed)

ControlMode == PAPEREXHAUST
(doing paper exhaust)

\ 4

task_paperexhaust (doing paper exhaust)

ControlMode == IDLE
(do no operation) ___——] ey > NO
A 4

task_stop (stop paper feed/exhaust)

ControlMode == ERROR
(error states)

\ 4

task_stop (stop paper feed/exhaust)

FeedMode == FEED_PAPERFEED
(paper feed mode)

v v

task _feed_paperfeed

task_stop (stop paper feed/exhaust) i)
(paper feed with scanning)

Figure 6-13 The algorithm of the control flow part

-31-

Initialization (task _init)
Right after the NXT Scanner is powered, constant paper feed is forced automatically. This process is necessary

to avoid the backlash of DC motor for paper feed.

5] paper_feed mechanism/.._/Ghart/task_init

File Edit Wiew Simulation Format Tools Help

DeH& i P o F Morms| - He [pEE®

-]

T
a1l
ROTORFLAG - u1
e
Initial process
If v
if[)
(O e = > P vt bt
Encader
Init_Task
' Mot ()
el (] Pt
= » bl e bt
Given_ Task, —
Continuing/terminal
true -2
process e
SampleTime =
Ready 100% FixedStepDiscrete
[T paper _teed_mechanismd, Aok it dGiven_Task |)
Fle [dit ‘few Zimudation Formet Tools Helo Ele Edn Vew Swulston Fomat Took Helo
DSES T P eF e CDmBbe REES e PREIF e
[=e] ——
e Set the flag detecting the initial process to 1
. | set the FeedMode (FEED_INIT) D |
e /S — Set the PWM to 100
— T o= [
e —— L » =
=] - S— - o
o 0 »M\

Save the current encoder value 2
Set the flag detecting the initial process to 1

Set the flag detecting the initial process to 0 Set the PWM to 100
Set the FeedMode (FEED_IDLE)
Set the PWM to O

9% FueditepDiscrate

Figure 6-14 Initialization process (task_init Simulink function)
The initialization process has two subsystems which are the first process and the continue/finished process. The

value of Data Store Memory is used for selecting subsystem.

Initial process has functions described below.

® Save the current encoder value
® Set the flag detecting the initial process to 1: This will make the transition to the continuing process.

® Set the PWM value to MAX (100).

-32-

The continuing process follows after the initial process, and paper feed operation will start.
® Set the flag detecting the initial process to 1
® Set the PaperFeedMode to FEED_INIT
® Set the PWM value to MAX (100)

If the encoder value increases for 1000 degrees of rotation from the value saved at the initial process, Paper feed
terminates by the following terminal process.

® Set the flag detecting the initial process to 0

® Set the PaperFeedMode to FEED_IDLE

® Set the PWM value to MIN (0)

After the initialization, The PaperFeedMode changes FEED_INIT to FEED_IDLE. This change implies the end
of initialization, and it is informed to the MODE CONTROL MODEL to switch the ControlMode.

Paper feed action (paper feed button) (task paperfeed)

This process is called when the paper feed button is pushed down by users. This process has functions described
below.
® Set the PWM value to MAX (100)
® Set the backlash direction flag to 0: This means that the direction of the current backlash is same as
that of paper feed.
® Set the flag to 1 for enabling error detection: This information will be sent to the error detection part
as a signal.

51 paper feed mechanism/...fChart/task paperfeed

Eile Edit iew Simulation Format Jook Help

O d& i » 3 Hormal -

8
b4

Z

g_

@
Y
1

EnDetect

Sempl=Time = -1

Set the PWM to 100
Set the backlash direction flag to 0
Set the flag to 1 for enabling error detection

R — L AR

Figure 6-15 Paper feed action (paper feed button) (task_paperfeed Simulink function)

-33-

Paper exhaust action (paper exhaust button) (task paperexhaust)

This process is called when the paper exhaust button is pushed down by the user. This process has functions
described below.
® Set the PWM value to MAX (-100)
® Set the backlash direction flag to 1: This means that the direction of the current backlash is same as
that of paper exhaust.
® Set the flag to 1 for enabling error detection: This information will be sent to the error detection part

as a signal.

E! paper_feed_mechanism/.../Chart/task_paperexhaust *

File Edit View Simulstion Formst Tools Help

O=E2E& T » 3 Normal -

8
.4

P

g_

g
b 4

EnDetect

SampeTime = -1

Set the PWM to -100
Set the backlash direction flag to 1
Set the flag to 1 for enabling error detection

Ready 100% FixedStepDiscrete

Figure 6-16 Paper exhaust action (paper exhaust button) (task_paperexhaust Simulink function)

-34-

Stop of paper feed/exhaust action (task stop)

This process is called to stop the DC motor for paper feed, while the paper feed/paper exhaust are not in action,
or the scanner head is moving. This process has functions described below.

® Set the PWM value to MIN (0)

® Set the flag to 0 for disabling error detection: This information will be sent to the error detection part

as a signal.

1 paper_feed_mechanism/__/Ghart/task stop *

File Edit Miew Simulation Format Tools Help

O eES T+ » = f Hormal -

falze w2

EnDetect

SempieTime = -1

Set the PWM to O
Set the flag to O for disabling error detection

Ready 100% FixedStepDiscrete

Figure 6-17 Stop of paper feed/exhaust action (task_stop Simulink function)

Paper feed action under scanning (task feed paperfeed)

This function defines the process of the paper feed action required during the process of scanning. This process
is quite similar to the initialization (task_init), thus a part of this model is diverted from the initialization
(task_init). This section shows you the specification of this function which differs from the one of initialization
(task_init). One of the differences is that the backlash taken care of in this function. The direction of the
backlash is passed to this function as an input argument. The incremental value for the encoder is determined
depending on this information. For example, if the direction flag is 0, it is decided that the paper feed was done
just before, and gives 102 degrees to feed one row of the image data. If the flag is 1, it is decided that the paper
exhaust was done just before, and gives 102+50 = 152 degrees to feed. In the latter case, the 50 degrees is the
offset to cancel out the backlash.

LookUp Table is used to define the PWM output response to the encoder input. This is because we would like to
avoid the coasting of the rotation of the motor while adjusting the PWM output. We used the data logging
function of The NXT GamePad to tune the table data. The NXT GamePad is a PC utility which provides a

function of Bluetooth communication with The NXT Scanner.

-35-

= D_- =

Initial
process

Continuing/Terminal
process

sh_leed paperleed (Biven_Task ¢

Eile Edit Yoew Girdation

0 FES

EED

Fo e - BmBS

W EE S

]

e

i

Input to LookUp Table with

 ——
Compute the angle of
rotation considering the

considering backlash

C ~ —h |
P b
{)

I lmhd wEES

-

Set the flag detecting the initial process to 1
Set the FeedMode (FEED_PAPERFEED)
Set the PWM (use LookUp Table)

i
P B Jem

w1}

i

backlash =7 Set the flag detecting the initial process to 0
\m Set the FeedMode (FEED_IDLE)
Set the PWM to 0
_— Set the backlash direction flag to 1
Figure 6-18

Paper feed action under scanning (task_feed_paperfeed Simulink function)

There are 127 rows to be scanned, so the paper feed is done 127 times during the process of scanning. Interlaced
scanning is employed. It gives a square image. Figure 6-19 is a part of the image, and you can see the image is

lack of data in columns. The NXT Viewer can interpolate this incomplete image by using the MATLAB image

processing functions.

Figure 6-19 Result of scanning (sample)

-36 -

l'! {1

1
|

Scan range

Distance of each line of interlace
scanning

=102 [deg] * 9.0278 * 10 [cm/deg]
=0.0921 [cm]

Scan range
=102 [deg] * 9.0278 * 10 [cm/deg] * 127
=11.6946 [cm]

Scan target
A4 paper
[

Figure 6-20 Scan range (paper feed direction)

Figure 6-20 shows the data computed from the data in Section3 (Mechanisms for the NXT Scanner). The
moving distance of the paper feed per degree of motor rotation is 9.0278x10™ [cm/deg]. So the resolution of the

paper feed is about 27dpi [dots per inch].

-37 -

The error detection part

Figure 6-21 is the error detection part. The subsystem of the error detection part is enabled by the signal sent

from the control flow part. If this subsystem is enabled, every 10 steps the current encoder value is saved, and

compared with the previous value. If these two encoder values are equivalent, the error code is updated from
NO_ERROR to ERROR_002, and the error condition is passed to the MODE CONTROL MODEL.

[Error o

detection

[l paper jeed mech

If error detection flag is

: | enabling, then start counting (by __E‘__L,__

10 steps)

CEE
Eile Edit Vew i
0 WS R i s fened | DmBE REES

£ Compare the current encoder

value with the previous value
] obtained 10 steps before

FiamfSienliscatn

10 10 e Gty fun e

T v LI (L

If the values are equivalent, then
update ErrorCode to ERROR_002

Figure 6-21 The error detection part (subsystem)

-38 -

6.5 SCAN CONTROL MODEL

The scanner_head.mdl is model for the SCAN CONTROL SYSTEM. Figure 6-22 shows top layer of the SCAN
CONTROL MODEL.

e

[= 5]

Bie Edit Mew Zimulston Fgmat ook Hel

DEES al: 3 pefE e D ReBe - REEE

R L5 el o R o B b DSEa& N T B] T [PP
(I)—*W el 1)

o
[I [Encoter
e
i1 ithn|
I — T Termirtorl
Ligh! Sarcer
() =
w2 =
Beannar Hi

Register this subsystem as a library
s (The SCAN CONTROL SYSTEM) —

- Jam mssl TOP layer of the SCAN
CONTROL MODEL

Figure 6-22 Relation the SCAN CONTROL MODEL to library model

This model provides input signals for simulation, and output signals for the purpose of monitoring in the top
layer, just like in case of the other function models. By running the model, we can validate this model in unit

function.

m
DRSS B e T y T e] BEB& B

= —| Stab subsystem for
validation

Monitors of
output for
validation

e S e

Inputs e | e 1= - - - - -
signal for 3 '
validation

Figure 6-23 Top layer of the SCAN CONTROL MODEL

-39 -

Algorithm implementation
The SCAN CONTROL MODEL only uses Stateflow. The Left part of Figure 6-24 is the state chart, and the

right part are the graphical functions designed by a flow chart. Table 6-2 is a list of graphical functions.

System error ; ;
--J] Graphical functions |- _
HP S H H [SantralMade == ERRDA] 5cm RADRS
i initialization - Ameten scan_enwironment N \
! mmd puxuun ol l :{mm m:iuncﬁwn I - \
B
silh | T ERRDR.STOR CanwalMade == ERAGA] \
z NS o [-~ = | f — \
saen_stet pasiian_seakl); ;;“"_:'u I scan start position seek. 1
Ervarda Error 1 1
|]
(e CR (3 ity & By - [GanvalMads 1= ERADR 85 Santall message [ZantalMade == ERRDR] : | Ameton initfars target dir) | U
]xl'!,usb)mp:]‘ inm_u:h)mn(l | :
0 | Treton - | !
1 soan_control right 1
1 1
[
/” The scanner head move from left to right \ ' e !
o ! | soan_sontrol Jaft | !
scanner heod right-ssanning] 1
Ser oA [ScanMade == SAN_FEED] ! !
e) {BcanMtade = SCAN.SCAN;) ' [Fneton !
ozl | paper_feed]nit !
Sz 0 .
an_timeaver, cn==»o:scm RTMEQUT, system_clack jnk; \ 0
.) N |
\ paper feed H
[Ssantade == STAN_STAN] T 1 |
]]
APERFEED L Amation
(s h (= — ' D— | -
]
r_feed jnitl); _—
gﬂxr.}ﬂ. Gt = somn) | Em o ! X
: e i &= hmznver _checkarg target ms, argnow_clock) {
e heck{ SCAN_F_TIMECUT, lacln]; !
Saan_tmeaver_cheal _F_1 [, syztzm_alachin); H]
The scanner head move from right to left | | '
Waiting finished paper feed : |w. P om0y s Casen 0 a.ri |
|
;
£ sp i RUNTME ERROR 1 1
E | T T i —— !
SGANERRDFLSTDF’/ RUNTNE_ERF{DR_STDF’I] |
s har Du\ywoce demanstretian I 1
::rgu(k ERRUR001; mvcu« ERROROD: ! function 1
ScannerBuffer nfalzelzct]= FULLUR; \ soan ush stop !
annerButfer_Statsfaelect] = mmuwdw(! tart fig, 1, DIRLY; \ ’
SEzannerButer Prumlselect] = palyspacelpm_outl; ,
4
Error Error message (for N e e - =%
message PolySpace DEMO)

Figure 6-24 Main algorithm of the SCAN CONTROL MODEL

=40 -

Table 6-2 Graphical functions list in the SCAN CONTROL MODEL

graphical function

argument

return

note

scan_environment

initialization processing for

moving to start position

scan_start_position_seek

moving to start position

algorithm function

scan_init

target direction

initialization processing for

scan start

scan_control_right

Move from left to right

algorithm function

scan_control_left

Move from right to left

algorithm function

paper_feed_init

initialization processing for

waiting finished paper feed

paper_feed

Waiting finished paper feed
function

scan_timeover_set

initialization processing for

timer start

scan_timeover_check

limited time

current time

Checking limited time function

status_maker

ELP information
START information
STOP information

DIR information

send status

Making status packet for USB

send function

get_pwm_value

target direction

current position
target max speed PWM
target min speed PWM

current PWM

value

Get PWM value function

scan_ush_stop

Making final USB data transfer
for forced termination (All scan
finished)

-41 -

Storing scan data

Storing scan data is processing of scan_control_right graphical function during moving the scanner head unit

from left to right. Figure 6-25 shows Stateflow algorithm of the scan_control_right graphical function.

rnadion scan_controlright

[e Set PWM

1| now position = start position - encoderin;]
A|_ prms out = get pem value (DIR_R, now position, SOAM R MAX PWM, SCAMRMRPWMY)

[touch jn == 1 && now pasition > 01
_______ .| If PWM is ZERO, finish moving | | Error: detect the touch sensor l_ .
| H edee detaction T 1 |
) [pmmout == 0] | \ STOR:
_________ 3
L
________________________ | Specify the scan range |
[(now position > SCAN_START £& now pasition > encodar basa)]
i I
‘? [now position <= (S0ANEDGE - SCAM, START)] n
""" Sro===c=coco-c-co--oo-oof "){,_________| Storing scan data to the buffer
2 I’n next scan position ‘I
_ encoder base = encodar base + 2;
(&)_[Ime,er\djg =l 1 % store data !
f | ScannerBuffer Data[zelect][SoannerBuffer Mumber[select]] = lightsensorin; | = - - - Y
| ScannerButier Mumber(select]++ \ K righ t-scannine fnished
L \GeannerBuffer Infol select] = STORING: , ks =§EGE&?EFE.%RFE 3 :
sood e e [e e ‘
riznsmag This lineis finished }“mm"demm i
1 lir d_fig = s .
0 Doty ' [ScannerBuffer Number(select] 3= 30] Finish moving
ScannarBuffer |nfio] select]=FLULL LF; .
| pactent oo ' F——"-0 to right
S:snnerEluﬁEr’Pnum[se\ect] packetont; |
L _______________ d
cpoccoooooooooo
(A Full of the buffer
I ScannerBuffer Infolselect]=FULL UP; T
1 SeannerBufier Status[select] = status maker(D, start_fig, 0, DIRFL |
i -0f-li | ScannerBufier Pnum(select] = packet cnt; |
e _] Making the end-of-line packet | _smwg T W
: ;SCannerBuﬁer Sfratuslselect] = statusmaker(l, startfe, 0, DIRA) ' [select==1]
| SeannerBu fer Statuslsalect] S Rlemallerts _st;r(_ﬁs_I DIRMY _I A :
. e SRR frepmp—" i of e | Next buffer set
_________ — il
ST All scan |sf|n|shed | (i L, g O y }\

Figure 6-25 Algorithm of the scanner head moving from left to right

Figure 6-26 shows the scan range in the red boxed text on an A4 paper. SCAN_EDGE is defined the range of
moving the scanner head unit and the unit of SCAN_EDGE is the rotary encoder value (degree). Scanable range
is SCAN_EDGE minus both edges of SCAN_START. Figure 6-26 shows each value which are using below
value in Section3 (Mechanisms for the NXT Scanner). The moving distance of the scanner head unit per degree

of motor rotation is 0.0215 [cm/deg]. So the resolution of the scanner head is about 118dpi [dots per inch].

The scanner :
head unit can H
drive range i
i
1
1

'
Parameter SCAN_START(105)
=105 [deg] * 0.0215 [cm/deg]
=2.2575 [cm]

Parameter SCAN_START (720)
=105 [deg] * 0.0215 [cm/deg]
=2.2575 [cm]

Parameter SCAN_EDGE (720)
Scan target =720 [deg] * 0.0215 [cm/deg]
A4 paper =15.48 [cm]
[14

Figure 6-26 Scan range (the scanner head moving direction)

- 42 -

Reqular intervals scan position

Scan is done 255 time every line. At this time the most important thing is scan timing. If scan timing will be not

equidistant, the resulting image will not look good. To use timing that depends almost entirely on the task cycle

is not a good idea. This is because the scanner head motor movement is non-constant. Therefore, the NXT

Scanner uses feedback from the rotary encoder value of the scanner head motor. So the control should be

designd to scan regularly in the target position. Figure 6-27 shows it code in red boxed text. As you see, the scan

target positions are at 0.0439 [cm] intervals.

[(now pasition > SCARSTART &4 now pasition > encoder base]

- ?’—D: :l:
[now position <= (304N EDGE - SCAMSTARTI
f

z

[line 2nd g == 0]
f—=)

{

% zend final packet

line endfle =1;

line cnt ++;
SeannerBufer Infol zzlect] =FULL_UF;
packet cnt ++;

ScannerBuffer Pnum[select] = packetent;
1

[line_znt >=1 27
o
2
1

>0

This is next target encoder value.
Scan distance

=2 [deg] * 0.0215 [cm/deg]
=0.0439 [cm]

M next scan position

encoder base = encoder baze + 2;
RS

ScannerBu fier Datal select][ScannerBufier Mumber[select]] = lightsensor jn;
ScannerBufer Mumbar[zelact]++

ScannerBuffer Infolselect] = STORING:

t

M buffer full detection
[ScannerBuffer Mumber]zelact] = 30]

B

{

packet cnt ++;

ScannerBufier Infol select]=FULL_UP;
ScannerBuffer Status[select] = status maker(D, start_

ScannerBuffer Pnumlzelect] = packet ont;
ok eor:

Figure 6-27 Scan distance control (scan_control_right graphical function)

-43-

Control of scanner head stop position

If the result of scanning the image is not good looking, one of the reasons is the stop position of the scanner
head unit. It means the scanner head unit can not stop at the predetermined position. The main cause will be the

inertial torque effect. The PWM control algorithm should stop exactly the same position (SCAN_EDGE) every
time.

__

Acceleration and Reduction Goal In backlash adjust

constant section section section

Figure 6-28 Scanner head speed and stop control (get_pwm_value graphical function)

The target minimum speed PWM is fixed by metering experiments, because the scanner head unit has the
frictional force and the load torque from the cable. The target minimum speed PWM means it is the minimum
power required to move the scanner head unit. The starting point of the reduction section is also fixed by

metering experiments. Therefore, if you should change the any specification (hardware structure, PWM, etc.),
you need to exercise caution.

-44 -

Avoid backlash
If the result of scanning the image is not good looking, one of the reasons and most the potentially influential
factor is a backlash. Target positioning and current position discord from the real position because the gear has

backlash. Figure 6-29 shows backlash cancel for each case.

funetion scan_nittare_tareet dirk

{

ling_end_fle = 0;

packet cnt = 0:

ScanMode = SCGANSGAN,
lencoder_base =5GANSTART,

% request of scan direction
[are tarest dir == DIR_L

[start flg == 1]

| % for right-scanninghomaly)

4

i 1% for right-gcanninelonly after initialize) \ |

| start position = encodsr_in ~-BACKLASH ADJUST: : Istart position = encader_in ~RELEASE TOUGH SENSOR -BAGKLASH ADJUST | |1 start position = encoder in +BACKLASH ADJUST: |
]]

‘.’&

for left-scanning

BACKLASH_ADJUST (21)
=21 [deg] * 0.0215 [cm/deg]
=0.4515 [cm]

.. e g A
O
Start position include backlash — Start position include backlash adjust
adjust (It is subtraction when initialization,
(it is subtraction when right include usual right direction and
direction) freeing from touch sensor)

BACKLASH_ADJUST (21)
=0.4515 [cm]
RELEASE_TOUCH_SENSOR (25)
=25[deg] * 0.0215 [cm/deg]
=0.5375 [cm]

Start position include
backlash adjust

(left direction is addition)

Figure 6-29 Backlash adjust control (scan_init graphical function)

Reduced scanning time

Moving to left of the scanner head unit and paper feed are parallel process. This can reduce scanning time.

i i

.

Aﬂﬂ CRMALY ;
5o AT _PICHT/

% scanner head right-scanning

| Moving to right |

an:

san jnit{DIR_R];

saan_timaaver_set);
soan_santral_right();
4

saan_santral right
saan_timaaver_shachk BTAN_R_TIMEDUT, szt

[EsanMade =

Paper feed
request when
finish moving

.

J/

[ScanMade == SCAN_S0AN] T

P APER_FEED L

™

% papey faed at |=ft =dg=
=n:
paper_fead jnit);

Waiting finished

STAM_LEFTS

[Scanfade == BOAM_FEED]

% scanner head left-scanning

N

SOAN_BTAM;)

Moving to left

en:
ssan initiDIR_L;

paper_fead]];

- T4
paper_fead]];

_

saan_timaaver_s=t];

saan_timeavar_chaahsg

paper feed

[ScanMade == SCAM_FEED]

(Can not start next
scan until finished
paper feed)

-

o an_Hmeaver_ss
soan_cantral Lt
Sup

Moving parallel
to paper feed

saan_cantal lef);

saan_timeaver_chechl SEAN_L TIMECUT, wstem_slaskinl:

~

Figure 6-30 Scanner head move from right to left and paper feed control

- 45 -

6.6 USB COMMUNICATION CONTROL MODEL

The data_communication.mdl is model for the USB COMMUNICATION CONTROL SYSTEM. Figure 6-31
shows top layer of the USB COMMUNICATION CONTROL MODEL.

7] data_communication/ Data_ Gommunication_Tes
Eile Edit Wew Ginulstion Format Tools bieh
0 & W& Blesg o rap oma] BEBd o REE:

L LR Ll

[i R

ey M — S e |

T —

Put this subsystem down as

the USB COMMUNICATION e

CONTROL SYSTEM with
library model

Top layer of the USB
e COMMUNICATION o Fosnatisvs
CONTROL MODEL

Figure 6-31 Relation the USB COMMUNICATION CONTROL MODEL to library

This model provides input signals for simulation, and output signals for the purpose of monitoring in the top

layer, just like in case of the other function models. By running the model, we can validate this model in unit

function.

Eiw Edit Vew Simulston Format ook Help
DEES - B e S REES
Driver for =)L

validation

Inputs Monitors of
signal for output for
validation validation

Py 100 Fisedirepliscrets

Figure 6-32 Top layer of the USB COMMUNICATION CONTROL MODEL

- 46 -

Algorithm implementation

Figure 6-33 shows the USB COMMUNICATION CONTROL MODEL. Figure 6-34 shows the USB
communication algorithm which is written using Stateflow. After the Stateflow process, USB send data (64
Bytes) is merged status (2Bytes), number (2Bytes) and data (60Bytes).

E! data_communication/Data Gommunication_Test/Data_Gommunica... E|E|E|

File Edit Aiew Simulation Format Tools Help
[data communication/ Dats Communication_Test = Z
Ele [Yow Smoaton Fomet lok Heo U=da iy 4 |BD |N0r s ﬂ
Deua T]
i} ush_send_status L 3
ush_zend_number - =® Send data
] ush_trans data
" i ush_send_data -
COMUNICATION »2 3 | Trigger for
e T request_event send
DISCONNECT, » 3) |
Y disccnnecteven| Trigger for
Pacdy 00 [uzb_communization_main terminate
Ready 100% FixedStepDizcrete

Figure 6-33 The USB COMMUNICATION CONTROL MODEL outputs

When finished scanning is finished, the connection should be terminated. Thus the USB COMMUNICATION
CONTROL MODE should be monitoring the scan buffer. After latest scan buffer send, the USB
COMMUNICATION CONTROL MODEL waits 1 sample time and then terminates the connection. Using state
(CLOSE) generates 1 sample time wait.

l | Communication process Graphical functions

OPEMS Function
&

1) uzb function
ush_functiond;

digconnect = uzh_final_check®:;
Al

L
ush_function;

:) Funeti
disconnect = ush_final_checki; neton

usb_communicationfare_select_buffer)

function

[disconnect == 1] [dizcannect == 0] init_buffer (arg_select bufh
CLOSES
e finetion
DISCOMMECT;

! final = uzb final check
digconnect = 0,

| USB termination

Figure 6-34 Main algorithm of the USB COMMUNICATION CONTROL MODEL

-47 -

Requisites for send buffer are full of buffer or latest data is stored when finished scanning. The buffer is a
double buffer structure. When designing the task cycle in the system design, you should take care of two points.
First, it is necessary to design the task cycle such that both buffers not fill up. Second, it is necessary to
alternately to use the double buffer. This is because when scanning is finished, sometimes each buffer becomes
full. So ScannerBuffer_Pnum is used.

fumctiar Uzh_function
e~ Clear USB send data
: usgh_gend statuz = 0; :
\ ush_send_number = 0;
usb send data = [!
'\ _t]j\sconnect =0 /' " "
T ST T T T T TiScémmerBuffer nfoli] == FULL_UP && ScannerBuffer nfal1] == FULL_UF] US'”Q different buffer
> =0 (previous and current)

' 1
1
| [SearnerBufter_ Pruml0] <= ScannerBuffer Prum[1]] :
[ScannerBuffer Infol0] == FULL_UP] | o \
4@
& S < . A ’
[ScannerBuffer Infa[1] == FULL_UF]
L. | | A | A { .
8 SEDEMIELY % USBiB ST % USEIB{ ST % USEIRISSEIT 4 USEIBISZEIT
] ush_communication{l; ush_communicat ion 1, ush_communication (1}, ush_communication(0)
init_buffer(ly, init butfer (), init_buffer{} init_butfer @
?OMUNICRT[ON, IOOMUNIOATION ?OMUNICHTIOM GOMUNIZATION;
[} O

Figure 6-35 Communication process (usb_function graphical function)

-48 -

7 Simulation for each models

This chapter describes the simulation process and the results of the NXT Scanner. Before simulation, please

execute the setup_nxtscanner.m. This file sets a path for the NXT Scanner environment folder.

7.1 Test signals for Simulation

Every function unit model has 100% coverage test signal as shown Figure 7-1.You can use it for simulation and

unit test for each function unit model.

wf s i Test signals)

4

) H H i i i H i i = = -

ok b snl el

Figure 7-1 Change test signal

Note
Simulink® Design Verifier™ does not support Enumerated Type and Stateflow Simulink Function of

new feature of R2008b. Therefore, the NXT Scanner is marked 100% coverage test signal by hand.

So verification is not automatic, you should judge it by yourself.

=49 -

7.2 Introduce of verification tools and function

Simulink Design Verifier and Simulink Verification and Validation are verification tools for Simulink and

Stateflow models.

Simulink Verification and Validation

Simulink Verification and Validation has the following features.
® |tis possible to specify the coverage target by the subsystem.
® |tis possible to make a distinction between the two cases (transit path or not) in the model by color.

® |tis possible to accumulate the coverage by two or more test signal.

Simulink Verification and Validation exposes design flaws, inadequate requirements, incomplete tests, and
unnecessary design constructs early in the development process. You can trace requirement documents to your
design models, component tests, and generated code. You can also verify your designs and tests through model

coverage and modeling standards checking.

-50 -

Simulink Design Verifier

Simulink Design Verifier performance functions below for your Simulink and Stateflow models.
® Automatically generate the test harness model.

® Property proving.

Simulink Design Verifier uses formal methods for Verification and Validation. Simulink Design Verifier can
generate 100% coverage test harness model by coverage measurement feature of Simulink Verification and
Validation. By using test harness model it | possible to validate equivalence checking model and generated code
(convert to S-Function).

For property proving, you can directly capture design requirements and performance objectives as properties in
their Simulink or Stateflow models. Simulink Design \erifier mathematically proves whether those properties
are satisfied and, if not, provides counter-examples that would violate the properties. As a result, you can find
design flaws, unsatisfied requirements, and unreachable states or logic that would be difficult to uncover using
simulation alone.

Figure 7-2 shows a model that includes verification specification subsystem for the MODE CONTROL
MODEL. In this case, this model has a switch in the verification specific subsystem. Because Simulink Design
Verifier doesn’t support the new feature of R2008b but the model simulation should be possible. The switch can

select blank subsystem or verification specification subsystem.

be 1114 A It PolvSpace Technologies MATLAB intezration eElP.CKLP.SH_P.
_? 1718 The automation mode has been successful ly | Open Block &) CortrolMode
T1716 Open Block In Mew Window EH DIF_L

b5 1114 Configuring PolySpace Software @ OK Explore B R R

& 1604 - FH ERROR 001 §|
bs 1114 e [s =zzzzz=z=z==z|] ERROR.002.5
B 16:04 ®E Delete % ERRORSOU
B0 = ERROR SOU
7 E! mode_control/mode control_test v P.toic: ubsystem de

ho{ File Edit View GSimulation Format Toole Help e ication AU 1

7 Subzwstem Parameters.. i I ij L0 ade?

o 0O = n % é{j —j » E Block Prop.erties... passttiliclroes e LOG_ade3

ba Mode| Adviszor.. e LOG_adcd

b B0 LOG_datal

Hal Reguirements 3 e LOG data?

. Design Verifier v xtseanner.xll 16y o) Fask To
0 G - |Faper dFreq | Real-Time Wiorkzhop 4 %SCRN'EDGE
pa u O Fixed-Poirt , & ggg:;y_{fﬁ

1| i
3 ez 3 | PaperFeedBtn SoundDurl——— (" nxtscanner.x|| B SCAN INTTTAI
he InZ [l <
Link Options 3 —
pz D - ControlBtn Soundipi[-eseessssopuiannsnnnsnnnss . v R
7 In: :' o Signal & Scop’a_ Manager... =-5-- 097037
Pz WL | Port Signal Préperties 3 i<t scanner. x| “oscdesis
; ol E : H . sezldatac
i ormaf H v
o] E Foreeround Cdor 3 n8/0s/
4 - . : H Backeround Galor Yt scanner. x| ~cscdesig
b5 This subsystem is Hel H - nafnas
g . g . nelp
b3 specification for verification ~sldatacl
p3 | T E “eozodesiy
]g : i H rom “nxtscanner.xl -§-- 03703/
7 ; @ ~czcdesig
- Confi bl
7 : Subyetem - 0803/
o : Atamic Subsystemn 0 , rozcdesig
b2 5 x rom nxtzcanner.xl H < ldatacl
4 . K .
2? llllllllllllllllllllllllllll * L
Select Verification Subgyster 100% FixedStepDizcrete & 03/03/
0
-R-- 09703/
01817
43 F-#-- 09/08/

Figure 7-2 Change specification for verification subsystem

-51-

Figure 7-3 is one example of a model for the verification specification subsystem. It uses the truth table in
Stateflow. Simulink Design Verifier proved the model by this specification of truth table. Simulink Design
Verifier documents the valid blocks in a detailed report and generates counterexamples for invalid blocks.
Counterexamples include input data and parameter values that demonstrate a specific violation. They are

incorporated into the same style harness models that are produced during test generation.

) Stateflow (truth table} mode_control_verification_lib/Yerification Subsystem/Ghart. Test* |T||E|b_<|
Jrill iRE EE BN AL
BEE " t%WEH >~ B &BE®

TN
£HER &4 Ol | D2 D3| D4 | D5) D6 D7 | D8 DI
Transit from INITIALIZE to IDLE ControlMode == INITIALIZE & ~
1 (FeedWode == FEED_IDLE || T = - - - - - - -

BranMode == SCAN_IDLE)
Tranzit from IDLE to PAPER_FEED ControlMode == IDLE &k feeed ==
2 1 = T|F = = = = S =

Tranzit from PAPER_FEED to IDLE [ControlMode == PAPERFEED fd:
3 feeed == 0 - - T - - - - - -

Tranzit IDLE to PAPER_EXHALST ControlMode == IDLE & exhaust
4 E= - = - T - = - = -

Transit PAPER_EXHAUST to IDLE Controllode == PAPERFEED &
5 exhaust == 1) - - - S T 5 o - -

Transit IDLE to SCAN_COWTROL ControlMode == IDLEE &k scan ==
6 1 &k scan_last == 0 -l FlFl-|-1T1T1l-1-1-

Transit from SCAN_CONTROL to ControlMode == SCAN &k ScanMods

INITIALIZE (Finished all scan) F= SCAN_IMIT &b B
7 ScanMode_last in==sea it | | C | | | [| T F |-
ScarMode_last != SCAN_INIT
Tranzit SCAN_COMTROL to ControlMode == SCAN &k ScanMods
g |INITIALIZE {users stop operation) == SCAN_INIT &% scan == 1 && - - - o = o F T o

mcan_last == 1

£HBA TR

oram! 1 status = 13 ~
1

ormal? status = 2;
2

ormal3 status = 3; 4
3

ormlald status = 4;
4

orma |5 status = &3
5 e

Figure 7-3 Example model of specification for verification

-52 -

8 The NXT Scanner controller model (integrated each models)
This chapter describes the control program, task configuration, and model contents of the nxtscanner_ctrl.mdl.
8.1 Control program summary

The NXT Scanner controller has five tasks described in Table 8-1.

Table 8-1 Task organization

Task Period Works
task_init initialization only | initial value setting
task_ts1 2 [ms] cycle SCAN CONTROL SYSTEM
task_ts2 10 [ms] cycle PAPER FEED CONTROL SYSTEM
task_ts3 20 [ms] cycle MODE CONTROL SYSTEM
task_ts4 60 [ms] cycle USB COMMUNICATION CONTROL SYSTEM

-53-

8.2 The NXT Scanner model summary

The nxtscanner_ctrl.mdl is based on Embedded Coder Robot NXT framework.

Bk Bt Yo Grlaton Fmal

Tooki Help

D & W& =

Task scheduler F'I Task subsystem r—

— A JEP Taska d0E Fen_lnit Wt
[y S— Fen_int inn —
Fapat andin M i S
Tt

Teuih Sansar intatacs

T |

=x)

FapFenCalls Sokadular

—— WET_SCANNER
GEr—af
Paparn st

Teweh Sanser Infarfaca |

SeanHeadPoBeelTW

Input Tewih Sonser inteaces

devices o “w
SranEensel

T

Papasf sweboteaf noodar

T
ficaniiasaidator

Sares Mt kAt

¢ ED)
Papa avimetst

Sarvs Mk Inbariacel

UEBT.

3
’ USBT|— T}
i

LS e atetice Output

| })D devices
=

., T ——)

Download the built code to NXT (click)

[T > nxtbuild|'NXT_SCANNER' ‘rxeflash’

o

3 3
A —

Ravalulien Sanser Infedace’

2t .

Eatar Bufien Inanare

initializat

R
) s -
s
R [~ nxtscanner_ctrl/Gontraller /NXT_SGANNER
File Edit Miew GSimulation Format Tools Help
Lt DEHES T+ b ow i [Hormal N E3E RS RE
Iint Shared global data on Syster level
| Shared data

on | |

Fonnit

2ms cchl - =]

Fen ts1

10ms cycle —————
Fentet SeanneBuffar_Satus
o [
20ms cycle
In§
For Logaing
funciian(]
feed
60ms cycle
Fen ts4
Feady 100%

Shared global data between Scanner_Head and Data_Comunnication

sd-001
Gontrol mode of the MxTscanner system

sd-002
Error define

50-003;
Scan contral mode

sd-004
Paperfeed control of the MxXTscanner system

sd-005
Sean buffer bagic infarmation

sd-006
Sian buffer status

sd-007
number of scan data inthe scan buffer

sd-008
Sean data in the scan buffer

5d-008
Total packet number of the line

FixedStepDiscrate

Figure 8-1 nxtscanner_ctrl.mdl

-54 -

Device interface

We can make device interfaces by using the sensor and actuator blocks provided in Embedded Coder Robot NXT

library.

[nxtecamner et/ Contro lor

Ede Edit Mww Smuliton Fgeal Jeoks Help
DEES . Fo by sk e] RMBE . REES
- "J"" 08 SEP Taks 48R Tt ™|
Touch sensor input for i Fa Motfor gutp_L:t ;?l:l&aper
paper feed button . el eel unit ()
I o BoFasiah bt o
Touch sensor input for bR %ﬁ'— Motor output for
paper exhaust button Sca””gvcaad unit
1 e e L)
Touch sensor input for ol gy : ‘,‘,,,,HI USB SEND
scanner head initialization =)
position detect Tove S e L T renecs I
Light sensor input for = — '|} D"' NXT speaker output
getting scan data i for alarm
N I I: '.; e Generate code and build the ﬂ.ﬂ!lmﬂ code lc!h:kp e T\" T I
Motor input for paper feed .“ 22 oxbuld(NKT_SCANNER' bulld) 4 =~ Bluetooth output for
unit (encoder) Gownload the built code to HXT (click) I logging
I Iavaluban Santar IMtartac =z nutbuild|'WiT_SCANNER'. ‘rxeflash’ g
Motor input for scanner .“ -
head unit (encoder)
I Ravalutien Sansor Inferface!
NXT button for start/stop N ‘_
scan operation
T T S T
- (3
USB READ N ; System clock for
\@' @ timeout check
Pasndy 100% Froeditapliscrete

Figure 8-2 Device interface

Scheduler and tasks

The ExpFcnCalls Scheduler block has task configuration such as task name, task period, platform, and stack
size. You can make task subsystems by connecting function-call signals from the scheduler to function-call

subsystems. So you can select the platform which is OSEK or JSP.

Parameters A
Function-Call ramelie ‘Fer', 'Fenl’, 'Fen2’: AN 11
|’Fcn_lnit', ‘Fen_ts1’, 'Fon_ts2’, 'Fon_tsd’, 'Fen_tsd’ AR JSF Tases s Fen_Init

Function-Call source(ie. [0 -1 10 Fon_lnit: Init InZ

|oz 1020 60] Fon_ts1: 0.00Z [sed]
Fon_ts2: 0.01 [zed]
Fon_ts3: 0.02 [sed]
Fon_tsdh: 0.05 [sed]

In3

Sample timelsec]

0,001 s

H : Ins
TS, Exproncalls Scheduler

Task stack sizelie. [512 512 5121x / MNXT_SCANMNER

[B12 512 512 512 512] Select task

OSEK Resourcalie. ‘res, ‘resB’) OSEK: TOPPERS/ATK (OSEK)

| JSP: TOPPERS/JSP (uITRON)

JSP Semaphorefie. ‘semA, ‘semB’) 7

| /

Bluetooth device made: |Slave N

Figure 8-3 Scheduler and tasks

-55-

Priority

You have to set the priority of the device blocks and the ExpFcnCalls Scheduler block at root level by sorting

them in order (1: device inputs, 2: tasks , 3: device outputs). The low number indicates high priority and negative

numbers are allowed.

To display priority, right click the block and choose [Block Properties].

Computation order

Priority: -1

B Bt Yow Glton Fgeal ook Hel
LD & W& ; T

Priority: O

b ou Nermal Sl B B @ hEE®

Priority: 1

Papar asdins

FagaiEsnautm

(=n’ - o
SaanbeadPamessw

==
Paped andblotoE noodar

Shared data

Fan_lnil il
(X o
> A= Seaniasauatss
Fen_h2 =
om0 [puc
ag ey o1 i T
e

ol entalls fecka duler

WAT_SCANNER

Earva Musar imariaced

b

UERTH L LER
\ﬁﬁ‘ e

UED Txinledsce

[Gensrate code and build the generated code (click) I
> nutbuild{'NXT_SCANNER', ‘build’) Y

Download the bullt code to NXT (click) I
>> nxtbulldi'NXT SCANNER' ‘rxeflash”

Figure 8-4 Priority setting

Shared data is using Data Store Memory blocks as shared data between tasks.

Shared global data on Systern level

5d-001:
Cantrol mode of the NXTscanner system

ContralMode

Fennit

\nZ

sc-002:
Error define

EmoiCode

sc-003:
Sean control mode

ScanMode

funatian(]

Fon_ts1

Fon_ts2

?m

sd-004

Feadhod
edMeds Paper feed control of the NXTscanner system

i

Shared global data hetween Scanner_Head and Data_Comunnication

sd-004:

ScannaBufier_infe . .
Gcan huffer basic infarmation

5d-006:

ScannerBuffer_Status
Sean huffer status

sd-007:
number of scan data in the scan buffer

SeannarBuffer_Humber

| functanl) |

sd-008:
Sran data inthe scan buffer

ScannerBuffer_Data

Fontsd

In5

fungtian{]

5d-009:

SeannerBuffer_Pnum
Total packet number of the line

ForLogging

paper_fezd_pum

Fon_tsd

Figure 8-5 Shared data

-56 -

>

8.3 Initialization task: task_init

This task sets the initial values. Motors initialize to ZERO at this task.

I nxtscanner_ctrl/.../HXT SCANNER/ Fen_Init [[=1E3]
File Edit Wiew Simulation Format Tools Help
DEH&| %2R 4|22 r 8 Normal
function
it Shared global
o L
funetan 3 Contralhd
Servo Motor
Wite
Fondnit ErrarCod
\nZ
Scanha =
Toratsant]
Feedhio
Servo Motor
Whitel
Fentst
(3 e Shared glob:
Tanctant] SeannerBuffe Feady [100% [[FixedStepDiscrete 2|

Figure 8-6 task_init

8.4 2ms task: task tsl

This task includes the SCAN CONTROL MODEL and data logging via Bluetooth.

functian]

[———
In2 R Te——
[

e The SCAN CONTROL
Shared glab MODEL from library model

Ll nstecannor_cteld.../Fen_tel Gcanner_Ho/s

e SeannerBue Eie Edn e Gimubicn Fgmat ook Hip
Fin R gl e i EB 0O & & B|as g e w Temal . =] DMESE - REE®
Bl [0 Yem Geson Fgme Dmh bee .
0EES e »if e ClRuBed BEEE
= = —@
[
[
% St isa N — ..‘n.... A i A |
) e we=.| The NXT GamePad
. ADC
ey el | =
[100 [» SR
et
[10 Eosfilrele

Figure 8-7 task _ts1

8.5 10ms task: task_ts2

This task includes the PAPER FEED CONTROL MODEL.

=
Soanhlo
Hunctani]
Feadhlo
Fen sl
Shared glob:

8.6 20ms task: task ts3

[TInxtscanner_ctri/._ /NXT _SGCANNERSFen_ts?

File Edit Wiew Simulstion Format Tooks Help

DSES i P e | BEEBE S REBEE
Anctin The PAPER FEED CONTROL
MODEL from library model
Faper Fasd

Ready

paper_fesd_pwm

100% FixedStepDiscrete

Figure 8-8 task_ts2

This task includes the MODE CONTROL MODEL.

ScannerBufe

Fentsd

funatian(]

ScannerBuffer]

For Logging

paper_feed |

i

Fen ts4

D W& B3

Bl ESt M Ginulition Format ool peb

[=]
o

Toamh Garviin P

&

LTl

’ MetaCanel

The MODE CONTROL MODEL

from library model

fn

e

i

Tmarani

Alarm subsystem

008 Faonditmplicrnie

Figure 8-9 task ts3

-58 -

8.7 60ms task: task_ts4

This task includes the USB COMMUNICATION CONTROL MODEL.

|

ScannerBuffer

ScannerBufer_|

=] nxtscanner_ctrl/. /NXT_SG

Eile Edit Wiew Simulstion For

The USB COMMUNICATION CONTROL
MODEL from library model

DIFES| s oe | FTTToET oF

TRrmal

| funstianl) |

ScannarBuffes

Fon_ts3

In§

funstianl)

ScannerBuffer

=
=
=
o
=
=
=
=1

paper_feed |

Fon_tsd

[0]

function

Data_Communication

Gonstant

‘unstiani]
o

usb_send

functiani]
it

s dizconnect

Ready [100%

|FixedStepDiscrete

A

Figure 8-10 task_ts4

-59 -

8.8 Tuning parameters

All parameters used in the nxtscanner_ctrl.mdl are defined by the nxtscanner.xls. Table 8-2 shows the tuning
parameters. You might have to tune these parameters because the parts, blocks, sensors, and actuators are
individually different.

Table 8-2 Tuning parameters

Parameter Description
BACKLASH_ADJUST backlash adjust
RELEASE_TOUCH_SENSOR freeing from the touch sensor adjust
SCAN_EDGE the scanner head unit drives range
SCAN_START scan start position
SCAN_INITIALIZE_PWM PWM for moving the scanner head initialization
SCAN_INITIALIZE_TIMEOUT time out for the scanner head moving initialization [ms]
SCAN_R TIMEOUT time out for the scanner head moving to right [ms]
SCAN_L _TIMEOUT time out for the scanner head moving to left [ms]
SCAN_F_TIMEOUT time out for waiting the paper feed with scanning [ms]
SCAN_R_MAX_PWM MAX PWM for the scanner head moving to right
SCAN_R_MIN_PWM MIN PWM for the scanner head moving to right
SCAN_L_MAX_PWM MAX PWM for the scanner head moving to left
SCAN_L_MIN_PWM MIN PWM for the scanner head moving to left

-60 -

9 Code generation and implementation

This chapter describes how to generate code from the nxtscanner_ctrl.mdl and download it to the NXT Intelligent

Brick. The experimental results are also shown.

9.1 Target hardware and software

Table 9-1 shows the target hardware specification of LEGO Mindstorms NXT and the software used in Embedded
Coder Robot NXT.

Table 9-1 LEGO Mindstorms NXT & Embedded Coder Robot NXT specification

processor ATMEL 32-bit ARM 7 (AT91SAM7S256) 48MHz
hardware | flash memory 256 Kbytes (10000 times writing guarantee)
RAM 64 Kbytes
actuator 3 DC motor
S sensor ultrasonic, touch sensor, light sensor, sound sensor
display 100 * 64 pixel LCD
communication Bluetooth / USB
RTOS nxtOSEK / nxtJSP
software | compiler GCC
library GCC library

-61-

9.2 How to generate code and download

You can generate code from the model, build it, and download the program into NXT by clicking the annotations

in nxtscanner_ctrl.mdl shown in Figure 9-1. The procedure as follows:

1. Setting Simulink data object by clicking [xIsreadsdo ("nxtscanner.xls™,’mpt’)]. Simulink data object
can add the generated code to the user’s specific information (name, allocation, instruction modifier,
etc.). For details, please refer to the reference [3].

2. Generate code and build the generated code by clicking [Generate code and build the generated

code].
3. Connect NXT and PC via USB. Download the program into NXT by clicking [Download the built
code to NXT].

]l nxtscanner_ctrl/Gontroller

File Edit Wew Simulation Format Jook Help

Oed& iy 3 inf Normal MR R REE®

R JSF Tasks ### Fen_lInit
Fen_Init: Init
Fon_ts1: 0.002 [seq] [
Fen_ts2: 001 [zec] Fen_ts2

FaperfeedBin

S

e

SeanHeadMotor

Fon_ts: 002 [sed]
Fon_tsd: 0.0 [sec]
ExpFentCalls Scheduler Fan_t=d

S

Fan_t:3

¥
YYYywyy
S

NAT_SCANMER

PapaiExhaustBtn

N e L

PapaiFezdhotor

SecanHeadPosResetsir

Touch Sensor Inteface?

-

(3 —m

SecanSensor

[xdsreadsdoUnxtscanner.xls”, mpt’}

Setting Simulink Data Object

Light Sensor Interface

Generate code and build the generated code (click) StepZ:
>> nxtbuild('NXT_SCANNER', 'build’) Code generatio n and build

Download the built code to NXT (click) b A |
>> nxtbuild{'NXT_SCANNER', 'rxeflash’) Step3:

Program download

e,

FaperFeedMotorEncoder

,

ScanHeadhotorEncoder

Rewolution Sensor Interface1

l_'

SeanControlBtn

Enter Button Interface

n A »
USBRx =
USBRY %“‘E«;

U%B Rx Interface System Clock
Interface

Ready 100% FizedStepDizcrete

Figure 9-1 Annotations for code generation & build / download

A part of the generated code is described in Appendix.

-62 -

10 Verification of generated code

Generated code from the NXT Scanner is validated by PolySpace®. This chapter describes the configuration for

validation and it doesn’t describe about installation.

10.1 What is PolySpace?

PolySpace is abstract interpretation static verification tool that is necessary for high reliability software
development. PolySpace has two features; one is that PolySpace can find runtime errors, and the second is that
PolySpace can certify that errors don’t exist. PolySpace uses color-coding to indicate the status of each element
in the code, as follows:

® Green: Reliable (It shows safe instructions: these are code sections which can never lead to a runtime

error.)

® Red: Faulty (It shows runtime errors will occur every time that piece of code is executed)

® Gray: Dead (It shows code which is unreachable (dead code))

® Orange: Unproven (It is a warning)
You can use PolySpace to verify handwritten code, generated code, or a combination of the two, before

compilation and test.

-63-

10.2 PolySpace configuration

PolySpace Analyzer is opened pushing the block button of Figure 10-1 or from the select menu in the model

window.

' vw | PaperFeedhiotor

nterfaceq Senvo Motor Interface

:._,_j_j‘) PolySpace Analyser
a ~

nterface : Subsystem [NXT SGANNER ert rtwsNXT SGANNER | 5[Browse | [From Selection |

] Generate code and builff | “tTttrRtTeTUTReet
> ild("
% AXbulld(NXT_SCAN Results directory [Gauser¥2000¥MATLABKIAOAS scanner¥aT1 20% esults NXT SGAN| [Browse |
Downioad the built cod -
ot Interface >> nxtbuild('NXT_SCA fnalyzis Precision |02 - default v

% - ——— Add files | configuratio [~
[E Ty Ty Y PP T T Ty YL LLLTCCCTrTiiT, PP n I

Project Configuration Configure

Send to PolySpace Server

E
Py
H
g

Maodel reference

LT ’7 Maodel reference verification depth GCurrent model only v| ‘
S Start G |
@-{:?. [ar] [ANCE|]
=rface System Clock
Interface
100% FixedStepDiscrete
Figure 10-1 PolySpace setting menu
Caution

PolySpace configuration something use direct path, please be careful.

Model for validation

This automatically to sets the model path for PolySpace. It means that the NXT_SCANNER subsystem is
validated by Simulation and generated code in the NXT_SCANNER_ert_rtw folder is validated by PolySpace.

Configuration
It opens the configuration setting window. A sample window is shown in Figure 10-2. Changing from default

value for validation is shown by red boxed texts.

-64 -

olySpace Launcher for G —

B

¥user¥200B¥MATLAB¥0B0819 scanner¥090116¥nxtscanner_cirl_polys

Search internal name from the selected line : ,@ |

Mame Walue Internal name
Analysis options
= General
Seszsion idertifier Mevy Project Hprog
Drate 14411/2005 Folate
Author hanng Fauthar
Project version 1.0 Lverif-version
Examing effects of scalar assignments [¥] Fvom
Keep allintermediate files [l tkeep-all-fles
Cortinue even if red errors are detected Z Feortinue-with-red-error
Continue with the current configuration [¥] reontinue-with-existing-host
Cortinue even on an unsupported Linux distribution : Fallowe-unsupported-linue:

= TargetiCompilation

Jnciude Directories
TR R R R R AR R EEE

CMATLAB\ecrobothx Tenvironment

Target processor tyl Compilation Setting | b E]-target
Rl e Rt = R g o (g oottt /e 3 1e e ettt bl il e 7 = 4
“Defined Preprocessor Macros packed= D =
Lndefined Preprocessor Macros e E
Anclude CIMATLABR2008k ey sloctinciudeli f ... -includei

LR LiL
Cotntnandfzcript to apply to preprocessed files

el "
. |-post-preprocessing-cormmand

Commandizcript o apply after the end of the analysis

. |Fpost-analysis-command

= Compliance with standards

Bllowy non AN

Code from DOS or Windows filesystem Fdos
Embedded assembler
Strict Permissive setting ! L petrict
=) PerMySsitaunnnunnnnnnnnnannnnnannnnnnnannnansnnnhannannnannnnnnhalnnnnnnnnnnnndens fPELDISHVE
3 tti [rbn-irt-bitfielct

Cortinue even with undefined global variables

tallowe-uncef-variables

Permits overflowing computations on constarts

rignore-constant-overflows

Allowy un-named Unions/Structures

Fallowy-unnamed-figlds

Do not check the sign of operand in left shifts

rallowe-negative-operand-in-shift

Check MISRA-C:2004 rules

Keill&R: suppart

defauft

Fdialect

=l PalySpace inner settings

Generate & main

Hinain-generstor

Stubbing

= Assumptions

Divigion round dovwn

Feliv-round-dovwn

Do not consider all global variables to be intialized

Fho-def-init-glak

Enahle pointer 5 "
%_ PolySpace internal se
P ML A o

rallovns-ptr-arith-on-struct

tting '

5iEssphvtes

:Ignore flost rounding

Hgnore-float-rounding

E)t.at.e.c; .oveFfTo.v:fé.on.l:r;s.ig.ned integers

-aét.e.ct.-unsigned-overflows

Functions known to cause NTC

=

Fkrowen-MTC

Automatic Orange Tester

O

Hprepare-sutomstic-tests

Ciher options

PrecisioniScaling

Multi task setting
= Muliibaskings ssssnsnes

-ITITITITI'II------------------

SErtry poirit or Irterruption

main task Fon InitMNXT SCANMER i

rentry-points

Critical section details

Fetitical-zection-begindend

Temmporal exclusion point (separated by space characters)

Hetnporal-exclusionz-file

B3

< |

r‘iet parameter ...

Figure 10-2 PolySpace Configuration diapley

Generated code in the NXT_SCANNE_ert_rtw folder does not have multitasking information. Thus PolySpace
uses the original main function, polyspace_main.c, to validate model. The polyspace_main.c defines the entry
points of the Fcn_Init function, The NXT_SCANNER_initialize function and the main_task function.

-65 -

Add files
The polyspace_main.c is configuration of multitasking definition. The NXT Scanner has task subsystems which
are driven by a trigger from scheduler. The main_task function in the polyspace_main.c defines each task

process without initialize task. The task cycle is arbitrary set for verification of PolySpace.

#include "NXT_SCANNER.h"
extern int anyvalue(void);

int main(void){
Fen_InitQ);
NXT_SCANNER_initialize();
while(1){
main_task();

return(0);
}

i void main_task(void){
i while(anyvalue()){
! if(anyvalue(){
! Fen_ts1(Q);

}
if(anyvalue()){
Fcn_ts2();

}
if(anyvalue(){
Fcn_ts3Q);

}
if(anyvalue(){
Fen_ts4(Q);

}
2

10.3 PolySpace can find runtime errors

The NXT Scanner has intentional error code modeling for PolySpace demo. The code is in a state of
RUNTIME_ERROR_STOP which is driven by “RUNTIME_ERROR” event in Stateflow of the SCAN
CONTROL MODEL. When PolySpace finds a runtime error, the result is a warning by red color as in Figure
10-3.

- 66 -

Aeaaiis T EGANNERERTE 120

__Eile L_dit S ndows _ﬂelp

o R oo o g BE e 1 e &S R P

‘ [Msthodology for Model Bassd besi... ¥| f——"[Jsupgaychecs d € B 3 W J
: i 2 a

Coding revieyy progress Count Pro Mo check currently selected = RU N-I-_[M E_E RRCI R

num OBAl revieved fnum OBAlto review (.. 0 0 'ei'

U revieved J num to review (Red) M [l

Sottware reliabiity indicator %65, se| | |§| BLIMTIM E_ERRO R_STO PJ.'r (ThIS is a pal’t of SCAN CONTROL

et ; MODEL)

Lo RelvsRacs Jamonstration | 1tis defined by polyspace.h.
piin aut = 7 : int16_T polyspace[6];
“Erfaibads < TRROR_O0T: alolyspaceld

Scannet Buffer_Info[zelect]=F LIL _BUt It access out of the array.

annerBuffer Status[select] -

n Scanner_Head.c2 nxtscanner_lib. OBAL3Z

Procedural entities
| nstsganner_ctr
MXT_SCANNER.c
[Paper_Feed.o

B Seanner_Head o

n "Scanner_Head.c" ine 332 calumn 14
Source code
| [Cint232_Tihead. pwm_out] ;

iz maker (], start fle, 1, DIR L)
m

Error : array index is outside its bounds : [0..5 H
Unreachable check : not initialized variable error (type: int 16

El
% oBaLi .
I 0BALZD
A il B3 5canner Head o X
[‘sean_s el | o |12 .
Sganner Heail () 52 19 ErrorCode = ERROR_001; 0
Scanner_Head_Init () 47 |5 ||l a0 } else If { sfEvent == event RUNTIME ERRUR) {
_int_globls () 1 321 rtScanner_Head DW. is SCAN_NDRMAL = (uint8_TJIN_NO_ACTIVE CHILD;
broadeast_STOP () 40 112 322 rtZcanner_Head DI is_c2_nxtscanner_|ib = {uint8 _T)IN_NO_ACTIVE CHILD;
entar_stomic_SCAN_INIT_P 20 12| |l 223 I (rtScanner Head DW.Is c2 rxtscanner_|ib != IN RUNTIME ERROR_STOF) {
get_pwm_value () oz |14 ||l 324 riScanner_Head DV, is o2 _ndscanner_lib = (uint8_T)
papar_fasd () 16 |12 || 325 IN_RUNTIME_ERROR_STOP:
sean_gontrol_lett () 03 |12 a26 head. pum_out = 73
Loy 2 |1z | |l 327 ErrorCade = ERROR_001;
S e B ScannerBuf fer_Infal(int32_Thhead.select] = FULL_UP;
R v |1z 329 scanner.buffer_status[(int32_T)head.select] = status naker(1U,
sean_timeover_cheok () o || hesd. start flg, 10, DIR L
EEgRan e W b 331 :"%Eaﬁﬁéf.hhf&?ﬁhﬂ!ﬁM‘ﬁ‘_f?eﬂ.seIeut] = {uint8_T)polyspace
scanner bead i 8] 46 | 5 - L -%‘-r:l-SE:T-):‘fa-d-‘ :v:m-_f‘:l-]: .t A i
SR e | 3334 }')I ! This is the runtime error (Out-of-bounds array
WhdeCartrolc ! - evitch (rlScaner Hoad DU, 1= o OCCESS) CcOde. PolySpace can finds.
Bl NXT_SCANNER, data.c ! 336 case IN_PAPER_FEED L:
=_Polyspacesstdstubisio ! 337 if (ScarMode == SCAN_SCAN] {
[interpreterh 1 338 rtScanner_Head DU, i=_SCAN NORMAL = (uint8 T)IN_SC4N RIGHT;
language b ! 339 sean_init{DIR R};
[platfarm_hooks h 1 40 scan_tineover_set();
pollh 1 341 scan_control _right();
[#] polyspace_main.c 1 347 Telse {
343 paper_feed();
v 5 344 scan_tineover check(SCAN F_TIMEOUT, sensor.swstick ms); v
Figure 10-3 Example of PolySpace finds runtime error
Note

Runtime error is occurs when there is no syntax error in the program code but comes during execution
of the program. PolySpace can find the following errors without test cases, without code
instrumentation and without execution.
® Overflows, underflows, division by zero, and other arithmetic errors
Out-of-bounds array access and illegally dereferences pointers
Read access to non-initialized data
Dead code
Access to null this pointer (C++)
Dynamic errors related to object programming, inheritance, and exception handling (C++)

Non-initialized class members (C++)

Other errors, including dangerous type conversions

-67 -

10.4 Results of PolySpace verification

After commenting out of the runtime error code, PolySpace tests again. Figure 10-4 is the result window of

PolySpace. There is no red and gray code, but orange has 18 points. Orange means it is not red, gray, or green.

Orange is checked by review.

PolySpace Viewer — G:¥user¥2008¥MATLAB¥080819 scanner¥081128¥results |

_nxtscanner_ctrl LAST RESULTS rte

Eile Edit Windows Help
H ¥l E
o B o o A B E e i w0 F [e
[Methodology tor Model Based basi., v | b————— [(skipgayohecs 44 € & 3 M cpus
1 2 a
Coding review progress Court Pro Scanner_Head.c fc2_mdscanner i i line 328 f column 30
num OBA| reviewver num OBAIto review (... [010 | 0 . ~
FinTievee i evias (0 s o) s | o ScanmerBuf fer Infollint32_Tihead.select] = FULL_UP;
Software reliahilty ingicator sosts..| 93| =
larning @ array indsx may be outside bounds @ [0..1]
Procediural entities L3 Il I (=N BT il View =
Q ntscanner_ctr EREE
TR 5| ftten by 4 ariables File | Detailed Type
@ ~
Faper_Feed 1] &
:w’ E: : el \ Read by 4 Node Control rthfode Control_B 15 8 n e | o 16 hodeContr...stuct {_pst_...
¢ n:;;n:?h:ad main_t (3 2 len G itten by task 4| Made Control s de Contral_Dii 1%] 7 e | 1 17 ModeContr...struct fis_o1_ =
coo- T MXT_SCANNER Controliode 3 12 3 @ | 1 16 [NXT_SCA.. erum 32{5CA..
. #0118 || Head bytask > 1 2] | o 14 MXT_SCA. lenum 32{NO
Seanner_Head_lnit () a5 | & e = .
- \ Potartially Written by HXT_SCANNER Feedibde 10 4 7 e | o 18 NXT_SCAL. enum 32{FEE..
- NIT_SCANNER. Scantode 2 8] | 13 |NT_SCA. prum 3z{sCA.| &
breadeast_STOP () GO [iks FPotertially Read by | s
B 2_mascanner_fib () H 0 |12
? - ! Sl Ell E25canner Head e
¥ 0BALIG 1 319 |3z =
enter_atomic_SCAN_INIT_P 240 |1z ||l 321 riScanner_Head_OW. is SCAN_NORMAL = fuint8_T)IN_NO_ACTIVE CHILD; =
get_pwm_valuz () 0z |14 fl 322 riScanner_Head_OW. is_c?_rxtscannsr_|ib = (uint8_T)IN_NO_ACTIVE_CHILD;
paper_feed () 196 [12 323 if (rtScanner_Head DW.is_c? nxtscanner_|ib !'= IN_RUNTIME_ERROR_STOP) {
IS w3 |12 || 324 rtScanner_Head DV, is_c2_nxtscanner_lib = (uink8_T)
S - P — B TN_RUNT INE_ERROF,_STOF:
scan_enwironment () (12 g;: E_E“d-EWZ-Uf(E;R;; w0t
scan_jinit () "oz EIIRIEOCE R DUt
e ot D |5 328 ScannerBuffer_Infol(int32_T)head.zelect] = FULL_UP;
Scan’“mewer che;k[) @ | 329 scanner.buffer_status[(int32_Tohead, zelect] = status_maker(1U,
= B 330 head.start _flg, 1U, DIR L)
scan_timeover_set (1 o |1z Yy
scan_ush_stop ()] TR poey | etse |
suannar_head_main () bl E suitch (riScanner_Hesd DIl is SCAN NORMAL] {
status_maker () R BT case IN_PAPER_FEE
WL T U 335 if (Scantode == SCAM_SCAM) {
ROIRECARHERTCaIa l 338 is_SCAM_NORMAL = Cuint@ TJIN_SCAM_RIGHT:
__polyspace__stdstubs.c 1 387 +(DIR_R)
interpreterh 1 328 scan_t imeover_set ();
language h 1 339 scan_cont rol _rizht ()
plattorm_hooks.h 1 340 1 else { 3
pollh 1 341 paper_feed();
e i 342 scan{ {menver_check(SCANF_TIHEOUT, sensor. syst [ck ms);
343 }
344 bresk;
345
346 case IN_SCAN_LEFT: 7
< 3| o [e T PTR TIR - TE = T

Figure 10-4 Results PolySpace verification

-68 -

11 What is an NXT Viewer?

The NXT Viewer is a proprietary the NXT Scanner’s GUI program. It has two features as below.
® Image display: Receive scan data from the NXT Scanner via USB, and display them in real time for
each line. Merge received data to show image data.

® Image processing: Image processing after the data has been received
The NXT Viewer was developed using a feature called GUIDE, which is a function to create GUI for MATLAB.

GUIDE is based on M-language. Particularly, the image processing function of the NXT Viewer uses the Image

Processing Toolbox, which is an optional product of MATLAB.

11.1 How to use the NXT Viewer

This chapter describes how to use the NXT Viewer.

| 2 statscan |[..

[3. Load an image | [oo [Coe]
| 4.save animage | l | l save
1. Display area | | 5.Image Processing | l N =

1. Display area l ’

| 6. Exit the NXT Viewer | l]
Push Scan for

7. Information |

8. Brightness value

Braghlrmsss o |l T

9. Brightness slider

Cantrast I T | .

! 10. Contrast value |_| 11. Contrast slider I_

Figure 11-1 Design of the NXT Viewer display

- 69 -

Table 11-1 is list of details for each component of the NXT Viewer introduced in Figure 11-1.

Table 11-1 The NXT Viewer specification

compone ;
No. component type details
nt name
Scanning: real time viewer of scanning
1 axis Other: viewer of LOAD image from mat file
(viewer area) (For details, please refer to section11.3)
The image size is M rows and 255 lines (M =< 255).
Display a confirmation dialogue. Clicking OK button
starts waiting data and scanning. The scan stops if the
2 SCAN push button)])
scan data reached 255 lines, or if the user is forced to stop
scan.
Display a dialogue for selecting MAT file. After the MAT
3 LOAD push button o)]
file is selected, the scan data is loaded to the viewer area.
Display a dialogue for saving MAT file. The scan data is
4 SAVE push button] o o
saved to the MAT file after deciding which file to save.
It is the Image processing for viewer area (scan image or
load image). After adjusting, the result is shown in
5 IP push button i]]
another viewer display. (For details, please refer to
Section11.4)
Display a confirmation dialogue. Clicking OK button
6 EXIT push button]
closes the NXT Viewer.
7 = static text Display current status and information.
8 = edit text Display the brightness level.
9 = slider Adjust the brightness level (0 t0100)
10 = edit text Display the contrast level.
11 = slider Setting the contrast level (0 t0100)

-70 -

11.2 Command for USB communication (nxtusb)

The NXT Viewer uses a command (nxtusb) for USB communication to receive scan data from the NXT

Scanner. The nxtusb communicates with the USB driver (fantom) of Mindstorms NXT via its own private

funct
by M

ions. The private function is created as a MEX-file. (It is a feature to build an executable function called

ATLAB).

(elision)
% make a nxtusb object

nuObj = nxtusb;

% USB data receive by nxtusb

[len, buf] = read(nuObj, “uintl6", 32);

% USB terminate
delete(nuObj);
clear nuObj

(elision)

-71-

11.3 Overview of the image display

The NXT Viewer displays gray scale image. Each raw data consists of 10 bits data received from the NXT
Scanner. The NXT Viewer converts the raw data (data type is uint16) to uint8 (0-255). This conversion method

is detected by experiment and data logging.

(elision)

% simple brightness adjust

datal = uint8(747 - datal);
scanData(row, 1:length(datal)) = datal;

imshow(scanData), drawnow

(elision)

Figure 11-2 The NXT Viewer display

-72 -

11.4 About image processing

The NXT Viewer has the following three stages for image processing.
1. Color and contrast adjustment (Figurel)
2. Interpolation (Figure2)

3. Deconvolution (Figure3)

Color and contrast adjustment

This stage is an optimization of the gray scale. The red bold texts in the following M-Script indicate the
commands of the Image Processing Toolbox.

B Imadjust : Adjust image intensity values.

B Imshow : Handle Graphics figure.

Z
X
_|
w
o
Q
=
5
[
<
(¢}
=
@
3

(elision)

% color and contrast adjustment

brLvl = get(handles.slider1, Value');

cnLvl = get(handles.slider2, 'Value');
scanData = scanData + brLvl;

scanData = scanData * ((100 + cnLvl) / 100);

[xs, ys] = size(scanData) ;

mx = max (scanData(1:2:end)) ;

mn = min(scanData(1:2:end)) ;

scanData = imadjust (scanData, [double (mn) /255 double (mx) /2551, [0 1],1):
(elision)

figure, imshow (scanData)

Figure 11-3 Color and contrast adjustment by the NXT Viewer (Figurel)

-73-

Interpolation
This stage is the process to interpolate data between each line. This process is needed because the NXT Scanner

sends interlace scan data. It skips one line after scan each line is scanning by jump a line. So an image has a
deficit.

B imresize : Resize image by Lanczos3 interpolated method.

B edgetaper : Taper edges for area of edge of an image

B Imshow : Display an image on Handle Graphics figure.

(elision)

% interpolation

1 = scanData(1:2:end, :);

11 = imresize (I1, [xs, ys], ' lanczos3'):
scanData2 = I1;

k = ones(3,6) ;

k = k/(size(k, *size(k,2));

scanData2 = edgetaper (scanData2, k) ;
(elision)

figure, imshow (scanData2)

Figure 11-4 Image interpolation by the NXT Viewer (Figure2)

-74 -

Deconvolution
This is the deconvolution process for blurred image.
B edge : Find edges in intensity image.
B strel : Create morphological structuring element.
B imdilate : Dilate image.
B deconvblind : Using blind deconvolution for to remove blur

(elision) i
% deconvolution i
a = edge (scanData2, ' sobel’, 0. 10) ;
se = strel (rect’, [2 5]);
b = imdilate(a, se);
b ="b; i
b([1:3 end-[0:2]],:) = 0; i
b(:, [1:3 end-[0:2]1) = 0; :
[J,PSF]1 = deconvbl ind (scanData2, k, 22, uint8(0), double (b), uint8(255)) ;
(elision) i

figure, imshow (J)

Figure 11-5 Image deconvolution by the NXT Viewer (Figure3)

-75-

12 Experimental results

You can watch a movie of the NXT Scanner control experiment and the NXT Viewer image at the following
URL.

http://www.youtube.com/watch?hl=en&v=hadvVwPJw3 0

7riMp BEE TG ERIANE Y-lD AaiH

3 vouTube = MXT Scanner: LEGOD Mindstorms NXT image sconner = Microsolt Internet Explorer @ @ {87 Cybernet Systems Go,,Lid, L _&

Om- O HEG Pwmdbmrw@ 3% o s

L0) bt vverms youtiba comswabchhimand rehad VPl 0

> fd B8 =
\(iT1] Tube wiondwide | Engish (63 € voshiakiba v | Account | QuickList (90 | Hete | Sign Oul
Home | Videos | Channsls Cemmunity Search Updead v
YouTubi will b undaegoing schedulad maintanance, saring arsund 700 pe POT.
NXT Scanner: LEGO Mindstorms NXT image scanner
Amnotations Editoes (15 yoshiakiba Subscribe
8 January 22, 2009
Trying to reach the server, fezz i) L

LEGO Mindsoms W image scanner powered by
Emibedided Coder Riobol HKT (nd0SER). i Mejos-
ok sourcefonge netf

Feal B viewer powered by MATLAR image
processing bool

ou can Sgwritad KT Scanner Simuink &
Stuteniow models and documnts;

e e s COMAMAtlabe entra,

Dcanvehon

-
3
UL | Bttt 5 B, G PAIE m Al

NXT Scanner pon IEEEE===r

Vides Owner Options
— ‘ Edit Video Insighs
Lol Ancedebons AedoGwee Caphons snd
P Sr— 31306 == Suktiios

dede deokoke 2 ralings 1,172 views

Favorite # Share Playlists Flag

It obher s 1o add anertations

¥ More From: yoshiakiba
Send Videss WySgnce Frcnbook {mans share opbiang)

................. ~ Related Videos
b Statistics & Data &

Oare; 4 LEGO “Tank™
tedaviss .
Show: [aveiape (8 vt beoiet 9ol r-m

b Video Responses (0] [SR —

et Comments (1)

o 1A-3ah

Figure 12-1 The Movie of the NXT Scanner and the NXT Viewer

-76 -

13 Challenges for readers

We provide the following problems as challenges for readers. Please try them if you have interest.

® The NXT Scanner: faster reduction of scanning time

® The NXT Scanner: improve how to build (for example, the scanner head change to use from a gear to a
tire)

® The NXT Viewer: improve the image processing algorithm

-77 -

Appendix Generated code

This appendix describes the main code generated from nxtscanner_ctrl.mdl. It is the default code generated by
RTW-EC. RTW-EC allows us to assign user variable attributes such as variable name, storage class, modifiers etc.

by using Simulink Data Object. The comments are omitted for compactness.

#include ""NXT_SCANNER.h"
#include "NXT_SCANNER_private.h"

#define IN_CLOSE [€))
#define IN_OPEN)

uint8 T _sfEvent_;
ControlModeEnum ControlMode;
ErrorCodeEnum ErrorCode;
FeedModeEnum FeedMode;
ScannerBufferInfoEnum ScannerBuffer_Info[2];
ScanModeEnum ScanMode;

head_type head;

logger_type logger;

scanner_type scanner;

sensor_type sensor;

usb_type usb;

BlocklO rtB;

D_Work rtDWork;

PrevZCSigStates rtPrevZCSigState;
void Fcn_Init(void)

ecrobot_set_motor_mode_speed(NXT_PORT_B, 1, 0);
ecrobot_set_motor_mode_speed(NXT_PORT_C, 1, 0);

}
void Fcn_tsl_Init(void)
{

Scanner_Head_Init();
void Fcn_tsl(void)
{

sensor.scanner_head_reset_sw = ecrobot_get_touch_sensor (NXT_PORT_S3);

sensor.scanner_head_rev = ecrobot_get _motor_rev(NXT_PORT_C);

sensor.light_data = ecrobot_get_light_sensor(NXT_PORT_S4);

sensor.systick _ms = ecrobot_get_systick ms(Q);

Scanner_Head();

ecrobot_set_motor_mode_speed(NXT_PORT_C, 1, head.pwm_out);

logger.LOG_datal = head.pwm_out;

logger.LOG_data2 = rtDWork.paper_feed_pwm;

(intl6_T)ControlMode;

logger.LOG_adc2 (intl6_T)ScanMode;

logger.LOG_adc3 (intl6_T)sensor.scanner_head_rev;

logger.LOG_adc4 = (intl6_T)head.now_position;

ecrobot_bt_adc_data_logger(logger.LOG_datal, logger.LOG_data2, logger.LOG_adcl,
logger.LOG_adc2, logger.LOG_adc3, logger.LOG_adc4);

logger.LOG_adcl

void Fcn_ts2_Init(void)

Paper_Feed_Init();
}

void Fcn_ts2_Disable(void)

{
Paper_Feed_Disable();

> :

void Fcn_ts2_Start(void)

{
Paper_Feed_Start();

}

void Fcn_ts2(void)

{
rtB_RevolutionSensor_B = ecrobot_get_motor_rev(NXT_PORT_B);
Paper_Feed();
rtDWork.paper_feed_pwm = rtB_PWM;
ecrobot_set_motor_mode_speed(NXT_PORT_B, 1, rtB.PWM);

}

void Fcn_ts3_Init(void)

ModeControl_Init();
}

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
void Fcn_ts3(void)
{
{ |
boolean_T rtb_RelationalOperator_k; i
sensor.paper_exhaust_sw = ecrobot_get_touch_sensor(NXT_PORT_S1); i
sensor.paper_feed_sw = ecrobot_get_touch_sensor(NXT_PORT_S2); |
sensor.scan_control_sw = ecrobot_is_ENTER_button_pressed(); '
ModeControl (); '
rtb_RelationalOperator_k = (rtModeControl_B.SoundVol > 0U); '
if (rtb_RelationalOperator_k && (rtPrevZCSigState.EnabledSubsystem_Trig_ZCE '
1= POS_ZCSI1G)) {
ecrobot_sound_tone(rtModeControl_B.SoundFreq, rtModeControl_B.SoundDur, !
rtModeControl_B_SoundVol); !
} |
:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

rtPrevZCSigState.EnabledSubsystem_Trig_ZCE = rtb_RelationalOperator_k ?
POS_ZCSIG : ZERO _ZCSIG;

}
}

void usb_send(void)

uint8_ T rtb_TmpHiddenBufferAtUSBTxWrite[64];

{
int32_T i;
for (i =0; 1 <2; i++) {
rtb_TmpHiddenBufferAtUSBTxWrite[i] = usb.send_status[i];
}

for (i =0; i <2; i++) {
rtb_TmpHiddenBufferAtUSBTxWrite[i + 2] = usb.send_number[i];
}

for (i = 0; i < 60; i++) {
rtb_TmpHiddenBufferAtUSBTxWrite[i + 4]
}

ecrobot_send_usb(rtb_TmpHiddenBufferAtUSBTxWrite, 0, MAX_USB_DATA LEN);

usb.send_data[i];

-79-

static
static

static void usb_function(void);

static
static

{

}

uint8_T sf_index;

usb.send_status[1]
usb.send_status[0]
usb.send_number|[1]
usb.send_number[0]

ouU;

ouU;

void usb_communication(uint8 T sf_arg_select_buffer);
void init_buffer(uint8_T sf_arg_select_buf);

uint8_T usb_final_check(void);
void usb_communication(uint8_T sf_arg_select_buffer)

scanner .buffer_number[sf_arg_select_buffer];

for (sf_index = 0U; sf_index < 30; sf_index++) {
usb._.send_data[(sf_index << 1) + 1] = (uint8_T)((scanner.buffer_data
[(sT_index << 1) + sf_arg_select_buffer] & OxFF00) >> 8);
usb.send_data[sf_index << 1] = (uint8_T)(scanner.buffer_data[(sf_index << 1)
+ sf_arg_select_buffer] & OxO0FF);

}

static void init_buffer(uint8_T sf_arg_select_buf)

{

}

uint8_T sf_index;

ScannerBuffer_Info[sf_arg select buf] = TRANS_FINISH;
scanner .buffer_status[sf_arg_select_buf] = 0U;
scanner .buffer_number[sf_arg_select_buf] = 0U;
scanner._buffer_pnum[sf_arg_select_buf] = 0U;
for (sf_index = 0U; sf_index < 30; sf_index++) {
scanner .buffer_data[sf_arg_select_buf + (sf_index << 1)] = 0U;

}

static void usb_function(void)

int32_T i;
for (i = 0; i < 2;
usb.send_status
usb.send_number

}

for (i = 0; i <60; i++) {
usb.send_data[i] = 0U;
}

rtDWork.disconnect = 0U;
if ((ScannerBuffer_Info[0] ==

i++) {
[i] = OU;
[i1 = ou;

FULL_UP) && (ScannerBuffer_Info[1]

if (scanner.buffer_pnum[0] <= scanner.buffer_pnum[1l]) {

usb_communication(0U);
init_buffer(OU);
usb_send();

} else {
usb_communication(1U);
init_buffer(1U);
usb_send();

}
} else if (ScannerBuffer_Info[0] == FULL_UP) {

usb_communication(0OU);
init_buffer(0U);
usb_send();

} else {

if (ScannerBuffer_Info[1] ==

usb_communication(1U);
init_buffer(1U);
usb_send();

FULL_UP) {

- 80 -

(uint8_T)scanner.buffer_status[sf_arg_select_buffer];

FULL_UP))

void usb_communication_main_Init(void)
{
{
int32. T 1;
rtbWork. is_active_c4_nxtscanner_lib = 0U;
rtDWork.is_c4 nxtscanner_lib = 0U;
rtDWork.disconnect = 0U;
for (i =0; i1 <2; i++) {
usb.send_status[i] ouU;
usb.send_number[i] 0ouU;

}

for (i = 0; i < 60; i++) {
usb.send_data[i] = 0U;
}
3

}

void usb_communication_main(void)

if (rtbWork.is_active_c4_nxtscanner_lib == 0) {
rtDWork. is_active_c4_nxtscanner_lib = 1U;
rtbWork. is_c4_nxtscanner_lib = (uint8_T)IN_OPEN;
usb_function();
rtbWork.disconnect = usb_Tfinal_check();
} else {
switch (rtbWork.is_c4 nxtscanner_lib) {
case IN_CLOSE:
iT (rtbWork.disconnect == 0) {
rtbWork. is_c4_nxtscanner_lib = (uint8_T)IN_OPEN;
usb_function();
rtDWork.disconnect = usb_final_check();

}

break;

case IN_OPEN:
if (rtbWork.disconnect == 1) {
rtDWork.is_c4 nxtscanner_lib =
if ((uint8_T)1U) == 1) {
ecrobot_disconnect_usb();

}

rtDWork.disconnect

} else {

usb_function();
rtDWork.disconnect = usb_final_check();

}

break;

(uint8_T)IN_CLOSE;

(0]V)s

default:

rtbWork.is_c4_nxtscanner_lib = (uint8_T)IN_OPEN;
usb_function();

rtDWork.disconnect = usb_final_check();

break;
}
}
}
void Fcn_ts4_Init(void)
{
usb_communication_main_Init();
}
void Fcn_ts4(void)
{
usb_communication_main();
}

-81-

void NXT_SCANNER_initialize(void)
{

rtB.ErrorCode_i = NO_ERROR;
3

ControlMode = ERROR;
ErrorCode = NO_ERROR;
FeedMode = FEED_INIT;

1
1
1
1
1
1
1
1
1
1
1
i
S S

i int_T 1;

| for (i = 0; i < 2; i++) {

| ScannerBuffer_Info[i] = TRANS_FINISH;
3

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

}

ScanMode = SCAN_INIT;

ModeControl_initialize();

Fcn_ts2_Start();

ErrorCode = NO_ERROR;
rtPrevzZCSigState.EnabledSubsystem Trig_ZCE = POS_ZCSIG;
rtPrevZCSigState.Error_Detection_Trig_ZCE = POS_ZCSIG;
sfEvent = CALL_EVENT;

Fcn_tsl_Init(Q);

Fcen_ts2_Init(Q);

Fcn_ts3_Init();

Fcen_ts4_Init(Q);

-82 -

#include "ModeControl.h"

#include ""NXT_SCANNER.h"
#include "NXT_SCANNER_private._h"

#define IN_ERROR)
#define IN_IDLE)
#define IN_INITIALIZE)
#define IN_NORMAL &)
#define IN_NO_ACTIVE_CHILD e0 ©)
#define IN_PAPER_EXHAUST [©)
#define IN_PAPER_FEED @)
#define IN_SCAN_CONTROL)

rtB_ModeControl rtModeControl_B;

rtDW_ModeControl rtModeControl DW;

void ModeControl_Init(void)

{
rtModeControl_DW. is_NORMAL = 0OU;
rtModeControl _DW.is_active_cl nxtscanner_lib = 0U;
rtModeControl_DW.is_cl nxtscanner_lib = 0U;
rtModeControl_B.ControlMode_d = ERROR;
rtModeControl_B.SoundFreq = 0U;
rtModeControl_B.SoundDur = 0U;
rtModeControl_B_SoundVol = 0U;

}

void ModeControl(void)
{
{
ScanModeEnum rtb_DataStoreRead2 Kk;
rtb_DataStoreRead2_k = ScanMode;
if (((ScanMode == SCAN_INIT) && (SCAN_INIT 1I=

|
1
1
1
1
:
1
1
1
1
|
1
1
1
1
:
1
1
1
1
|
1
1
1
1
:
1
1
1
1
|
1
1
1
1
:
1
1
|
rtModeControl_DW.UnitDelayl DSTATE)) || ((sensor.scan_control_sw == !
(Quint8_T)1U)) && (rtModeControl_DW.UnitDelay2 DSTATE == ((uint8_T)0U)))) !
1

1

1

:

1

1

1

1

|

1

1

1

1

|

1

1

1

1

|

1

1

1

1

|

1

1

1

1

:

1

1

1

1

|

1

1

1

1

:

1

1

1

ifT (rtModeControl_DW.UnitDelay2_DSTATE_m >= ((uint8_T)1U)) {
rtModeControl_B.Switch = ((uint8_T)0U);

} else {
rtModeControl_B.Switch = ((uint8_T)1U);
3

rtModeControl_DW.UnitDelay2_DSTATE_m = rtModeControl_B.Switch;
}

rtModeControl_DW._.UnitDelayl DSTATE = rtb_DataStoreRead2_k;
rtModeControl_DW_UnitDelay2 DSTATE = sensor.scan_control_sw;
if (rtModeControl_DW.is_active_cl_nxtscanner_lib == 0) {
rtModeControl _DW.is_active_cl nxtscanner_lib = 1U;
rtModeControl_DW. is_cl_nxtscanner_lib = (uint8_T)IN_NORMAL;
rtModeControl_DW.is_NORMAL = (uint8_T)IN_INITIALIZE;
rtModeControl_B._ControlMode_d = INITIALIZE;
} else {
switch (rtModeControl _DW.is_cl nxtscanner_lib) {
case IN_ERROR:
break;

case IN_NORMAL:
if (ErrorCode !'= NO_ERROR) {
if (ErrorCode == ERROR_001) {
rtModeControl_B.SoundFreq = 880U;

} else {
rtModeControl_B.SoundFreq = 220U;

3

rtModeControl_DW.is_NORMAL = (uint8 T)IN_NO_ACTIVE_CHILD eO;
rtModeControl_DW.is_cl nxtscanner_lib = (uint8_T)IN_ERROR;
rtModeControl_B.ControlMode_d = ERROR;
rtModeControl_B.SoundDur = 3000U;

rtModeControl_B._SoundVol = 20U;

} else {
switch (rtModeControl_DW.is_NORMAL) {
case IN_IDLE:

if (rtModeControl_B.Switch == 1) {
rtModeControl_DW. is_NORMAL = (uint8_T)IN_SCAN_CONTROL;
rtModeControl_B.ControlMode d = SCAN;

} else if (sensor.paper_feed_sw == 1) {
rtModeControl_DW.is_NORMAL = (uint8_T)IN_PAPER_FEED;
rtModeControl_B._ControlMode_d = PAPERFEED;

} else {
if (sensor._paper_exhaust_sw == 1) {

rtModeControl_DW.is_NORMAL = (uint8_T)IN_PAPER_EXHAUST;
rtModeControl_B.ControlMode_d = PAPEREXHAUST;
3
}

break;

case IN_INITIALIZE:
if ((ScanMode == SCAN_IDLE) && (FeedMode == FEED_IDLE)) {
rtModeControl_DW.is_NORMAL = (uint8_T)IN_IDLE;
rtModeControl_B.ControlMode d = IDLE;
}

break;

case IN_PAPER_EXHAUST:
if (sensor.paper_exhaust_sw == 0) {
rtModeControl_DW.is_NORMAL = (uint8_T)IN_IDLE;
rtModeControl_B.ControlMode_d = IDLE;
}

break;

case IN_PAPER_FEED:
if (sensor.paper_feed_sw == 0) {
rtModeControl_DW.is_NORMAL = (uint8_T)IN_IDLE;
rtModeControl_B.ControlMode_d = IDLE;
}

break;

case IN_SCAN_CONTROL:
if (rtModeControl_B._Switch == 0) {
rtModeControl_DW.is_NORMAL = (uint8_T)IN_INITIALIZE;
rtModeControl_B.ControlMode d = INITIALIZE;
}

break;

default:
rtModeControl_DW.is_NORMAL = (uint8_T)IN_INITIALIZE;
rtModeControl_B.ControlMode _d = INITIALIZE;
break;
}
}

break;

default:

rtModeControl_DW.is_cl_nxtscanner_lib = (uint8_T)IN_NORMAL;
rtModeControl_DW.is_NORMAL = (uint8_T)IN_INITIALIZE;
rtModeControl_B.ControlMode_d = INITIALIZE;

break;
3
}
ControlMode = rtModeControl_B.ControlMode_d;
¥
}
void ModeControl_initialize(void)
{
rtModeControl_B.ControlMode d = ERROR;
3
}

#include "'Scanner_Head.h"

#include ""NXT_SCANNER.h"
#include "NXT_SCANNER_private._h"

#define DIR_L (¢1Y))
#define DIR_R oV
#define IN_INIT_ERROR_STOP €D)
#define IN_NO_ACTIVE_CHILD)
#define IN_PAPER_FEED_L (€Y
#define IN_RUNTIME_ERROR_STOP @)
#define IN_SCAN_ERROR ©))
#define IN_SCAN_ERROR_STOP @
#define IN_SCAN_INIT_POSITION o)
#define IN_SCAN_LEFT)
#define IN_SCAN_NORMAL @®)
#define IN_SCAN_RIGHT ©))
#define event FINISH (¢1Y))
#define event_RUNTIME_ERROR u)
#define event_STOP ovw)

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
rtDW_Scanner_Head rtScanner_Head DW; i
static void broadcast_STOP(void); I
static void scan_timeover_check(uint32_T sf _arg_target_ms, uint32_T |
sf_arg_now_clock);
static void scan_start_position_seek(void); |
static void scan_init(uint8_T sf_arg_target_dir);
static void scan_timeover_set(void); |
static int8 T get_pwm_value(uint8_T sf _arg _dir, int32_T sf_arg_position, uint8_T '
sf_arg_max, uint8_T sf_arg_min); '
static uintl6_T status_maker(uint8_T sf _arg_elp, uint8 T sf_arg_start, uint8 T '
st_arg_stop, uint8 T sf_arg_dir); '
static void scan_control_right(void); !
static void paper_feed(void); !
static void scan_control_left(void); !
static void scan_usb_stop(void); !
static void scan_environment(void); !
static void enter_atomic_SCAN_INIT_POSITION(void); !
static void c2_nxtscanner_lib(void); !
static void broadcast_STOP(void) !
{ |
uint8 T sf _previousEvent;
sf _previousEvent = _sfEvent_; |
sfEvent = event_STOP; |
c2_nxtscanner_libQ; |
sfEvent = sf_previousEvent; i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

}

static void scan_timeover_check(uint32_T sf _arg_target_ms, uint32_T
st_arg_now_clock)

if (sf_arg_target_ms < sf_arg_now_clock - head.start_time) {
broadcast_STOP();
3
}

static void scan_start_position_seek(void)

if (sensor.scanner_head_reset_sw == 1) {
head.pwm_out = O;
ScanMode = SCAN_IDLE;
head.scan_init_end_flg = 1U;
} else if (head.scan_init_end_flg == 1) {
broadcast_STOP();
} else {
head.pwm_out = SCAN_INITIALIZE_PWM;
scan_timeover_check(SCAN_INITIALIZE_TIMEOUT, sensor.systick _ms);

static void scan_init(uint8_T sf_arg_target_dir)
{
head.line_end_flg = 0U;
head.packet_cnt = 0U;
ScanMode = SCAN_SCAN;
head.encoder_base = (int32_T)SCAN_START;
if (sf_arg_target _dir == DIR_L) {
head.start_position = sensor.scanner_head_rev + BACKLASH_ADJUST;
} else if (head.start_flg == 1) {
head.start_position = (sensor.scanner_head_rev - RELEASE_TOUCH_SENSOR) -
BACKLASH_ADJUST;

} else {
head.start_position = sensor.scanner_head_rev - BACKLASH_ADJUST;
}

}

static void scan_timeover_set(void)

{
}

static int8 T get_pwm_value(uint8_T sf_arg dir, int32_T sf_arg_position, uint8_T
sf_arg_max, uint8 T sf _arg_min)
{

head.start_time = sensor.systick_ms;

int8 T sf_pwm;

if (sf_arg_position < 0) {
sft_pwm = (int8_T)sf _arg_max;

} else if (sf_arg_position > SCAN_EDGE) {
st_pwm = O;

} else if (sf_arg_position > SCAN_EDGE - 60) {
sft_pwm = (int8_T)sf _arg_min;

} else {

1
1
:
1
1
1
1
:
1
1
1
1
:
1
1
1
1
|
1
1
1
1
|
1
1
1
1
|
1
1
1
1
:
1
1
1
1
:
1
sft_pwm = (int8_T)sf _arg_max; '
1
:
1
1
1
1
|
1
1
1
1
|
1
1
1
1
|
1
1
1
1
:
1
1
1
1
:
1
1
1
1
|
1
1
1
1
|
1
1

if (sf_arg_dir == 0) {
return (int8_T)(-sf_pwm);
¥

return sf_pwm;

}

static uintl6_T status_maker(uint8_T sf _arg_elp, uint8 T sf_arg_start, uint8 T
sf_arg_stop, uint8 T sf_arg_dir)
{

uintlé T sf out;

sf_out = 1U;

if (sf_arg_elp == 1) {
st _out = 17U;

}

if (sf_arg_start == 1) {
sf_out += 8;

}

ifT (sf_arg_stop == 1) {
st _out += 4;

}

if (sf_arg_dir == 1) {
st out += 2;
b

return sf_out;

- 86 -

static void scan_control_right(void)
{
uint8_ T sf_previousEvent;
head.now_position = head.start_position - sensor.scanner_head_rev;
head.pwm_out = get_pwm_value(DIR_R, head.now_position, SCAN_R_MAX_PWM,
SCAN_R_MIN_PWM) ;
if ((sensor.scanner_head_reset_sw == 1) && (head.now_position > 0)) {
broadcast_STOP();
} else if (head.pwm_out == 0) {

FeedMode = FEED_PAPERFEED;
ScanMode = SCAN_FEED;
} else {

if ((head.now_position > SCAN_START) && (head.now_position >
head.encoder_base)) {
ifT (head.now_position <= SCAN_EDGE - SCAN_START) {
head.encoder_base = head.encoder_base + 2;
scanner .buffer_data[head.select + (scanner.buffer_number[(int32_T)
head.select] << 1)] = sensor.light_data;
scanner .buffer_number[(int32_T)head.select] = (uint8_T)
(scanner _buffer_number[(int32_T)head.select] + 1);
ScannerBuffer_Info[(int32_T)head.select] = STORING;
if (scanner._buffer_number[(int32_T)head.select] >= 30) {
head.packet_cnt = (uint8_T)(head.packet_cnt + 1);
ScannerBuffer_Info[(int32_T)head.select] = FULL_UP;
scanner .buffer_status[(int32_T)head.select] = status_maker(0OU,
head.start_flg, OU, DIR_R);
scanner .buffer_pnum[(int32_T)head.select] = head.packet_cnt;
head.start_flg = 0U;
if (head.select == 1) {
head.select = 0U;
} else {
head.select = 1U;

}

¥
} else {
if (head.line_end_flg == 0) {
head.line_end_flg = 1U;
head.line_cnt = head.line_cnt + 1U;
ScannerBuffer_Info[(int32_T)head.select] = FULL_UP;
head.packet_cnt = (uint8_T)(head.packet_cnt + 1);
scanner.buffer_pnum[(int32_T)head.select] = head.packet_cnt;
if (head.line_cnt >= 127U) {
scanner .buffer_status[(int32_T)head.select] = status_maker(1U,
head.start_flg, 1U, DIR_R);
ScanMode = SCAN_INIT;
sf_previouskEvent = _sfEvent_;
sfEvent = event FINISH;
c2_nxtscanner_lib(Q;
sfEvent = sf_previousEvent;
} else {
scanner .buffer_status[(int32_T)head.select] = status_maker(1U,
head.start_flg, OU, DIR_R);

static void paper_feed(void)

if (FeedMode == FEED_IDLE) {
ScanMode = SCAN_SCAN;

-87-

static void scan_control_left(void)
{
uint8 T sf_previousEvent;
head.now_position = sensor.scanner_head_rev - head.start_position;
head.pwm_out = get_pwm_value(DIR_L, head.now_position, SCAN_L_MAX_PWM,
SCAN_L_MIN_PWM);
if ((sensor.scanner_head_reset_sw == 1) && (head.now_position > 0)) {
st _previouskEvent = _sfEvent_;
sfEvent = event_RUNTIME_ERROR;
c2_nxtscanner_lib();
sfEvent = sf_previousEvent;
} else {
if (head.pwm_out == 0) {
ScanMode = SCAN_FEED;
}
3
}

static void scan_usb_stop(void)

head.pwm_out = O;
ScannerBuffer_Info[(int32_T)head.select] = FULL_UP;
scanner .buffer_status[(int32_T)head.select] = status_maker(1U, head.start_flg,
1U, DIR_R);
scanner .buffer_pnum[(int32_T)head.select] = (uint8_T)(head.packet_cnt + 1);
}

static void scan_environment(void)
{
head.start_flg = 1U;
head.select = 0U;
head.line_cnt = 0U;
head.line_end_flg = 0U;
head.packet_cnt = 0U;
head.scan_init_end_flg = 0U;
}

static void enter_atomic_SCAN_INIT_POSITION(void)

if (rtScanner_Head_DW.is_c2 nxtscanner_lib != IN_SCAN_INIT_POSITION) {
rtScanner_Head_DW.is_c2_nxtscanner_lib = (uint8_T)IN_SCAN_INIT_POSITION;
scan_environment();
scan_timeover_set();
scan_start_position_seek();

3
}
static void c2_nxtscanner_lib(void)
{
iT (rtScanner_Head DW.is_active_c2_nxtscanner_lib == 0) {

rtScanner_Head_DW.is_active_c2_nxtscanner_lib = 1U;

if (rtScanner_Head DW.is_c2_nxtscanner_lib != IN_SCAN_INIT_POSITION) {
rtScanner_Head_DW.is_c2_nxtscanner_lib = (uint8_T)IN_SCAN_INIT_POSITION;
scan_environment();
scan_timeover_set();
scan_start_position_seek();

}
} else {
switch (rtScanner_Head_DW.is_c2_nxtscanner_lib) {
case IN_INIT_ERROR_STOP:
if (ControlMode == ERROR) {
rtScanner_Head_DW.is_c2_nxtscanner_lib = (uint8_T)IN_SCAN_ERROR;
head.pwm_out = O;

}

break;

case IN_RUNTIME_ERROR STOP:
break;

case IN_SCAN_ERROR:

1
1
1
I
1
1
1
1
I
1
1
1
1
I
1
1
1
1
I
1
1
1
1
I
1
1
1
1
I
1
1
1
1
I
1
1
1
1
I
:
1
| rtScanner_Head_DW.is_c2_nxtscanner_lib = (uint8_T)IN_NO_ACTIVE_CHILD;
1
1
1
1
I
1
1
1
1
I
1
1
1
1
I
1
1
1
1
I
1
1
1
1
I
1
1
1
1
I
1
1
1
1
I
1
1
1
1
I
1

case IN_SCAN_ERROR_STOP:
break;

case IN_SCAN_INIT_POSITION:

if (CsfEvent_ == event_STOP) {
rtScanner_Head DW.is_c2 nxtscanner_lib
head.pwm_out = O;

ErrorCode = ERROR_001;

} else if (ControlMode == ERROR) {
rtScanner_Head_DW.is_c2_nxtscanner_lib
head.pwm_out = O;

} else if ((ControlMode == SCAN) && (ScanMode == SCAN_IDLE)) {
rtScanner_Head_DW.is_c2_nxtscanner_lib = (uint8_T)IN_SCAN_NORMAL;
if (rtScanner_Head_DW.is_SCAN_NORMAL != IN_SCAN_RIGHT) {

rtScanner_Head_DW.is_SCAN_NORMAL = (uint8_T)IN_SCAN_RIGHT;
scan_init(DIR_R);

scan_timeover_set();

scan_control_right(Q);

(uint8_T)IN_INIT_ERROR_STOP;

(uint8_T)IN_SCAN_ERROR;

}
} else {
scan_start_position_seek();

}

break;

case IN_SCAN_NORMAL:
if (rtScanner_Head_DW.is_c2_nxtscanner_lib == IN_SCAN_NORMAL) {

if (ControlMode == ERROR) {
scan_usb_stop();
rtScanner_Head DW.is_SCAN_NORMAL = (uint8_T)IN_NO_ACTIVE_CHILD;
rtScanner_Head_DW.is_c2_nxtscanner_lib = (uint8_T)IN_SCAN_ERROR;
head.pwm_out = 0;

} else if ((ControlMode != ERROR) && (ControlMode != SCAN)) {
scan_usb_stop();
rtScanner_Head DW.is_SCAN_NORMAL = (uint8_T)IN_NO_ACTIVE_CHILD;

enter_atomic_SCAN_INIT_POSITIONQ);

} else if (sfEvent_ == event_FINISH) {
rtScanner_Head_DW.is_SCAN_NORMAL = (uint8_T)IN_NO_ACTIVE_CHILD;
rtScanner_Head_DW.is_c2_nxtscanner_lib = (uint8_T)IN_NO_ACTIVE_CHILD;
enter_atomic_SCAN_INIT_POSITIONQ);

} else if (sfEvent_ == event_STOP) {
rtScanner_Head_DW.is_SCAN_NORMAL = (uint8_T)IN_NO_ACTIVE_CHILD;
rtScanner_Head_DW.is_c2_nxtscanner_lib = (uint8_T)IN_SCAN_ERROR_STOP;
scan_usb_stop();

ErrorCode = ERROR_001;

} else if (sfEvent_ == event_ RUNTIME_ERROR) {
rtScanner_Head_DW.is_SCAN_NORMAL = (uint8_T)IN_NO_ACTIVE_CHILD;
rtScanner_Head_DW.is_c2_nxtscanner_lib = (uint8_T)IN_NO_ACTIVE_CHILD;
if (rtScanner_Head_DW.is_c2_nxtscanner_lib = IN_RUNTIME_ERROR_STOP) {

rtScanner_Head DW.is_c2_nxtscanner_lib = (uint8_T)
IN_RUNTIME_ERROR_STOP;

head.pwm_out = 7;

ErrorCode = ERROR_001;

ScannerBuffer_Info[(int32_T)head.select] = FULL_UP;

scanner .buffer_status[(int32_T)head.select] = status_maker(1U,
head.start_flg, 1U, DIR_L);

3
} else {
switch (rtScanner_Head_DW. is_SCAN_NORMAL) {
case IN_PAPER_FEED_L:
if (ScanMode == SCAN_SCAN) {
rtScanner_Head_DW.is_SCAN_NORMAL = (uint8_T)IN_SCAN_RIGHT;
scan_init(DIR_R);
scan_timeover_set();
scan_control_right();
} else {
paper_feed();
scan_timeover_check(SCAN_F_TIMEOUT, sensor.systick ms);

case IN_SCAN_LEFT:
if (rtScanner_Head_DW.is_SCAN_NORMAL == IN_SCAN_LEFT) {

if (ScanMode == SCAN_FEED) {
rtScanner_Head_DW.is_SCAN_NORMAL = (uint8_T)IN_PAPER_FEED L;
scan_timeover_set();
paper_feed();

} else {
scan_control_left();
scan_timeover_check(SCAN_L_TIMEOUT, sensor.systick _ms);

}

}

break;

case IN_SCAN_RIGHT:
if (rtScanner_Head_DW.is_SCAN_NORMAL == IN_SCAN_RIGHT) {

if (ScanMode == SCAN_FEED) {
ScanMode = SCAN_SCAN;
rtScanner_Head_DW.is_SCAN_NORMAL = (uint8_T)IN_SCAN_LEFT;
scan_init(DIR_L);
scan_timeover_set();
scan_control_left();

} else {
scan_control_right();
scan_timeover_check(SCAN_R_TIMEOUT, sensor.systick _ms);

}

}

break;

default:
rtScanner_Head_DW.is_SCAN_NORMAL = (uint8_T)IN_NO_ACTIVE_CHILD;
break;
b
3
b

break;

default:
rtScanner_Head_DW.is_c2_nxtscanner_lib = (uint8 _T)IN_NO_ACTIVE_CHILD;
break;
}
3
}

void scanner_head_main_Init(void)
{
{
int32_T i;
rtScanner_Head_ DW.is_SCAN_NORMAL = 0U;
rtScanner_Head_DW.is_active_c2_nxtscanner_lib = 0U;
rtScanner_Head DW.is_c2_ nxtscanner_lib = 0U;
head.start_position = 0;
head.select = 0U;
head.start_flg = 0U;
head.line_cnt = 0U;
head.line_end_flg = 0U;
head.packet_cnt = 0U;
head.scan_init_end_flg = 0U;
head.start_time = 0U;
for (i =0; 1 <6; i++) {
polyspace[i] = O;

head.pwm_out = O;
head.now_position
head.encoder_base

-90 -

void scanner_head_main(void)

{

{
uint8 T sf_previousEvent;
sf_previouskEvent = _sfEvent_;
_sfEvent = CALL_EVENT;
c2_nxtscanner_lib();
sfEvent = sf_previousEvent;

3

) |

void Scanner_Head_Init(void)

{
}

void Scanner_Head(void)

{

scanner_head_main_Init(Q);

scanner_head_main();

-01-

#include "Paper_Feed.h"

#include ""NXT_SCANNER.h"
#include "NXT_SCANNER_private._h"

void task stop_Start(rtB_task_stop *localB)

localB->PWM = 0;
localB->Constant2 = FALSE;
s

void task_stop(rtB_task _stop *localB)

localB->PWM = 0;
localB->Constant2 = FALSE;
3

void Paper_Feed_Init(void)

rtDWork.RotDir = false;
s

void Paper_Feed_Disable(void)

rtbWork.Counter_For_Error_MODE = SUBSYS_DISABLED;

}

void Paper_Feed_Start(void)

{
rtB.PWM_f = 100;
rtB.Constantl c = FALSE;
rtB.Constant2_m = TRUE;
rtB.PWM o = -100;
rtB.Constant2_i1 = TRUE;
task_stop_Start(&rtB.task _stop_n);
rtB.PWM _c = 100;
rtB.PWM_c = 100;
rtB.Constant2_1 = TRUE;
rtB.PWM_I = 100;
rtB.PWM_I1 = 100;
rtB.PWM_I = 100;
rtB.Constant2 = TRUE;
rtDWork.Memoryl Previouslnput = ((uint8_T)0U);
rtbDWork.UnitDelay_DSTATE = O;
rtB_ErrorCode_i = NO_ERROR;

}

void Paper_Feed(void)
int32_T rtb_Switchl;

{

boolean_T rtb_ErrDetect;
uint8_T rtb_Suml_d;
int32_T rtb_Switch;
int32_T rtb_EncoderDiff_o;
if (ControlMode == INITIALIZE) {
if (FeedMode == FEED_INIT) {
rtB.SFunction_o06 = rtB.RevolutionSensor B;
if (1rtDWork.ROTOR_FLAG) {
rtDWork .ROTOR_INIT = rtB.SFunction_06;
rtDWork.ROTOR_FLAG = TRUE;
rtB.PWM_I = 100;
} else {
if (rtB.SFunction_o6 - rtbDWork_.ROTOR_INIT < 1000) {
rtDWork.ROTOR_FLAG = TRUE;

}
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I
| rtB.Constantl = TRUE;
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

FeedMode = FEED_INIT;
retB.PWM_I = 100;

} else {
rtbDWork.ROTOR_FLAG = FALSE;
FeedMode = FEED_IDLE;
rtB.PWM_I1 = O;

}

}

rtB.Constant2 = TRUE;
rtB.PWM = rtB.PWM_I;
rtb_ErrDetect = rtB.Constant2;
} else {
task_stop(&rtB.task_stop_n);
rtB.PWM = rtB.task_stop_n.PWM;
rtb_ErrDetect = rtB.task _stop_n.Constant2;

¥
else it (ControlMode == PAPERFEED) {
rtB.PWM_f = 100;
rtB._Constantl_c FALSE;
rtB.Constant2_m TRUE;
rtB.PWM = rtB.PWM_T;
rtDWork.RotDir = rtB.Constantl_c;
rtb_ErrDetect = rtB.Constant2_m;
else if (ControlMode == PAPEREXHAUST) {
rtB.PWM_o = -100;
rtB.Constantl = TRUE;
rtB_Constant2_i = TRUE;
rtB.PWM = rtB.PWM_o;
rtDWork.RotDir = rtB.Constantl;
rtb_ErrDetect = rtB.Constant2_i;
else if (ControlMode == IDLE) {
task_stop(&rtB.task_stop_n);
rtB.PWM = rtB.task_stop_n.PWM;
rtb_ErrDetect = rtB.task_stop_n.Constant2;
else if (ControlMode == ERROR) {
task_stop(&rtB.task_stop_n);
rtB_PWM = rtB.task_stop_n.PWM;
rtb_ErrDetect = rtB.task _stop_n.Constant2;
else if (FeedMode == FEED_PAPERFEED) {
rtB.SFunction_o4 = rtB.RevolutionSensor_B;
rtB.SFunction_o5 = rtDWork.RotDir;
ifT (IrtbWork.ROTOR_FLAG) {
rtDWork .ROTOR_INIT rtB.SFunction_o4;
rtbWork .ROTOR_FLAG = TRUE;
rtB.PWM_c = 100;
rtB.RotOffset = rtB.SFunction_o5;

} else {

rtb_EncoderDiff_o = rtB.SFunction_o4 - rtDWork.ROTOR_INIT;

if (rtB.SFunction_o5) {
rtb_Switchl = rtb_EncoderDiff_o;
} else {
rtb_Switchl = rtb_EncoderDiff_o + 50;

}

if (rtB.SFunction_o5) {
rtb_Switch = 50;

} else {
rtb_Switch = 0O;

}

if (rtb_EncoderDiff_o < rtb_Switch + 102) {
rtDWork . ROTOR_FLAG = TRUE;
FeedMode = FEED_PAPERFEED;

uint32_T iLeft;
if (rtb_Switchl <=0) {

iLeft = 0;
} else if (rtb_Switchl >= 150) {
iLeft = 15U;

} else {
iLeft = (uint32_T)(rtb_Switchl) / 10;

{

uint32_T remainder;

remainder = (uint32_T)(rtb_Switchl) % 10;

if ((10 - remainder) <= remainder) {
iLeft++;

}

}
b

rtB.PWM_c = (rtConstP.LookupTable_YData[ilLeft]);
}

rtB.RotOffset = rtB.SFunction_o5;
} else {
rtDWork .ROTOR_FLAG = FALSE;
FeedMode = FEED_IDLE;
rtB.PWM_c = O;
rtB.RotOffset = FALSE;
}
}

rtB.Constant2_I1 = TRUE;
rtB.PWM = rtB.PWM_c;
rtDWork.RotDir = rtB.RotOffset;
rtb_ErrDetect = rtB.Constant2 1I;
} else {
task_stop(&rtB._task_stop_n);
rtB.PWM = rtB.task_stop_n.PWM;
rtb_ErrDetect = rtB._task stop_n.Constant2;

}

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

i

' if (rtb_ErrDetect) {
' if (rtbWork.Counter_For_Error_MODE == SUBSYS_DISABLED) {
' rtDWork.Memoryl_ Previouslnput = ((uint8_T)0U);

' rtbDWork.UnitDelay_DSTATE = O;

' rtbWork.Counter_For_Error_MODE = SUBSYS_ENABLED;
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

}

rtb_Suml_d = (uint8_T)(uint32_T)(rtbDWork.Memoryl_ Previouslnput + ((uint8_T)
1U));

if (rtb_Suml _d > ((uint8_T)10U)) {
rtb_Suml_d -= ((uint8_T)10U);

}

rtb_ErrDetect = (rtb_Suml_d == ((uint8_T)10U));
if (rtb_ErrDetect && (rtPrevZCSigState_Error_Detection_Trig_ZCE !=
POS_zCS16)) {
if ((rtDWork.UnitDelay DSTATE == rtB.RevolutionSensor_B) &&
(rtB.RevolutionSensor_B = 0)) {
rtB.ErrorCode i = ERROR_002;

}

rtDWork.UnitDelay DSTATE = rtB.RevolutionSensor_B;
}

rtPrevZCSigState._Error_Detection_Trig_ZCE = rtb_ErrDetect ? POS_ZCSIG :
ZERO_ZCSIG;
rtbDWork .Memoryl_Previouslinput = rtb_Suml_d;
} else {
ifT (rtbWork.Counter_For_Error_MODE == SUBSYS_ENABLED) {
rtbWork.Counter_For_Error_MODE = SUBSYS_DISABLED;
}
}

ErrorCode = rtB.ErrorCode_i;

Reference

[1] Embedded Coder Robot NXT

http://www.mathworks.com/matlabcentral/fileexchange/13399

[2] Philo’s Home Page LEGO Mindstorms NXT

http://www.philohome.com/

[3] NXT GamePad

http://lejos-osek.sourceforge.net/utilities.htm

[4] Excel Interface API for Simulink Data Object

http://www.mathworks.com/matlabcentral/fileexchange/20316

-05-

http://lejos-osek.sourceforge.net/utilities.htm

	Introduction
	Preparation
	Required Products
	 File Lists
	Index
	1 Model-Based Design
	1.1 What is Model-Based Design?
	1.2 V-process
	1.3 Merits of MBD

	2 Product design
	2.1 What is an NXT Scanner and an NXT Viewer?

	3 Mechanisms for the NXT Scanner
	3.1 Hardware structure
	3.2 Backlash
	3.3 Sensors and Actuators

	4 System design
	4.1 Overview of total system
	4.2 MODE CONTROL SYSTEM
	4.3 PAPER FEED CONTROL SYSTEM
	4.4 SCAN CONTROL SYSTEM
	4.5 USB COMMUNICATION CONTROL SYSTEM

	5 Module design for the NXT Scanner
	5.1 Using library model for functional unit models
	5.2 Shared data (Global variable data) for the total system

	6 Unit design
	6.1 Using enumerated type (New feature of R2008b)
	6.2 Utilize Simulink function (New feature of R2008b)
	6.3 MODE CONTROL MODEL
	6.4 PAPER FEED CONTROL MODEL
	6.5 SCAN CONTROL MODEL
	6.6 USB COMMUNICATION CONTROL MODEL

	7 Simulation for each models
	7.1 Test signals for Simulation
	7.2 Introduce of verification tools and function

	8 The NXT Scanner controller model (integrated each models)
	8.1 Control program summary
	8.2 The NXT Scanner model summary
	8.3 Initialization task: task_init
	8.4 2ms task: task_ts1
	8.5 10ms task: task_ts2
	8.6 20ms task: task_ts3
	8.7 60ms task: task_ts4
	8.8 Tuning parameters

	9 Code generation and implementation
	9.1 Target hardware and software
	9.2 How to generate code and download

	10 Verification of generated code
	10.1 What is PolySpace?
	10.2 PolySpace configuration
	10.3 PolySpace can find runtime errors
	10.4 Results of PolySpace verification

	11 What is an NXT Viewer?
	11.1 How to use the NXT Viewer
	11.2 Command for USB communication (nxtusb)
	11.3 Overview of the image display
	11.4 About image processing

	12 Experimental results
	13 Challenges for readers
	Appendix Generated code
	 Reference

