

Model-Based Design & an NXT Scanner
- Image Scanner built with LEGO Mindstorms NXT -

 Author (First Edition)
Yoshiaki Banno : banno@cybernet.co.jp

Tomoki Fukuda : t_fukuda@cybernet.co.jp

Application Engineer

Advanced Support Group 1 Engineering Department

Applied Systems First Division

CYBERNET SYSTEMS CO., LTD.

 Revision History

Revision Date Description Author/Editor

First Edition
Yoshiaki Banno

banno@cybernet.co.jp
1.0 May 2009

First Edition (chapter 6.2, 6.4, 11.1, 11.2 and

11.3)

Tomoki Fukuda

t_fukuda@cybernet.co.jp

The contents and URL described in this document can be changed with no previous notice.

 Disclaimer
LEGO® is a trademark of the LEGO Group of companies which do not sponsor, authorize or endorse this

project. LEGO® and Mindstorms® are registered trademarks of The LEGO Group. According to LEGO

Mindstorms NXT Hardware Developer Kit.

Disclaimer about the MathWorks and the products which are used for this demo, please check the following:

URL: http://www.mathworks.com/matlabcentral/disclaimer.html

mailto:banno@cybernet.co.jp
mailto:banno@cybernet.co.jp

Introduction

This document describes the required products for an NXT Scanner and how to build it. An NXT Scanner is a

sheet feed image scanner and is built with Lego Mindstorms NXT. An NXT Viewer is an image viewer and

image processing in MATLAB. This document presents Model-Based Design of an NXT Scanner by using

MATLAB/Simulink. An NXT Scanner which illustrates MBD using UML and Simulink/Stateflow and using

R2008b new features and using many MATLAB/Simulink optional products. The main contents are the

following:

 Summary of the NXT Scanner and the NXT Viewer

 The NXT Scanner system

 The NXT Scanner Design

 The NXT Scanner Modeling

 Simulation and Results

 Image Viewer and Image Processing with the NXT Viewer

Preparation

To build an NXT Scanner, please read “NXT Scanner Building Instructions (NXT Scanner Building

Instructions.pdf)”. You need to download Embedded Coder Robot NXT from the following URL because it is

used as Model-Based Design Environment in this document.

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=13399

Please read “Embedded Coder Robot NXT Instruction Manual (Embedded Coder Robot NXT Instruction

En.pdf)” and test sample models / programs preliminarily. The software versions used in this document are as

follows.

Software Version

Embedded Coder Robot NXT 3.16+

nxtOSEK/JSP 2.06

Cygwin 1.5.24

GNU ARM 4.0.2

 - i -

Required Products

Product Version Release

MATLAB® 7.7 R2008b

Simulink® 7.2 R2008b

Stateflow® 7.2 R2008b

Real-Time Workshop® 7.2 R2008b

Real-Time Workshop® Embedded Coder™ 5.2 R2008b

Stateflow® Coder™ 7.2 R2008b

Image Processing Toolbox™ 6.2 R2008b

PolySpace® Server™ for C/C++ 6.0 R2008b

PolySpace® Client™ for C/C++ 6.0 R2008b

PolySpace® Model Link™ SL 5.2 R2008b

Simulink® Verification and Validation™ 2.4 R2008b

Simulink® Design Verifier™ 1.3 R2008b

 - ii -

File Lists

Category File Name Description

setup_nxtscanner.m Path for MATLAB

nxtscanner_ctrl.mdl The NXT Scanner controller model

nxtscanner_lib.mdl The NXT Scanner library model

Common

mode_control_verification_lib.mdl [sample] Verification for mode_control.mdl

nxtscanner.xls Simulink Data Object management Data object

SDOxlsIF folder
Excel Interface API for Simulink Data

Object Tool

mode_control_prm.m Parameters Mode control

mode_control.mdl Functional unit model

Paper feed control paper_feed_mechanism.mdl Functional unit model

scanner_head_prm.m Parameters Scan control

scanner_head.mdl Functional unit model

data_communication.mdl Functional unit model

usb_test_signal.mdl Validation model

usb_test_data.mat Validation data

usb_test_number.mat Validation data

USB control

usb_test_state.mat Validation data

ControlModeEnum.m Definition

ErrorCodeEnum.m Definition

FeedModeEnum.m Definition

ScanModeEnum.m Definition

Enumerated data types

ScannerBufferInfoEnum.m Definition

NXTScannerViewer.fig The NXT Viewer GUI design NXT Viewer

NXTScannerViewer.m The NXT Viewer M-script

nxtscanner_ctrl_polyspace.cfg Configure file

polyspace_main.c Verification file of dummy main loop

polyspace.h Verification file for avoidable compile error

PolySpace

polyspace_additional_file_list.txt Configure file

 - iii -

Index

Introduction ... i
Preparation.. i
Required Products .. ii
File Lists .. iii
Index ... 4
1 Model-Based Design .. 1

1.1 What is Model-Based Design?.. 1
1.2 V-process ... 2
1.3 Merits of MBD .. 3

2 Product design... 4
2.1 What is an NXT Scanner and an NXT Viewer?.. 4

3 Mechanisms for the NXT Scanner ... 6
3.1 Hardware structure ... 6
3.2 Backlash ... 11
3.3 Sensors and Actuators ... 11

4 System design ... 12
4.1 Overview of total system .. 12
4.2 MODE CONTROL SYSTEM ... 13
4.3 PAPER FEED CONTROL SYSTEM .. 15
4.4 SCAN CONTROL SYSTEM .. 16
4.5 USB COMMUNICATION CONTROL SYSTEM.. 18

5 Module design for the NXT Scanner .. 19
5.1 Using library model for functional unit models.. 19
5.2 Shared data (Global variable data) for the total system.. 19

6 Unit design ... 22
6.1 Using enumerated type (New feature of R2008b) ... 22
6.2 Utilize Simulink function (New feature of R2008b) .. 24
6.3 MODE CONTROL MODEL.. 25
6.4 PAPER FEED CONTROL MODEL... 28
6.5 SCAN CONTROL MODEL .. 39
6.6 USB COMMUNICATION CONTROL MODEL .. 46

7 Simulation for each models ... 49
7.1 Test signals for Simulation ... 49
7.2 Introduce of verification tools and function.. 50

8 The NXT Scanner controller model (integrated each models)... 53
8.1 Control program summary ... 53
8.2 The NXT Scanner model summary .. 54
8.3 Initialization task: task_init ... 57

8.4 2ms task: task_ts1 .. 57
8.5 10ms task: task_ts2 .. 58
8.6 20ms task: task_ts3 .. 58
8.7 60ms task: task_ts4 .. 59
8.8 Tuning parameters .. 60

9 Code generation and implementation .. 61
9.1 Target hardware and software... 61
9.2 How to generate code and download .. 62

10 Verification of generated code .. 63
10.1 What is a PolySpace? .. 63
10.2 PolySpace configuration .. 64
10.3 PolySpace can find runtime errors ... 66
10.4 Results of PolySpace verification.. 68

11 What is an NXT Viewer? .. 69
11.1 How to use the NXT Viewer .. 69
11.2 Command for USB communication (nxtusb) .. 71
11.3 Overview of the image display .. 72
11.4 About image processing .. 73

12 Experimental results ... 76
13 Challenges for readers ... 77
Appendix Generated code ... 78
Reference... 95

- 1 -

1 Model-Based Design

This chapter describes the outline Model-Based Design briefly.

1.1 What is Model-Based Design?

Model-Based Design is a software development technique that uses simulation models. Generally, it is

abbreviated as MBD. For control systems, a designer models a plant and a controller or a part of them, and tests

the controller algorithm based on a PC simulation or real-time simulation. The real-time simulation enables us to

verify and validate the algorithm in real-time, by using code generated from the model. It is Rapid Prototyping

(RP) that a controller is replaced by a real-time simulator, and Hardware In the Loop Simulation (HILS) is a plant

version of Rapid Prototyping.

Furthermore, auto code generation products like RTW-EC enables us to generate C/C++ code for embedded

controllers (microprocessor, DSP, etc.) from the controller model. Figure 1-1 shows the concept of MBD for

control systems based on MATLAB product family.

Simulink
Stateflow
Simulink Control Design
Simulink Response Optimization
Simulink Parameter Estimation
SimMechanics
SimPowerSystems
SimDriveline
SimHydraulics
Signal Processing Blockset
Simulink Fixed Point

Control System
Design & Analysis SimulationEngineering

Problem

Mathematical
Modeling

Code
Generation

RP

HILS

Embedded
System

Data

Data based
Modeling

Prototyping
Code (RTW)

 Embedded
Code (RTW-EC)

 MATLAB

Data Acquisition
Instrument Control
OPC

Control System
System Identification
Fuzzy Logic
Robust Control
Model Predictive
 Control
Neural Network
Optimization
Signal Processing
Fixed-Point

Real-Time Workshop
Real-Time Workshop
 Embedded Coder
Stateflow Coder
xPC Target

MATLAB Products (Toolbox) Simulink Products

Figure 1-1 MBD for control systems based on MATLAB product family

- 2 -

1.2 V-process

The V-process showed in Figure 1-2 describes the MBD development process for control systems. The V-process

consists of the Design, Coding, and Test stage. Each test stages correspond to the appropriate Design stages. A

developer makes plant/controller models in the left side of the V-process for early improvement of controller

algorithm, and reuses the models in the right side of it for improvement of code verification and validation.

System Design

Module Design

Unit Design

Coding

Unit Test

Module Test

System Test

Product Test

Plant Modeling

Controller Algorithm
Design

Code Generation for
Embedded Systems

Verification
Static Analysis
Coding Rule Check

 Early Improvement of
Controller Algorithm

Improvement of Code
Verification & Validation

Product Design

Validation

Figure 1-2 V-process for control systems

- 3 -

1.3 Merits of MBD

MBD has the following merits.

 Detection pf specification errors in early stage of development

 Hardware prototype reduction and fail-safe verification by real-time simulation

 Efficient test by model verification

 Effective communication by model usage

 Coding time and error reduction by auto code generation

- 4 -

2 Product design

This chapter describes the outline product design of Model-Based Design.

2.1 What is an NXT Scanner and an NXT Viewer?

The NXT Scanner is a sheet feed image scanner and is built with Lego Mindstorms NXT. The NXT Viewer is

an image viewer and an image processor in MATLAB. The NXT Scanner and The NXT Viewer are expressed

by UML use case diagram as in Figure 2-1 and Figure 1-2. Each case is shown by use case description as shown

in Table 2-1 to Table 2-4.

Scanner of image

Adjust a paper

Scan an image

The NXT Viewer

Viewer of results

The NXT Scanner

Figure 2-1 Essential UML use case diagram

Image
processing

Table 2-1 Use case description (adjust a paper position)

Image viewing

 The NXT Scanner
Use case name

Adjust a paper position

Normal flows

 1. Actor requests “paper feed” or “paper exhaust” to the NXT

Scanner.

 2. The NXT Scanner starts adjusting the position of paper.

3. Actor requests stopping to adjust to the NXT Scanner.

4. The NXT Scanner stops adjusting.

Alternate flows
If the NXT Scanner does not succeed, it should stop the whole

process.

- 5 -

The NXT Scanner
Use case name

Scan an image

Normal flows

1. Actor requests “start scan” to the NXT Scanner

2. The NXT Scanner starts scan.

3. The NXT Scanner gets data from the light sensor and moves

scanner head.

4. The NXT Scanner sends scanning data to the NXT Viewer via

the USB port.

5. The NXT Scanner feeds a paper after the end of scan of line.

6. The NXT Scanner keeps on scanning until finished all scan or

actor requests to stop scan.

Alternate flows If the NXT Scanner does not success, it should stop the full process.

Table 2-2 Use case description (Scan an image)

Table 2-3 Use case description (View an image)

The NXT Viewer
Use case name

View an image

Normal flows

<< in real time >>

1. Actor requests “start scan” to the NXT Scanner.

2. The NXT Viewer receives an image data from the Scanner via

USB.

3. The NXT Viewer updates the display every line of scanning

image.

4. Actor can save scan image.

<< load >>

1. Actor can load scan image.

Alternate flows Nothing

Table 2-4 Use case description (Image processing)

The NXT Viewer
Use case name

Image processing

Normal flows

1. Actor requests “image processing” for desired image (real time

or load).

2. The NXT Viewer processes image processing.

3. The NXT Viewer displays the result of image processing.

Alternate flows Nothing

 - 6 -

3 Mechanisms for the NXT Scanner

This chapter describes the hardware structure that consist sensors and actuators.

3.1 Hardware structure

Figure 3-1 shows structure of the NXT Scanner.

DC Motor1
(scanner head)

Touch sensor1, 2
(paper adjust)

Touch sensor3
(initial position switch)

DC Motor2
(paper feed)

Light sensor1
(get scanning data)

USB
(data send)

Figure 3-1 The NXT Scanner

The NXT Scanner has following functional categories:

 A user interface unit

 A scanner head unit

 A paper feed unit

 - 7 -

A user Interface unit

Figure 3-2 is the user interface unit of the NXT Scanner.

Scanner control button

Paper feed button

Paper exhaust button

USB slot

Figure 3-2 The NXT Scanner user interface

 - 8 -

A scanner head unit

The scanner head unit moves on the NXT Scanner in order to acquire scan data. Figure 3-3 is an overview of

the scanner head unit. The scanner head unit is converted by rotation of scanner head control motor into

horizontal position control by the rack and pinion gear system. The scanner head unit has a scan sensor which

can receive image data. The purpose of using the scanner head initial position switch is detect the initial position

and for protection against overrun.

Scan sensor

Scanner head initial position switch

Scanner head control motor

Scanner head control motor

 Figure 3-3 Scanner head unit

 - 9 -

Gear2 (20 teeth)

Gear1 (12 teeth)

Gear3 (40 teeth)

 Figure 3-4 Scanner head gear system

The gear reduction ratio g is obtained by the following equation:

 667.1
12
20

1
2

===
teethgear
teethgearg (2.1)

Gear3 is 2.0292 [cm] in radius, and a circumference of 12.75 [cm]. So the moving distance of the scanner head

unit per degree of motor rotation is given by: d

][0215.0
667.1 *]deg[360
][75.12 cmcmd == (2.2)

 - 10 -

A paper feed unit

The paper feed unit has a rubber roller. It is rolled for adjusting the paper position by the paper feed control

motor. Figure 3-5 and Figure 3-5 are overviews of the paper feed unit. The paper feed unit uses a worm gear

which can change the axis of rotation based on the power of the paper feed control motor. So the paper feed unit

can control the position of a paper.

Rubber roller for paper feed

Paper feed control motor

 Figure 3-5 Paper feed unit

Gear1 (24 teeth)

Worm gear (1 tooth)

Paper feed control motor

 Figure 3-6 Paper feed gear system

The gear reduction ratio g is found by using the following equation:

 24
1
24

1
1

===
teethgearg (2.3)

 - 11 -

The rubber roller for paper feed is 1.24141 [cm] in radius, and a circumference of 7.8 [cm]. So the moving

distance of the paper feed per degree of motor rotation is given by: d

][10*0278.9
24*]deg[360

][8.7 4 cmcmd 　　　
　　　

　 −== (2.4)

3.2 Backlash

There is a backlash, sometimes called lash or play, between the gears. The backlash has a negative impact on

the tracking accuracy because it results in some lost motion when movement is reversed and contact is

reestablished. It is necessary to compensate for backlash when engaging the gears. Figure 3-7 shows a basic

concept of the backlash. Here, the engaged state means, gears are engaged and the disengaged state means, they

are not engaged.

Direction of
Movement

Engaged State

Direction of
Movement

Disengaged State

Direction of
Movement

Engaged State

 Figure 3-7 Backlash (The upper side is drive gear and under side is driven gear)

3.3 Sensors and Actuators

 Table 3-1 and Table 3-2 show sensors and actuators properties:

Table 3-1 Sensor properties

Sensor Output Unit Data Type Maximum Sample [1/sec]

Rotary encoder Angle deg int32 1000

Touch sensor Touch ON/OFF int8 1000

Light sensor Reflected infrared uint16 1000

Table 3-2 Actuator properties

Actuator Input Unit Data Type Maximum Sample [1/sec]

DC motor PWM % int8 500

The reference [2] illustrates many properties of the DC motor. In general, sensors and actuators are individually

different.

 - 12 -

4 System design

This chapter describes the system design.

4.1 Overview of total system

Figure 4-1 is an architectural concept for the NXT Scanner. The NXT Scanner has four control algorithms,

“MODE CONTROL SYSTEM”, “PAPER FEED CONTROL SYSTEM”, “SCAN CONTROL SYSTEM” and

“USB COMMUNICATION CONTROL SYSTEM”.

Control button

Touch sensor

Touch sensor

Light sensor

Touch sensor

Motor encoder

Motor encoder

Input devices

USB

Scan control motor

Paper feed control motor

Output devices

MODE
CONTROL
SYSTEM

USB
COMMUNICATION
CONTROL SYSTEM

SCAN
CONTROL
SYSTEM

PAPER FEED
CONTROL
SYSTEM

Control algorithm

Figure 4-1 An architectural concept

 - 13 -

4.2 MODE CONTROL SYSTEM

An internal control mode of the NXT Scanner is changed by active invents (user operation etc.) in the MODE

CONTROL SYSTEM. The control mode has six states, “initialization mode”, “idle mode”, “paper feed mode”,

“paper exhaust mode”, “scan mode” and “error mode”. Figure 4-2 is state transition diagram for the MODE

CONTROL SYSTEM.

Ready for Everything is set

Initialization mode

*1

Push scan control button Push paper feed button Push paper exhaust button

Release paper exhaust button Release paper feed button

Push scan control button
or
Finished scanning

Error mode

*6

Normal

Paper feed mode Paper exhaust mode

*4 *5

Scan mode

*2

Idle mode

*3

Figure 4-2 State transition diagram for the MODE CONTROL SYSTEM

Table 4-1 The MODE CONTROL SYSTEM additional information

system name MODE CONTROL SYSTEM

the point Control the control mode

explain state

1. Initialization mode: during initialization the SCAN CONTROL SYSTEM or the

PAPER FEED CONTROL SYSTEM

2. Idle mode: ready and waiting event

3. Paper feed mode: doing paper feed

4. Paper exhaust mode: doing paper exhaust

5. Scan mode: doing scan

6. Error mode: an error has just happened in the SCAN CONTROL SYSTEM or

the PAPER FEED CONTROL SYSTEM

note

・ Sound a buzzer during error mode because it differentiates the system in which

the error happened.

・ The MODE CONTROL SYSTEM should keep checking the SCAN CONTROL

SYSTEM because the control mode should change when scanning is finished.

 - 14 -

The SCAN CONTROL SYSTEM and the PAPER FEED CONTROL SYSTEM are controlled by the control

mode. Figure 4-3 and Figure 4-4 below are examples of normal and abnormal cases. The control mode is an

event request to the SCAN CONTROL SYSTEM and the PAPER FEED CONTROL SYSTEM.

MODE CONTROL

SYSTEM
PAPER FEED

CONTROL SYSTEM

Push paper exhaust button

The control mode
 = paper exhaust mode

Doing paper exhaust
(continue)

Release paper exhaust button

The control mode
 = idle mode

Finished paper exhaust

User operation

Figure 4-3 Handling the control mode PAPER FEED CONTROL SYSTEM flow in normal case

The system in which an abnormal operation occurred should inform the MODE CONTROL SYSTEM by an

error message. The CONTROL MODE SYSTEM receives it and sends it to the whole system by changing the

control mode to error mode.

CONTROL MODE
SYSTEM

PAPER FEED
CONTROL SYSTEM

Push paper exhaust button

The control mode
= paper feed mode

Doing paper feed
(continue)

The control mode
= error mode

Doing error processing

Use operation SCAN CONTROL
SYSTEM

Doing error processing

Error happen

Error message

Figure 4-4 Handling the control mode PAPER FEED CONTROL SYSTEM flow in abnormal case

 - 15 -

4.3 PAPER FEED CONTROL SYSTEM

The role of the PAPER FEED CONTROL SYSTEM is to adjust the paper position on the NXT Scanner. There

are these cases for positioning a paper i.e., before scanning and during scanning. Before scanning case uses the

control mode but during scanning case uses the control mode followed by an instruction for the SCAN

CONTROL SYSTEM.

Normal

Idle

*2

Paper feed

*3

Paper exhaust

*4

Scanning

*5

Error processing

*7

The control mode = paper feed mode The control mode = paper exhaust mode The control mode = scan mode

The control mode = idle mode

The control mode = idle mode

The control mode = idle mode

Paper feed with scanning

*6

Follow an instruction for
SCAN CONTROL SYSTEM

Initialization

*1

Table 4-2 PAPER FEED CONTROL SYSTEM additional information

Figure 4-5 State transition diagram for the PAPER FEED CONTROL SYSTEM

system name PAPER FEED CONTROL SYSTEM

the point Control paper position on the NXT Scanner

explain state

1. Initialization: doing paper feed for initial processing

2. Idle: ready and waiting event

3. Paper feed: doing paper feed

4. Paper exhaust: doing paper exhaust

5. Scanning: scanning and do not paper feed

6. Scanning with paper feed: scanning and doing paper feed

7. Error processing: an error has just happened in the SCAN CONTROL SYSTEM

or the PAPER FEED CONTROL SYSTEM

note

・ If an error has happened in the PAPER FEED CONTROL SYSTEM then it

should inform the MODE CONTROL SYSTEM by an error message.

・ Stopped paper feed in error processing.

 - 16 -

4.4 SCAN CONTROL SYSTEM

The SCAN CONTROL SYSTEM’s working to move the scanner head unit and scanning. Figure 4-6 shows the

scanning points. It scans the range of about 10cm2 on the paper for 255*127 points. To speed up the scan, the

number of the scan points in the lengthwise direction is half that of the cross direction. Instead, the NXT

Viewer adjusts the missing data of the lengthwise direction by image processing. The result is 255*254 data

points.

255 points scanning at equal spaces

Skip over a line because it can be adjusted by image processing

Skip over a line because it can be adjusted by image processing

127 points scanning
at equal spaces

Figure 4-6 Scanning points image (interlace scan)

The SCAN CONTROL SYSTEM has a sequentially algorithm. When scanning, it should take turns at moving

the scanner head, getting an image data and requests for paper feed.

Normal

Idle
*2

The scanner head move
from left to right
*3

The scanner head move
from right to left
*4

Error processing

*6

Finish scanning or abort
The control mode = idle mode

Initialization for the scanner
head position
*1

Ready initial position

Start scanning
The control mode = scan mode

Reach the right edge
Paper feed Request to PAPER FEED CONTROL SYSTEM

Finish paper feed a line

Reach the left edgeWaiting paper feed finished
*5

Figure 4-7 State transition diagram for the SCAN CONTROL SYSTEM

 - 17 -

Table 4-3 SCAN CONTROL SYSTEM additional information

system name SCAN CONTROL SYSTEM

the point Control of scanning of the NXT Scanner

explain state

1. Initialization for the scanner head position: the scanner head is moving to start

position

(continue scanner head move from right to left for detect switch of the scanner

head detection switch)

2. Idle: the scanner head has been ready and waiting for an event

3. The scanner head moves from left to right: receiving from the light sensor

(paper feed request will send to the right edge)

4. The scanner head moves from right to left: only moving and do not scanning

(paper feed processing is background process)

5. Waiting paper feed processing: waiting message from the PAPER FEED

CONTROL SYSTEM

6. Error processing: an error has just happened in the SCAN CONTROL SYSTEM

or the PAPER FEED CONTROL SYSTEM

note

・ If the SCAN CONTROL SYSTEM has failed then it should inform the MODE

CONTROL SYSTEM by an error message.

・ Getting from the light sensor only when the scanner head moves left to right.

・ After finishing the scan, the scanner head unit should go back to the initialize

position.

・ An error occurs, Scanner head stops.

 - 18 -

4.5 USB COMMUNICATION CONTROL SYSTEM

The USB COMMUNICATION CONTROL SYSTEM sends scanning data to the NXT Viewer via the USB port.

USB communication uses original protocol between the NXT Viewer and the NXT Viewer. The USB

COMMUNICATION CONTROL SYSTEM has two buffers for scan data as shown in Figure 4-8, and they are

checked every time. When full, it will send the buffer data. It is an asynchronous process between the SCAN

CONTROL SYSTEM and the USB COMMUNICATION CONTROL SYSTEM. You should require scrupulous

attention to the task cycle of the USB COMMUNICATION CONTROL SYSTEM. Generally if the task cycle

design is not good, buffer overflow will happen, overwriting, and badly impacts system performance.

SCAN CONTROL SYSTEM

scan

Store to
buffer1

USB COMMUNICATION CONTROL SYSTEM

Store to
buffer2

Select current using buffer

Send buffer1 Send buffer2 Do nothing

If it has full buffer or finished the scan buffer then it send.

Continue or not

Figure 4-8 The flow chart for USB COMMUNICATION CONTROL SYSTEM

 - 19 -

5 Module design for the NXT Scanner

This chapter describes the outline module design for the NXT Scanner.

5.1 Using library model for functional unit models

The NXT Scanner has functional unit models which are designed by system design. Each functional unit model

has test environmental. It will be registered pass a validation model with the library model. Each functional unit

model is described at next section.

SCAN CONTROL

SYSTEM
PAPER FEED

CONTROL
SYSTEM

USB
COMMUNICATION

CONTROL SYSTEM

MODEL CONTROL
SYSTEM

Figure 5-1 Library model

5.2 Shared data (Global variable data) for the total system

Table 5-1 shows shared data for the total system. It means global variable data for the total system.

 Table 5-1 Shared data for total system

Data name Detail

The control mode:

(ControlMode)

・ Control mode for total system and data type is enumerated type

ERROR (error states)

INITIALIZE (each unit is doing initializing)

IDLE (do nothing)

PAPERFEED (doing paper feed)

PAPEREXHAUST (doing paper exhaust)

SCAN (scanning)

・ Initial value is INITIALIZE.

・ Data scope is total system

・ Writable is only the MODE CONTROL SYSTEM

 - 20 -

The error code:

(ErrorCode)

・ Error status for total system and data type is enumerated type

NO_ERROR (expected states)

ERROR_001 (the scanner head system has error)

ERROR_002 (paper feed has error)

・ Initial value is NO_ERROR.

・ Data scope is total system.

The scan mode:

(ScanMode)

・ Scan mode in the SCAN CONTROL SYSTEM and data type is

enumerated type

SCAN_INIT (initialization)

SCAN_IDLE (ready and waiting event)

SCAN_SCAN (scanning)

SCAN_FEED (paper feed with scanning)

・ Initial value is SCAN_INIT.

・ Data scope is total system.

・ Writable is only the SCAN CONTROL SYSTEM

The paper feed mode:

(FeedMode)

・ Paper feed mode for the SCAN CONTROL SYSTEM and the PAPER

FEED CONTROL SYSTEM and data type is enumerated type

FEED_INIT (initialization)

FEED_IDLE (ready and waiting event)

FEED_PAPERFEED (doing paper feed or exhaust)

・ Initial value is FEED_INIT.

・ Data scope is total system.

・ Writable are only the SCAN CONTROL SYSTEM and the PAPER

FEED CONTROL SYSTEM.

The scan buffer

information:

(ScannerBuffer_Info)

・ Basically buffer information for between the SCAN CONTROL

SYSTEM and the USB COMMUNICATION CONTROL SYSTEM and

data type is enumerated type

TRANS_FINISH (finished data transfer)

STORING (storing buffer)

FULL_UP (full buffer)

・ Initial value is TRANS_FINISH.

・ Data scope is total system.

・ Writable are only the SCAN CONTROL SYSTEM and the USB

COMMUNICATION CONTROL SYSTEM.

The scan buffer status:

(ScannerBuffer_Status)

・ Buffer status for between the SCAN CONTROL SYSTEM and the USB

COMMUNICATION CONTROL SYSTEM

・ After using the scan buffer, it has to initialize to ZERO.

・ Initial value is ZERO.

・ ELP (end-of-line packet information) :bit4

 0: other than end-of-line packet (it means beginning or mid-packet)

 - 21 -

 1: end-of-line packet (include final packet for scan end)

・ START (START information) :bit3

0: normal scanning

1：START

・ STOP (STOP information) :bit2

0: normal scanning

1: STOP

・ DIR (direction for scanning) :bit1

0: to the right

1: to the left

・ VALID (identification information of valid data) :bit0

0: invalid data

1: valid data

・ Data scope is total system.

・ Writable are only the SCAN CONTROL SYSTEM and the USB

COMMUNICATION CONTROL SYSTEM.

The scan buffer number:

(ScannerBuffer_Number)

・ Number (0 to 30) of send data information for between the SCAN

CONTROL SYSTEM and the USB COMMUNICATION CONTROL

SYSTEM.

・ After using the scan buffer, it has to initialize to ZERO.

・ Initial value is ZERO.

・ Data scope is total system.

・ Writable are only the SCAN CONTROL SYSTEM and the USB

COMMUNICATION CONTROL SYSTEM.

The scan buffer data:

(ScannerBuffer_Data)

・ Data of scan data for between the SCAN CONTROL SYSTEM and the

USB COMMUNICATION CONTROL SYSTEM.

・ After using the scan buffer, it has to initialize to ZERO.

・ Initial value is ZERO.

・ Data scope is total system.

・ Writable are only the SCAN CONTROL SYSTEM and the USB

COMMUNICATION CONTROL SYSTEM.

The scan packet number:

(ScannerBuffer_Pnum)

・ The total number of current scanning packets for between the SCAN

CONTROL SYSTEM and the USB COMMUNICATION CONTROL

SYSTEM.

・ After using the scan buffer, it has to initialize to ZERO.

・ Initial value is ZERO.

・ Data scope is total system.

・ Writable is only the SCAN CONTROL SYSTEM.

 - 22 -

6 Unit design

This chapter describes the unit design and introduces new features of R2008b.

6.1 Using enumerated type (New feature of R2008b)

Each functional unit model uses enumerated type which is a new feature of R2008b. The NXT Scanner is:

 Enumerated type used in Data Store Memory block for using global variable data

 Using Simulink Data Object for setting custom storage class

How to use enumerated type

Enumerated type setting:

1. Define for enumerated type in M-script

2. Data Store Memory block property sets enumerated type

Concrete examples of setting

The control mode in the MODE CONTROL SYSTEM is defined by the global variable the ControlMode. It

registers enumerated type named ControlModeEnum. The M-script has to register enumerated type as follows:

ControlModeEnum.m

classdef(Enumeration) ControlModeEnum < Simulink.IntEnumType

 enumeration

 ERROR(-1) % error status

 INITIALIZE(0) % each unit are doing initialization

 IDLE(1) % doing nothing (no operation)

 PAPERFEED(2) % doing paper feed

 PAPEREXHAUST(3) % doing paper exhaust

 SCAN(4) % scanning

 end

end

 - 23 -

Specifically, Figure 6-1 shows how to set for enumerated type for Data Store Memory block. Data type sets

ControlModeEnum from M-script (ControlModeEnum.m). Initial value also sets INITIALIZE from M-script.

 Initial value for
enumerated type

Entry enumerated type from
M-script

Figure 6-1 Enumerated type parameters

 - 24 -

6.2 Utilize Simulink function (New feature of R2008b)

The PAPER FEED CONTROL MODEL uses Simulink function in Stateflow which is a new feature of R2008b.

Simulink function can model Simulink subsystem of a function in Stateflow. Double-clicks the Simulink

Function block to view or edit the Stateflow chart.

Graphical function

Double-click

Double-click

Viewing Stateflow chart window

Viewing Simulink model window

Simulink function

Figure 6-2 Difference between graphical and Simulink function

 - 25 -

6.3 MODE CONTROL MODEL

The mode_control.mdl is a model for the MODE CONTROL SYSTEM. Figure 6-3 shows top layer of the

CONTROL MODEL.

Top layer of the MODE
CONTROL MODEL

Put this subsystem
down as the MODEL
CONTROL SYSTEM
with library model

Figure 6-3 Relating the MODEL CONTROL MODEL to library model

This model provides input signals for simulation, and output signals for the purpose of monitoring in the top

layer, just like in case of the other function models. By running the model, we can validate this model in unit

function.

Input
signals for
validation

Monitors of
output for
validation

Figure 6-4 Top layer of the MODE CONTROL MODEL

 - 26 -

Shared data

Global variable data to share between other tasks by uses of Data Store Memory blocks. Also the ErrorCode, the

ScanMode and the FeedMode use the enumerated type and Data Store Memory block. The setup step is the

same as that of the ControlMode.

 Shared data (global variable data) for total system

Figure 6-5 Shared data of the MODE CONTROL MODEL

Algorithm implementation

Figure 6-6 shows the main algorithm model. Input signals (the ScanControl) to Stateflow are shown by Figure

6-7. The ScanControl has two trigger patterns which are all finished and user operation. All finished trigger

happens when the ScanMode changes state of to send a latest scan data. As shown in Figure 6-8, the Stateflow

is the same as the one shown in system design of state transition diagram.

Main algorithm

Manage scan start/stop states

Figure 6-6 The MODE CONTROL MODEL and library model

 - 27 -

Scan control
button states

Scan stop request trigger control
for when all finished

Figure 6-7 Manage scan start/stop states

Initialization modeIdle mode

Scan mode Paper exhaust modePaper feed mode

Abnormal

normal

Sound a buzzer control

Figure 6-8 Main algorithm of the MODE CONTROL MODEL in stateflow

 - 28 -

6.4 PAPER FEED CONTROL MODEL

The paper_feed_mechanism.mdl is a model for the PAPER FEED CONTROL SYSTEM. Figure 6-9 shows the

top layer of the PAPER FEED CONTROL MODEL.

Register this subsystem as a library
(PAPER FEED CONTROL SYSTEM)

Top layer of the PAPER FEED
CONTROL MODEL

Figure 6-9 Relation the PAPER FEED CONTROL MODEL to library model

This model provides input signals for simulation, and output signals for the purpose of monitoring in the top

layer, just like in case of the other function models. By running the model, we can validate this model in unit

function.

Input
signals for
validation

Monitors of
output for
validation

Figure 6-10 Top layer of the PAPER FEED CONTROL SYSTEM

 - 29 -

Algorithm implementation

The PAPER FEED CONTROL SYSTEM consists of two parts, the control flow part (written by Stateflow) and

the error detection part (written by Simulink model). See Figure 6-11.

 The control
flow part

The error
detection part

Figure 6-11 Top layer of the PAPER FEED CONTROL

The control flow part

Figure 6-12 is the control flow part written in the flow chart style. The branching algorithm processes the data

(the ControlMode, the PaperFeedMode) shared with the other control system models. The Simulink Functions

called from this chart are placed at the bottom of this chat. See Table 6-1 for details of each Simulink Function.

Simulink functions

The paper feed mode
checking（FeedMode）

The control mode
checking（ErrorMode）

Each function is defined as
Simulink Subsystem

Call Simulink function

Figure 6-12 The control flow part of the PAPER FEED CONTROL

 - 30 -

Table 6-1 Simulink function list in the PAPER FEED CONTROL MODEL

Simulink function Arguments Return value Note

task_init

encoder value

(DC motor2 for

paper feed)

current PWM value
initialize processing

enable/disable flag

(error judge)
(After power-on, automatically

move for initialization)

task_paperfeed

- current PWM value

paper move direction paper feed processing

enable/disable flag

(Error judge)

(paper feed button operation)

task_paperexhaust

- current PWM value

paper move direction paper exhaust processing

enable/disable flag

(Error judge)

(paper exhaust button operation)

task_stop

 current PWM value

enable/disable flag

(Error judge)

stop of paper feed and exhaust

processing

encoder value

(DC motor2 for

paper feed)

current PWM value

paper move direction paper feed with scanning

processing
task_feed_paperfeed

enable/disable flag

(Error judge)

 - 31 -

The algorithm of the control flow part

Figure 6-13 is the flow chat of the branching algorithm of the control flow part.

ControlMode == PAPEREXHAUST

 （doing paper exhaust）

FeedMode == FEED_INIT

（initialization mode）

task_init （initialization）

task_paperexhaust （doing paper exhaust）

task_stop （stop paper feed/exhaust）

task_paperfeed （doing paper feed）

task_stop （stop paper feed/exhaust）

task_stop (stop paper feed/exhaust)

FeedMode == FEED_PAPERFEED

（paper feed mode）

task_feed_paperfeed

（paper feed with scanning）
task_stop （stop paper feed/exhaust）

ControlMode == INITIALIZE

（initialized for unit）

ControlMode == PAPERFEED

（doing paper feed）

Figure 6-13 The algorithm of the control flow part

YES

NO

ControlMode == IDLE

（do no operation）

ControlMode == ERROR

 （error states）

 - 32 -

Initialization (task_init)

Right after the NXT Scanner is powered, constant paper feed is forced automatically. This process is necessary

to avoid the backlash of DC motor for paper feed.

Initial process

Continuing/terminal
process

Save the current encoder value
Set the flag detecting the initial process to 1
Set the PWM to 100

Set the flag detecting the initial process to 1
Set the FeedMode （FEED_INIT）
Set the PWM to 100

Set the flag detecting the initial process to 0
Set the FeedMode (FEED_IDLE)
Set the PWM to 0

Figure 6-14 Initialization process (task_init Simulink function)

The initialization process has two subsystems which are the first process and the continue/finished process. The

value of Data Store Memory is used for selecting subsystem.

Initial process has functions described below.

 Save the current encoder value

 Set the flag detecting the initial process to 1: This will make the transition to the continuing process.

 Set the PWM value to MAX (100).

 - 33 -

The continuing process follows after the initial process, and paper feed operation will start.

 Set the flag detecting the initial process to 1

 Set the PaperFeedMode to FEED_INIT

 Set the PWM value to MAX (100)

If the encoder value increases for 1000 degrees of rotation from the value saved at the initial process, Paper feed

terminates by the following terminal process.

 Set the flag detecting the initial process to 0

 Set the PaperFeedMode to FEED_IDLE

 Set the PWM value to MIN (0)

After the initialization, The PaperFeedMode changes FEED_INIT to FEED_IDLE. This change implies the end

of initialization, and it is informed to the MODE CONTROL MODEL to switch the ControlMode.

Paper feed action (paper feed button) (task_paperfeed)

This process is called when the paper feed button is pushed down by users. This process has functions described

below.

 Set the PWM value to MAX (100)

 Set the backlash direction flag to 0: This means that the direction of the current backlash is same as

that of paper feed.

 Set the flag to 1 for enabling error detection: This information will be sent to the error detection part

as a signal.

Set the PWM to 100
Set the backlash direction flag to 0
Set the flag to 1 for enabling error detection

Figure 6-15 Paper feed action (paper feed button) (task_paperfeed Simulink function)

 - 34 -

Paper exhaust action (paper exhaust button) (task_paperexhaust)

This process is called when the paper exhaust button is pushed down by the user. This process has functions

described below.

 Set the PWM value to MAX (-100)

 Set the backlash direction flag to 1: This means that the direction of the current backlash is same as

that of paper exhaust.

 Set the flag to 1 for enabling error detection: This information will be sent to the error detection part

as a signal.

Set the PWM to -100
Set the backlash direction flag to 1
Set the flag to 1 for enabling error detection

Figure 6-16 Paper exhaust action (paper exhaust button) (task_paperexhaust Simulink function)

 - 35 -

Stop of paper feed/exhaust action (task_stop)

This process is called to stop the DC motor for paper feed, while the paper feed/paper exhaust are not in action,

or the scanner head is moving. This process has functions described below.

 Set the PWM value to MIN (0)

 Set the flag to 0 for disabling error detection: This information will be sent to the error detection part

as a signal.

Set the PWM to 0
Set the flag to 0 for disabling error detection

Figure 6-17 Stop of paper feed/exhaust action (task_stop Simulink function)

Paper feed action under scanning (task_feed_paperfeed)

This function defines the process of the paper feed action required during the process of scanning. This process

is quite similar to the initialization (task_init), thus a part of this model is diverted from the initialization

(task_init). This section shows you the specification of this function which differs from the one of initialization

(task_init). One of the differences is that the backlash taken care of in this function. The direction of the

backlash is passed to this function as an input argument. The incremental value for the encoder is determined

depending on this information. For example, if the direction flag is 0, it is decided that the paper feed was done

just before, and gives 102 degrees to feed one row of the image data. If the flag is 1, it is decided that the paper

exhaust was done just before, and gives 102+50 = 152 degrees to feed. In the latter case, the 50 degrees is the

offset to cancel out the backlash.

LookUp Table is used to define the PWM output response to the encoder input. This is because we would like to

avoid the coasting of the rotation of the motor while adjusting the PWM output. We used the data logging

function of The NXT GamePad to tune the table data. The NXT GamePad is a PC utility which provides a

function of Bluetooth communication with The NXT Scanner.

 - 36 -

There are 127 rows to be scanned, so the paper feed is done 127 times during the process of scanning. Interlaced

scanning is employed. It gives a square image. Figure 6-19 is a part of the image, and you can see the image is

lack of data in columns. The NXT Viewer can interpolate this incomplete image by using the MATLAB image

processing functions.

Initial
process

Continuing/Terminal
process

Compute the angle of
rotation considering the

backlash

Input to LookUp Table with
considering backlash

Set the flag detecting the initial process to 1
Set the FeedMode （FEED_PAPERFEED）
Set the PWM （use LookUp Table）

Set the flag detecting the initial process to 0
Set the FeedMode （FEED_IDLE）
Set the PWM to 0
Set the backlash direction flag to 1

LookUp Table Block
(Table data of PWM values)

Figure 6-18 Paper feed action under scanning (task_feed_paperfeed Simulink function)

Figure 6-19 Result of scanning (sample)

 - 37 -

Scan range

Scan target
A4 paper

Distance of each line of interlace
scanning
=102 [deg] * 9.0278 * 10-4 [cm/deg]
=0.0921 [cm]

Scan range
=102 [deg] * 9.0278 * 10-4 [cm/deg] * 127
=11.6946 [cm]

 Figure 6-20 Scan range (paper feed direction)

 3Figure 6-20 shows the data computed from the data in Section (Mechanisms for the NXT Scanner). The

moving distance of the paper feed per degree of motor rotation is 9.0278×10-4 [cm/deg]. So the resolution of the

paper feed is about 27dpi [dots per inch].

 - 38 -

The error detection part

Figure 6-21 is the error detection part. The subsystem of the error detection part is enabled by the signal sent

from the control flow part. If this subsystem is enabled, every 10 steps the current encoder value is saved, and

compared with the previous value. If these two encoder values are equivalent, the error code is updated from

NO_ERROR to ERROR_002, and the error condition is passed to the MODE CONTROL MODEL.

Error
detection

If error detection flag is
enabling, then start counting (by

10 steps)

Compare the current encoder
value with the previous value

obtained 10 steps before If the values are equivalent, then
update ErrorCode to ERROR_002

Figure 6-21 The error detection part (subsystem)

 - 39 -

6.5 SCAN CONTROL MODEL

The scanner_head.mdl is model for the SCAN CONTROL SYSTEM. Figure 6-22 shows top layer of the SCAN

CONTROL MODEL.

Top layer of the SCAN
CONTROL MODEL

Register this subsystem as a library
(The SCAN CONTROL SYSTEM)

 Figure 6-22 Relation the SCAN CONTROL MODEL to library model

This model provides input signals for simulation, and output signals for the purpose of monitoring in the top

layer, just like in case of the other function models. By running the model, we can validate this model in unit

function.

Inputs
signal for
validation

Monitors of
output for
validation

Stab subsystem for
validation

 Figure 6-23 Top layer of the SCAN CONTROL MODEL

 - 40 -

Algorithm implementation

The SCAN CONTROL MODEL only uses Stateflow. The Left part of Figure 6-24 is the state chart, and the

right part are the graphical functions designed by a flow chart. Table 6-2 is a list of graphical functions.

initialization

System error

The scanner head move from right to left

The scanner head move from left to right

Error
message

Waiting finished paper feed

Error message (for
PolySpace DEMO)

Error
message

Graphical functions

Figure 6-24 Main algorithm of the SCAN CONTROL MODEL

 - 41 -

Table 6-2 Graphical functions list in the SCAN CONTROL MODEL

graphical function argument return note

scan_environment
- - initialization processing for

moving to start position

scan_start_position_seek
- - moving to start position

algorithm function

scan_init
target direction - initialization processing for

scan start

scan_control_right
- - Move from left to right

algorithm function

scan_control_left
- - Move from right to left

algorithm function

paper_feed_init
- - initialization processing for

waiting finished paper feed

paper_feed
- - Waiting finished paper feed

function

scan_timeover_set
- - initialization processing for

timer start

scan_timeover_check
limited time -

current time

Checking limited time function

status_maker

ELP information

START information

STOP information

send status

DIR information

Making status packet for USB

send function

get_pwm_value

target direction

current position

target max speed PWM

target min speed PWM

current PWM

value

Get PWM value function

scan_usb_stop

- - Making final USB data transfer

for forced termination (All scan

finished)

 - 42 -

Storing scan data

Storing scan data is processing of scan_control_right graphical function during moving the scanner head unit

from left to right. Figure 6-25 shows Stateflow algorithm of the scan_control_right graphical function.

Set PWM

If PWM is ZERO, finish moving

Specify the scan range

Storing scan data to the buffer

Error: detect the touch sensor

Finish moving
to right

Full of the buffer

Next buffer set

This line is finished

Making the end-of-line packet

All scan is finished

Figure 6-25 Algorithm of the scanner head moving from left to right

Figure 6-26 shows the scan range in the red boxed text on an A4 paper. SCAN_EDGE is defined the range of

moving the scanner head unit and the unit of SCAN_EDGE is the rotary encoder value (degree). Scanable range

is SCAN_EDGE minus both edges of SCAN_START. Figure 6-26 shows each value which are using below

value in Section 3 (Mechanisms for the NXT Scanner). The moving distance of the scanner head unit per degree

of motor rotation is 0.0215 [cm/deg]. So the resolution of the scanner head is about 118dpi [dots per inch].

Scan target
A4 paper

The scanner
head unit can
drive range

Parameter SCAN_EDGE (720)
=720 [deg] * 0.0215 [cm/deg]
=15.48 [cm]

Parameter SCAN_START (720)
=105 [deg] * 0.0215 [cm/deg]
=2.2575 [cm]

Parameter SCAN_START(105)
=105 [deg] * 0.0215 [cm/deg]
=2.2575 [cm]

Scan range

Figure 6-26 Scan range (the scanner head moving direction)

 - 43 -

Regular intervals scan position

Scan is done 255 time every line. At this time the most important thing is scan timing. If scan timing will be not

equidistant, the resulting image will not look good. To use timing that depends almost entirely on the task cycle

is not a good idea. This is because the scanner head motor movement is non-constant. Therefore, the NXT

Scanner uses feedback from the rotary encoder value of the scanner head motor. So the control should be

designd to scan regularly in the target position. Figure 6-27 shows it code in red boxed text. As you see, the scan

target positions are at 0.0439 [cm] intervals.

This is next target encoder value.
Scan distance
=2 [deg] * 0.0215 [cm/deg]
=0.0439 [cm]

Figure 6-27 Scan distance control (scan_control_right graphical function)

 - 44 -

Control of scanner head stop position

If the result of scanning the image is not good looking, one of the reasons is the stop position of the scanner

head unit. It means the scanner head unit can not stop at the predetermined position. The main cause will be the

inertial torque effect. The PWM control algorithm should stop exactly the same position (SCAN_EDGE) every

time.

In backlash adjust
section

Goal Reduction
section

Acceleration and
constant section

Sign adjust

Figure 6-28 Scanner head speed and stop control (get_pwm_value graphical function)

The target minimum speed PWM is fixed by metering experiments, because the scanner head unit has the

frictional force and the load torque from the cable. The target minimum speed PWM means it is the minimum

power required to move the scanner head unit. The starting point of the reduction section is also fixed by

metering experiments. Therefore, if you should change the any specification (hardware structure, PWM, etc.),

you need to exercise caution.

 - 45 -

Avoid backlash

If the result of scanning the image is not good looking, one of the reasons and most the potentially influential

factor is a backlash. Target positioning and current position discord from the real position because the gear has

backlash. Figure 6-29 shows backlash cancel for each case.

 Start position include
backlash adjust
(left direction is addition)

Start position include backlash
adjust
(it is subtraction when right
direction)
BACKLASH_ADJUST (21)
=21 [deg] * 0.0215 [cm/deg]
=0.4515 [cm]

Start position include backlash adjust
(It is subtraction when initialization,
include usual right direction and
freeing from touch sensor)
BACKLASH_ADJUST (21)
=0.4515 [cm]
RELEASE_TOUCH_SENSOR (25)
=25 [deg] * 0.0215 [cm/deg]
=0.5375 [cm]

Figure 6-29 Backlash adjust control (scan_init graphical function)

Reduced scanning time

Moving to left of the scanner head unit and paper feed are parallel process. This can reduce scanning time.

Moving to left
Waiting finished

paper feed
（Can not start next
scan until finished

paper feed）

Paper feed
request when
finish moving

Moving parallel
to paper feed

Moving to right

Figure 6-30 Scanner head move from right to left and paper feed control

 - 46 -

6.6 USB COMMUNICATION CONTROL MODEL

The data_communication.mdl is model for the USB COMMUNICATION CONTROL SYSTEM. Figure 6-31

shows top layer of the USB COMMUNICATION CONTROL MODEL.

 Put this subsystem down as
the USB COMMUNICATION

CONTROL SYSTEM with
library model

Top layer of the USB
COMMUNICATION
CONTROL MODEL

Figure 6-31 Relation the USB COMMUNICATION CONTROL MODEL to library

This model provides input signals for simulation, and output signals for the purpose of monitoring in the top

layer, just like in case of the other function models. By running the model, we can validate this model in unit

function.

Inputs
signal for
validation

Monitors of
output for
validation

Driver for
validation

 Figure 6-32 Top layer of the USB COMMUNICATION CONTROL MODEL

 - 47 -

Algorithm implementation

Figure 6-33 shows the USB COMMUNICATION CONTROL MODEL. Figure 6-34 shows the USB

communication algorithm which is written using Stateflow. After the Stateflow process, USB send data (64

Bytes) is merged status (2Bytes), number (2Bytes) and data (60Bytes).

Send data

Trigger for
send

Trigger for
terminate

Figure 6-33 The USB COMMUNICATION CONTROL MODEL outputs

When finished scanning is finished, the connection should be terminated. Thus the USB COMMUNICATION

CONTROL MODE should be monitoring the scan buffer. After latest scan buffer send, the USB

COMMUNICATION CONTROL MODEL waits 1 sample time and then terminates the connection. Using state

(CLOSE) generates 1 sample time wait.

Graphical functions Communication process

USB termination

Figure 6-34 Main algorithm of the USB COMMUNICATION CONTROL MODEL

 - 48 -

Requisites for send buffer are full of buffer or latest data is stored when finished scanning. The buffer is a

double buffer structure. When designing the task cycle in the system design, you should take care of two points.

First, it is necessary to design the task cycle such that both buffers not fill up. Second, it is necessary to

alternately to use the double buffer. This is because when scanning is finished, sometimes each buffer becomes

full. So ScannerBuffer_Pnum is used.

Using different buffer
(previous and current)

Clear USB send data

Figure 6-35 Communication process (usb_function graphical function)

 - 49 -

7 Simulation for each models

This chapter describes the simulation process and the results of the NXT Scanner. Before simulation, please

execute the setup_nxtscanner.m. This file sets a path for the NXT Scanner environment folder.

7.1 Test signals for Simulation

Every function unit model has 100% coverage test signal as shown Figure 7-1.You can use it for simulation and

unit test for each function unit model.

 Test signals

Figure 7-1 Change test signal

Note

Simulink® Design Verifier™ does not support Enumerated Type and Stateflow Simulink Function of

new feature of R2008b. Therefore, the NXT Scanner is marked 100% coverage test signal by hand.

So verification is not automatic, you should judge it by yourself.

 - 50 -

7.2 Introduce of verification tools and function

Simulink Design Verifier and Simulink Verification and Validation are verification tools for Simulink and

Stateflow models.

Simulink Verification and Validation

Simulink Verification and Validation has the following features.

 It is possible to specify the coverage target by the subsystem.

 It is possible to make a distinction between the two cases (transit path or not) in the model by color.

 It is possible to accumulate the coverage by two or more test signal.

Simulink Verification and Validation exposes design flaws, inadequate requirements, incomplete tests, and

unnecessary design constructs early in the development process. You can trace requirement documents to your

design models, component tests, and generated code. You can also verify your designs and tests through model

coverage and modeling standards checking.

 - 51 -

Simulink Design Verifier

Simulink Design Verifier performance functions below for your Simulink and Stateflow models.

 Automatically generate the test harness model.

 Property proving.

Simulink Design Verifier uses formal methods for Verification and Validation. Simulink Design Verifier can

generate 100% coverage test harness model by coverage measurement feature of Simulink Verification and

Validation. By using test harness model it I possible to validate equivalence checking model and generated code

(convert to S-Function).

For property proving, you can directly capture design requirements and performance objectives as properties in

their Simulink or Stateflow models. Simulink Design Verifier mathematically proves whether those properties

are satisfied and, if not, provides counter-examples that would violate the properties. As a result, you can find

design flaws, unsatisfied requirements, and unreachable states or logic that would be difficult to uncover using

simulation alone.

Figure 7-2 shows a model that includes verification specification subsystem for the MODE CONTROL

MODEL. In this case, this model has a switch in the verification specific subsystem. Because Simulink Design

Verifier doesn’t support the new feature of R2008b but the model simulation should be possible. The switch can

select blank subsystem or verification specification subsystem.

This subsystem is

specification for verification

 Figure 7-2 Change specification for verification subsystem

 - 52 -

Figure 7-3 is one example of a model for the verification specification subsystem. It uses the truth table in

Stateflow. Simulink Design Verifier proved the model by this specification of truth table. Simulink Design

Verifier documents the valid blocks in a detailed report and generates counterexamples for invalid blocks.

Counterexamples include input data and parameter values that demonstrate a specific violation. They are

incorporated into the same style harness models that are produced during test generation.

 Figure 7-3 Example model of specification for verification

 - 53 -

8 The NXT Scanner controller model (integrated each models)

This chapter describes the control program, task configuration, and model contents of the nxtscanner_ctrl.mdl.

8.1 Control program summary

The NXT Scanner controller has five tasks described in Table 8-1.

 Table 8-1 Task organization

Period Works Task

initialization only initial value setting task_init

2 [ms] cycle SCAN CONTROL SYSTEM task_ts1

10 [ms] cycle PAPER FEED CONTROL SYSTEM task_ts2
 20 [ms] cycle MODE CONTROL SYSTEM task_ts3
 task_ts4 60 [ms] cycle USB COMMUNICATION CONTROL SYSTEM

 - 54 -

8.2 The NXT Scanner model summary

The nxtscanner_ctrl.mdl is based on Embedded Coder Robot NXT framework.

Task scheduler Task subsystem

Output
devices

2ms cycle

initialization

10ms cycle

20ms cycle

60ms cycle

Shared data

Input
devices

 Figure 8-1 nxtscanner_ctrl.mdl

 - 55 -

Device interface

We can make device interfaces by using the sensor and actuator blocks provided in Embedded Coder Robot NXT

library.

Touch sensor input for

paper feed button

Touch sensor input for
paper exhaust button

Touch sensor input for
scanner head initialization

position detect
Light sensor input for

getting scan data

Motor input for paper feed
unit (encoder)

Motor input for scanner
head unit (encoder)

NXT button for start/stop
scan operation

USB READ

USB SEND

NXT speaker output
for alarm

Bluetooth output for
logging

System clock for
timeout check

Motor output for
scanner head unit

(PWM)

Motor output for paper
feed unit (PWM)

 Figure 8-2 Device interface

Scheduler and tasks

The ExpFcnCalls Scheduler block has task configuration such as task name, task period, platform, and stack

size. You can make task subsystems by connecting function-call signals from the scheduler to function-call

subsystems. So you can select the platform which is OSEK or JSP.

Select task
OSEK: TOPPERS/ATK （OSEK）
JSP: TOPPERS/JSP （uITRON）

 Figure 8-3 Scheduler and tasks

 - 56 -

Priority

You have to set the priority of the device blocks and the ExpFcnCalls Scheduler block at root level by sorting

them in order (1: device inputs, 2: tasks , 3: device outputs). The low number indicates high priority and negative

numbers are allowed.

 To display priority, right click the block and choose [Block Properties].

 Computation order

Priority: -1 Priority: 0 Priority: 1

Shared data

Shared data is using Data Store Memory blocks as shared data between tasks.

Figure 8-4 Priority setting

Figure 8-5 Shared data

 - 57 -

8.3 Initialization task: task_init

This task sets the initial values. Motors initialize to ZERO at this task.

Figure 8-6 task_init

8.4 2ms task: task_ts1

This task includes the SCAN CONTROL MODEL and data logging via Bluetooth.

The NXT GamePad
ADC Data Logger

The SCAN CONTROL
MODEL from library model

Figure 8-7 task_ts1

 - 58 -

8.5 10ms task: task_ts2

This task includes the PAPER FEED CONTROL MODEL.

The PAPER FEED CONTROL
MODEL from library model

Figure 8-8 task_ts2

8.6 20ms task: task_ts3

This task includes the MODE CONTROL MODEL.

Alarm subsystem

The MODE CONTROL MODEL
from library model

Figure 8-9 task_ts3

 - 59 -

8.7 60ms task: task_ts4

This task includes the USB COMMUNICATION CONTROL MODEL.

 The USB COMMUNICATION CONTROL
MODEL from library model

 Figure 8-10 task_ts4

 - 60 -

8.8 Tuning parameters

All parameters used in the nxtscanner_ctrl.mdl are defined by the nxtscanner.xls. Table 8-2 shows the tuning

parameters. You might have to tune these parameters because the parts, blocks, sensors, and actuators are

individually different.

Table 8-2 Tuning parameters

Parameter Description

BACKLASH_ADJUST backlash adjust

RELEASE_TOUCH_SENSOR freeing from the touch sensor adjust

SCAN_EDGE the scanner head unit drives range

SCAN_START scan start position

SCAN_INITIALIZE_PWM PWM for moving the scanner head initialization

SCAN_INITIALIZE_TIMEOUT time out for the scanner head moving initialization [ms]

SCAN_R_TIMEOUT time out for the scanner head moving to right [ms]

SCAN_L_TIMEOUT time out for the scanner head moving to left [ms]

SCAN_F_TIMEOUT time out for waiting the paper feed with scanning [ms]

SCAN_R_MAX_PWM MAX PWM for the scanner head moving to right

SCAN_R_MIN_PWM MIN PWM for the scanner head moving to right

SCAN_L_MAX_PWM MAX PWM for the scanner head moving to left

SCAN_L_MIN_PWM MIN PWM for the scanner head moving to left

 - 61 -

9 Code generation and implementation

This chapter describes how to generate code from the nxtscanner_ctrl.mdl and download it to the NXT Intelligent

Brick. The experimental results are also shown.

9.1 Target hardware and software

Table 9-1 shows the target hardware specification of LEGO Mindstorms NXT and the software used in Embedded

Coder Robot NXT.

 Table 9-1 LEGO Mindstorms NXT & Embedded Coder Robot NXT specification

processor ATMEL 32-bit ARM 7 (AT91SAM7S256) 48MHz

flash memory 256 Kbytes (10000 times writing guarantee)

 hardware

RAM 64 Kbytes

actuator 3 DC motor

sensor ultrasonic, touch sensor, light sensor, sound sensor

display 100 * 64 pixel LCD
interface

communication Bluetooth / USB

RTOS nxtOSEK / nxtJSP

compiler GCC software

library GCC library

 - 62 -

9.2 How to generate code and download

You can generate code from the model, build it, and download the program into NXT by clicking the annotations

in nxtscanner_ctrl.mdl shown in Figure 9-1. The procedure as follows:

1. Setting Simulink data object by clicking [xlsreadsdo (`nxtscanner.xls`,’mpt`)]. Simulink data object

can add the generated code to the user’s specific information (name, allocation, instruction modifier,

etc.). For details, please refer to the reference [3].

2. Generate code and build the generated code by clicking [Generate code and build the generated

code].

3. Connect NXT and PC via USB. Download the program into NXT by clicking [Download the built

code to NXT].

Step1:

Setting Simulink Data Object

Step3:
Program download

Step2:
Code generation and build

 Figure 9-1 Annotations for code generation & build / download

A part of the generated code is described in Appendix.

 - 63 -

10 Verification of generated code

Generated code from the NXT Scanner is validated by PolySpace®. This chapter describes the configuration for

validation and it doesn’t describe about installation.

10.1 What is PolySpace?

PolySpace is abstract interpretation static verification tool that is necessary for high reliability software

development. PolySpace has two features; one is that PolySpace can find runtime errors, and the second is that

PolySpace can certify that errors don’t exist. PolySpace uses color-coding to indicate the status of each element

in the code, as follows:

 Green: Reliable (It shows safe instructions: these are code sections which can never lead to a runtime

error.)

 Red: Faulty (It shows runtime errors will occur every time that piece of code is executed)

 Gray: Dead (It shows code which is unreachable (dead code))

 Orange: Unproven (It is a warning)

You can use PolySpace to verify handwritten code, generated code, or a combination of the two, before

compilation and test.

 - 64 -

10.2 PolySpace configuration

PolySpace Analyzer is opened pushing the block button of Figure 10-1 or from the select menu in the model

window.

configuratio
n

Add files

Model for variation

 Figure 10-1 PolySpace setting menu

Caution

PolySpace configuration something use direct path, please be careful.

Model for validation

This automatically to sets the model path for PolySpace. It means that the NXT_SCANNER subsystem is

validated by Simulation and generated code in the NXT_SCANNER_ert_rtw folder is validated by PolySpace.

Configuration

It opens the configuration setting window. A sample window is shown in Figure 10-2. Changing from default

value for validation is shown by red boxed texts.

 - 65 -

Compilation setting

PolySpace internal setting

Multi task setting

Permissive setting

 Figure 10-2 PolySpace Configuration diapley

Generated code in the NXT_SCANNE_ert_rtw folder does not have multitasking information. Thus PolySpace

uses the original main function, polyspace_main.c, to validate model. The polyspace_main.c defines the entry

points of the Fcn_Init function, The NXT_SCANNER_initialize function and the main_task function.

 - 66 -

Add files

The polyspace_main.c is configuration of multitasking definition. The NXT Scanner has task subsystems which

are driven by a trigger from scheduler. The main_task function in the polyspace_main.c defines each task

process without initialize task. The task cycle is arbitrary set for verification of PolySpace.

polyspace_main.c

#include "NXT_SCANNER.h"

extern int anyvalue(void);

int main(void){
 Fcn_Init();
 NXT_SCANNER_initialize();
 while(1){
 main_task();
 }
 return(0);
}
void main_task(void){
 while(anyvalue()){
 if(anyvalue()){
 Fcn_ts1();
 }
 if(anyvalue()){
 Fcn_ts2();
 }
 if(anyvalue()){
 Fcn_ts3();
 }
 if(anyvalue()){
 Fcn_ts4();
 }
 }
}

10.3 PolySpace can find runtime errors

The NXT Scanner has intentional error code modeling for PolySpace demo. The code is in a state of

RUNTIME_ERROR_STOP which is driven by “RUNTIME_ERROR” event in Stateflow of the SCAN

CONTROL MODEL. When PolySpace finds a runtime error, the result is a warning by red color as in Figure

10-3.

 - 67 -

(This is a part of SCAN CONTROL
MODEL)
It is defined by polyspace.h.
int16_T polyspace[6];
But it access out of the array.

This is the runtime error (Out-of-bounds array
access) code. PolySpace can finds.

 Figure 10-3 Example of PolySpace finds runtime error

Note

Runtime error is occurs when there is no syntax error in the program code but comes during execution

of the program. PolySpace can find the following errors without test cases, without code

instrumentation and without execution.

 Overflows, underflows, division by zero, and other arithmetic errors

 Out-of-bounds array access and illegally dereferences pointers

 Read access to non-initialized data

 Dead code

 Access to null this pointer (C++)

 Dynamic errors related to object programming, inheritance, and exception handling (C++)

 Non-initialized class members (C++)

 Other errors, including dangerous type conversions

 - 68 -

10.4 Results of PolySpace verification

After commenting out of the runtime error code, PolySpace tests again. Figure 10-4 is the result window of

PolySpace. There is no red and gray code, but orange has 18 points. Orange means it is not red, gray, or green.

Orange is checked by review.

Figure 10-4 Results PolySpace verification

 - 69 -

11 What is an NXT Viewer?

The NXT Viewer is a proprietary the NXT Scanner’s GUI program. It has two features as below.

 Image display: Receive scan data from the NXT Scanner via USB, and display them in real time for

each line. Merge received data to show image data.

 Image processing: Image processing after the data has been received

The NXT Viewer was developed using a feature called GUIDE, which is a function to create GUI for MATLAB.

GUIDE is based on M-language. Particularly, the image processing function of the NXT Viewer uses the Image

Processing Toolbox, which is an optional product of MATLAB.

11.1 How to use the NXT Viewer

This chapter describes how to use the NXT Viewer.

2. Start scan

3. Load an image

4. Save an image

5. Image Processing

6. Exit the NXT Viewer

7. Information

1. Display area

9. Brightness slider

A scanning image

8. Brightness value

10. Contrast value

1. Display area

11. Contrast slider

 Figure 11-1 Design of the NXT Viewer display

 - 70 -

Table 11-1 is list of details for each component of the NXT Viewer introduced in Figure 11-1.

Table 11-1 The NXT Viewer specification

compone

nt name
No. component type details

1 -
axis

(viewer area)

Scanning: real time viewer of scanning

Other: viewer of LOAD image from mat file

(For details, please refer to section 11.3)

The image size is M rows and 255 lines (M =< 255).

2 SCAN push button

Display a confirmation dialogue. Clicking OK button

starts waiting data and scanning. The scan stops if the

scan data reached 255 lines, or if the user is forced to stop

scan.

3 LOAD push button
Display a dialogue for selecting MAT file. After the MAT

file is selected, the scan data is loaded to the viewer area.

4 SAVE push button
Display a dialogue for saving MAT file. The scan data is

saved to the MAT file after deciding which file to save.

5

push button

It is the Image processing for viewer area (scan image or

load image). After adjusting, the result is shown in

another viewer display. (For details, please refer to

Section

IP

 11.4)

6 EXIT push button
Display a confirmation dialogue. Clicking OK button

closes the NXT Viewer.

7 - static text Display current status and information.

8 - edit text Display the brightness level.

9 - slider Adjust the brightness level (0 to100)

10 - edit text Display the contrast level.

11 slider Setting the contrast level (0 to100) -

 - 71 -

11.2 Command for USB communication (nxtusb)

The NXT Viewer uses a command (nxtusb) for USB communication to receive scan data from the NXT

Scanner. The nxtusb communicates with the USB driver (fantom) of Mindstorms NXT via its own private

functions. The private function is created as a MEX-file. (It is a feature to build an executable function called

by MATLAB).

NXTScannerViewer.m

(elision)

 :

% USB terminate

delete(nuObj);

clear nuObj

 :

% USB data receive by nxtusb

[len, buf] = read(nuObj, 'uint16', 32);

% make a nxtusb object

nuObj = nxtusb;

(elision)

 - 72 -

11.3 Overview of the image display

The NXT Viewer displays gray scale image. Each raw data consists of 10 bits data received from the NXT

Scanner. The NXT Viewer converts the raw data (data type is uint16) to uint8 (0-255). This conversion method

is detected by experiment and data logging.

NXTScannerViewer.m

(elision)

imshow(scanData), drawnow

scanData(row, 1:length(data1)) = data1;

% simple brightness adjust

data1 = uint8(747 - data1);

(elision)

Figure 11-2 The NXT Viewer display

 - 73 -

11.4 About image processing

The NXT Viewer has the following three stages for image processing.

1. Color and contrast adjustment (Figure1)

2. Interpolation (Figure2)

3. Deconvolution (Figure3)

Color and contrast adjustment

This stage is an optimization of the gray scale. The red bold texts in the following M-Script indicate the

commands of the Image Processing Toolbox.

 Imadjust：Adjust image intensity values.
 Imshow：Handle Graphics figure.

NXTScannerViewer.m

figure, imshow(scanData)

mn = min(scanData(1:2:end));

scanData = imadjust(scanData,[double(mn)/255 double(mx)/255],[0 1],1);

(elision)

mx = max(scanData(1:2:end));

scanData = scanData * ((100 + cnLvl) / 100);

[xs,ys] = size(scanData);

scanData = scanData + brLvl;

cnLvl = get(handles.slider2, 'Value');

brLvl = get(handles.slider1,'Value');

% color and contrast adjustment

(elision)

Figure 11-3 Color and contrast adjustment by the NXT Viewer (Figure1)

 - 74 -

Interpolation

This stage is the process to interpolate data between each line. This process is needed because the NXT Scanner

sends interlace scan data. It skips one line after scan each line is scanning by jump a line. So an image has a

deficit.

 imresize：Resize image by Lanczos3 interpolated method.
 edgetaper：Taper edges for area of edge of an image
 Imshow：Display an image on Handle Graphics figure.

NXTScannerViewer.m

figure, imshow(scanData2)

(elision)

scanData2 = edgetaper(scanData2,k);

k = k/(size(k,1)*size(k,2));

scanData2 = I1;

k = ones(3,6);

I1 = scanData(1:2:end,:);

I1 = imresize(I1,[xs,ys],'lanczos3');

% interpolation

(elision)

 Figure 11-4 Image interpolation by the NXT Viewer (Figure2)

 - 75 -

Deconvolution

This is the deconvolution process for blurred image.

 edge：Find edges in intensity image.
 strel：Create morphological structuring element.
 imdilate：Dilate image.
 deconvblind：Using blind deconvolution for to remove blur

NXTScannerViewer.m

figure, imshow(J)

[J,PSF] = deconvblind(scanData2,k,22,uint8(0),double(b),uint8(255));

(elision)

b([1:3 end-[0:2]],:) = 0;

b(:,[1:3 end-[0:2]]) = 0;

b = imdilate(a,se);

b = ~b;

a = edge(scanData2,'sobel',0.10);

se = strel('rect',[2 5]);

(elision)

% deconvolution

 Figure 11-5 Image deconvolution by the NXT Viewer (Figure3)

 - 76 -

12 Experimental results

You can watch a movie of the NXT Scanner control experiment and the NXT Viewer image at the following

URL.

 http://www.youtube.com/watch?hl=en&v=hadVwPJw3_0

Figure 12-1 The Movie of the NXT Scanner and the NXT Viewer

 - 77 -

13 Challenges for readers

We provide the following problems as challenges for readers. Please try them if you have interest.

 The NXT Scanner: faster reduction of scanning time

 The NXT Scanner: improve how to build (for example, the scanner head change to use from a gear to a

tire)

 The NXT Viewer: improve the image processing algorithm

 - 78 -

Appendix Generated code

This appendix describes the main code generated from nxtscanner_ctrl.mdl. It is the default code generated by

RTW-EC. RTW-EC allows us to assign user variable attributes such as variable name, storage class, modifiers etc.

by using Simulink Data Object. The comments are omitted for compactness.

NXT_SCANNER.c

#include "NXT_SCANNER.h"
#include "NXT_SCANNER_private.h"

#define IN_CLOSE (1)
#define IN_OPEN (2)

uint8_T _sfEvent_;
ControlModeEnum ControlMode;
ErrorCodeEnum ErrorCode;
FeedModeEnum FeedMode;
ScannerBufferInfoEnum ScannerBuffer_Info[2];
ScanModeEnum ScanMode;
head_type head;
logger_type logger;
scanner_type scanner;
sensor_type sensor;
usb_type usb;
BlockIO rtB;
D_Work rtDWork;
PrevZCSigStates rtPrevZCSigState;
void Fcn_Init(void)
{
 ecrobot_set_motor_mode_speed(NXT_PORT_B, 1, 0);
 ecrobot_set_motor_mode_speed(NXT_PORT_C, 1, 0);
}

void Fcn_ts1_Init(void)
{
 Scanner_Head_Init();
}

void Fcn_ts1(void)
{
 sensor.scanner_head_reset_sw = ecrobot_get_touch_sensor(NXT_PORT_S3);
 sensor.scanner_head_rev = ecrobot_get_motor_rev(NXT_PORT_C);
 sensor.light_data = ecrobot_get_light_sensor(NXT_PORT_S4);
 sensor.systick_ms = ecrobot_get_systick_ms();
 Scanner_Head();
 ecrobot_set_motor_mode_speed(NXT_PORT_C, 1, head.pwm_out);
 logger.LOG_data1 = head.pwm_out;
 logger.LOG_data2 = rtDWork.paper_feed_pwm;
 logger.LOG_adc1 = (int16_T)ControlMode;
 logger.LOG_adc2 = (int16_T)ScanMode;
 logger.LOG_adc3 = (int16_T)sensor.scanner_head_rev;
 logger.LOG_adc4 = (int16_T)head.now_position;
 ecrobot_bt_adc_data_logger(logger.LOG_data1, logger.LOG_data2, logger.LOG_adc1,
 logger.LOG_adc2, logger.LOG_adc3, logger.LOG_adc4);
}

void Fcn_ts2_Init(void)
{
 Paper_Feed_Init();
}

void Fcn_ts2_Disable(void)
{
 Paper_Feed_Disable();
}

 - 79 -

void Fcn_ts2_Start(void)
{
 Paper_Feed_Start();
}

void Fcn_ts2(void)
{
 rtB.RevolutionSensor_B = ecrobot_get_motor_rev(NXT_PORT_B);
 Paper_Feed();
 rtDWork.paper_feed_pwm = rtB.PWM;
 ecrobot_set_motor_mode_speed(NXT_PORT_B, 1, rtB.PWM);
}

void Fcn_ts3_Init(void)
{
 ModeControl_Init();
}

void Fcn_ts3(void)
{
 {
 boolean_T rtb_RelationalOperator_k;
 sensor.paper_exhaust_sw = ecrobot_get_touch_sensor(NXT_PORT_S1);
 sensor.paper_feed_sw = ecrobot_get_touch_sensor(NXT_PORT_S2);
 sensor.scan_control_sw = ecrobot_is_ENTER_button_pressed();
 ModeControl();
 rtb_RelationalOperator_k = (rtModeControl_B.SoundVol > 0U);
 if (rtb_RelationalOperator_k && (rtPrevZCSigState.EnabledSubsystem_Trig_ZCE
 != POS_ZCSIG)) {
 ecrobot_sound_tone(rtModeControl_B.SoundFreq, rtModeControl_B.SoundDur,
 rtModeControl_B.SoundVol);
 }

 rtPrevZCSigState.EnabledSubsystem_Trig_ZCE = rtb_RelationalOperator_k ?
 POS_ZCSIG : ZERO_ZCSIG;
 }
}

void usb_send(void)
{
 uint8_T rtb_TmpHiddenBufferAtUSBTxWrite[64];

 {
 int32_T i;
 for (i = 0; i < 2; i++) {
 rtb_TmpHiddenBufferAtUSBTxWrite[i] = usb.send_status[i];
 }

 for (i = 0; i < 2; i++) {
 rtb_TmpHiddenBufferAtUSBTxWrite[i + 2] = usb.send_number[i];
 }

 for (i = 0; i < 60; i++) {
 rtb_TmpHiddenBufferAtUSBTxWrite[i + 4] = usb.send_data[i];
 }

 ecrobot_send_usb(rtb_TmpHiddenBufferAtUSBTxWrite, 0, MAX_USB_DATA_LEN);
 }
}

 - 80 -

static void usb_communication(uint8_T sf_arg_select_buffer);
static void init_buffer(uint8_T sf_arg_select_buf);
static void usb_function(void);
static uint8_T usb_final_check(void);
static void usb_communication(uint8_T sf_arg_select_buffer)
{
 uint8_T sf_index;
 usb.send_status[1] = 0U;
 usb.send_status[0] = (uint8_T)scanner.buffer_status[sf_arg_select_buffer];
 usb.send_number[1] = 0U;
 usb.send_number[0] = scanner.buffer_number[sf_arg_select_buffer];
 for (sf_index = 0U; sf_index < 30; sf_index++) {
 usb.send_data[(sf_index << 1) + 1] = (uint8_T)((scanner.buffer_data
 [(sf_index << 1) + sf_arg_select_buffer] & 0xFF00) >> 8);
 usb.send_data[sf_index << 1] = (uint8_T)(scanner.buffer_data[(sf_index << 1)
 + sf_arg_select_buffer] & 0x00FF);
 }
}

static void init_buffer(uint8_T sf_arg_select_buf)
{
 uint8_T sf_index;
 ScannerBuffer_Info[sf_arg_select_buf] = TRANS_FINISH;
 scanner.buffer_status[sf_arg_select_buf] = 0U;
 scanner.buffer_number[sf_arg_select_buf] = 0U;
 scanner.buffer_pnum[sf_arg_select_buf] = 0U;
 for (sf_index = 0U; sf_index < 30; sf_index++) {
 scanner.buffer_data[sf_arg_select_buf + (sf_index << 1)] = 0U;
 }
}

static void usb_function(void)
{
 int32_T i;
 for (i = 0; i < 2; i++) {
 usb.send_status[i] = 0U;
 usb.send_number[i] = 0U;
 }

 for (i = 0; i < 60; i++) {
 usb.send_data[i] = 0U;
 }

 rtDWork.disconnect = 0U;
 if ((ScannerBuffer_Info[0] == FULL_UP) && (ScannerBuffer_Info[1] == FULL_UP))
 {
 if (scanner.buffer_pnum[0] <= scanner.buffer_pnum[1]) {
 usb_communication(0U);
 init_buffer(0U);
 usb_send();
 } else {
 usb_communication(1U);
 init_buffer(1U);
 usb_send();
 }
 } else if (ScannerBuffer_Info[0] == FULL_UP) {
 usb_communication(0U);
 init_buffer(0U);
 usb_send();
 } else {
 if (ScannerBuffer_Info[1] == FULL_UP) {
 usb_communication(1U);
 init_buffer(1U);
 usb_send();
 }
 }
}

 - 81 -

void usb_communication_main_Init(void)
{
 {
 int32_T i;
 rtDWork.is_active_c4_nxtscanner_lib = 0U;
 rtDWork.is_c4_nxtscanner_lib = 0U;
 rtDWork.disconnect = 0U;
 for (i = 0; i < 2; i++) {
 usb.send_status[i] = 0U;
 usb.send_number[i] = 0U;
 }

 for (i = 0; i < 60; i++) {
 usb.send_data[i] = 0U;
 }
 }
}

void usb_communication_main(void)
{
 if (rtDWork.is_active_c4_nxtscanner_lib == 0) {
 rtDWork.is_active_c4_nxtscanner_lib = 1U;
 rtDWork.is_c4_nxtscanner_lib = (uint8_T)IN_OPEN;
 usb_function();
 rtDWork.disconnect = usb_final_check();
 } else {
 switch (rtDWork.is_c4_nxtscanner_lib) {
 case IN_CLOSE:
 if (rtDWork.disconnect == 0) {
 rtDWork.is_c4_nxtscanner_lib = (uint8_T)IN_OPEN;
 usb_function();
 rtDWork.disconnect = usb_final_check();
 }
 break;

 case IN_OPEN:
 if (rtDWork.disconnect == 1) {
 rtDWork.is_c4_nxtscanner_lib = (uint8_T)IN_CLOSE;
 if (((uint8_T)1U) == 1) {
 ecrobot_disconnect_usb();
 }

 rtDWork.disconnect = 0U;
 } else {
 usb_function();
 rtDWork.disconnect = usb_final_check();
 }
 break;

 default:
 rtDWork.is_c4_nxtscanner_lib = (uint8_T)IN_OPEN;
 usb_function();
 rtDWork.disconnect = usb_final_check();
 break;
 }
 }
}

void Fcn_ts4_Init(void)
{
 usb_communication_main_Init();
}

void Fcn_ts4(void)
{
 usb_communication_main();
}

 - 82 -

void NXT_SCANNER_initialize(void)
{
 {
 rtB.ErrorCode_i = NO_ERROR;
 }

 ControlMode = ERROR;
 ErrorCode = NO_ERROR;
 FeedMode = FEED_INIT;

 {
 int_T i;
 for (i = 0; i < 2; i++) {
 ScannerBuffer_Info[i] = TRANS_FINISH;
 }
 }

 ScanMode = SCAN_INIT;
 ModeControl_initialize();
 Fcn_ts2_Start();
 ErrorCode = NO_ERROR;
 rtPrevZCSigState.EnabledSubsystem_Trig_ZCE = POS_ZCSIG;
 rtPrevZCSigState.Error_Detection_Trig_ZCE = POS_ZCSIG;
 sfEvent = CALL_EVENT;
 Fcn_ts1_Init();
 Fcn_ts2_Init();
 Fcn_ts3_Init();
 Fcn_ts4_Init();
}

 - 83 -

ModeControl.c

#include "ModeControl.h"

#include "NXT_SCANNER.h"
#include "NXT_SCANNER_private.h"

#define IN_ERROR (1)
#define IN_IDLE (1)
#define IN_INITIALIZE (2)
#define IN_NORMAL (2)
#define IN_NO_ACTIVE_CHILD_e0 (0)
#define IN_PAPER_EXHAUST (3)
#define IN_PAPER_FEED (4)
#define IN_SCAN_CONTROL (5)

rtB_ModeControl rtModeControl_B;
rtDW_ModeControl rtModeControl_DW;
void ModeControl_Init(void)
{
 rtModeControl_DW.is_NORMAL = 0U;
 rtModeControl_DW.is_active_c1_nxtscanner_lib = 0U;
 rtModeControl_DW.is_c1_nxtscanner_lib = 0U;
 rtModeControl_B.ControlMode_d = ERROR;
 rtModeControl_B.SoundFreq = 0U;
 rtModeControl_B.SoundDur = 0U;
 rtModeControl_B.SoundVol = 0U;
}

void ModeControl(void)
{
 {
 ScanModeEnum rtb_DataStoreRead2_k;
 rtb_DataStoreRead2_k = ScanMode;
 if (((ScanMode == SCAN_INIT) && (SCAN_INIT !=
 rtModeControl_DW.UnitDelay1_DSTATE)) || ((sensor.scan_control_sw ==
 ((uint8_T)1U)) && (rtModeControl_DW.UnitDelay2_DSTATE == ((uint8_T)0U))))
 {
 if (rtModeControl_DW.UnitDelay2_DSTATE_m >= ((uint8_T)1U)) {
 rtModeControl_B.Switch = ((uint8_T)0U);
 } else {
 rtModeControl_B.Switch = ((uint8_T)1U);
 }

 rtModeControl_DW.UnitDelay2_DSTATE_m = rtModeControl_B.Switch;
 }

 rtModeControl_DW.UnitDelay1_DSTATE = rtb_DataStoreRead2_k;
 rtModeControl_DW.UnitDelay2_DSTATE = sensor.scan_control_sw;
 if (rtModeControl_DW.is_active_c1_nxtscanner_lib == 0) {
 rtModeControl_DW.is_active_c1_nxtscanner_lib = 1U;
 rtModeControl_DW.is_c1_nxtscanner_lib = (uint8_T)IN_NORMAL;
 rtModeControl_DW.is_NORMAL = (uint8_T)IN_INITIALIZE;
 rtModeControl_B.ControlMode_d = INITIALIZE;
 } else {
 switch (rtModeControl_DW.is_c1_nxtscanner_lib) {
 case IN_ERROR:
 break;

 case IN_NORMAL:
 if (ErrorCode != NO_ERROR) {
 if (ErrorCode == ERROR_001) {
 rtModeControl_B.SoundFreq = 880U;
 } else {
 rtModeControl_B.SoundFreq = 220U;
 }
 rtModeControl_DW.is_NORMAL = (uint8_T)IN_NO_ACTIVE_CHILD_e0;
 rtModeControl_DW.is_c1_nxtscanner_lib = (uint8_T)IN_ERROR;
 rtModeControl_B.ControlMode_d = ERROR;
 rtModeControl_B.SoundDur = 3000U;
 rtModeControl_B.SoundVol = 20U;

 - 84 -

 } else {
 switch (rtModeControl_DW.is_NORMAL) {

 case IN_IDLE:
 if (rtModeControl_B.Switch == 1) { rtModeControl_DW.is_NORMAL = (uint8_T)IN_SCAN_CONTROL;
 rtModeControl_B.ControlMode_d = SCAN;
 } else if (sensor.paper_feed_sw == 1) {

 rtModeControl_DW.is_NORMAL = (uint8_T)IN_PAPER_FEED;
 rtModeControl_B.ControlMode_d = PAPERFEED;

 } else {
 if (sensor.paper_exhaust_sw == 1) { rtModeControl_DW.is_NORMAL = (uint8_T)IN_PAPER_EXHAUST;
 rtModeControl_B.ControlMode_d = PAPEREXHAUST;
 }

 }
 break;

 case IN_INITIALIZE: if ((ScanMode == SCAN_IDLE) && (FeedMode == FEED_IDLE)) {
 rtModeControl_DW.is_NORMAL = (uint8_T)IN_IDLE;
 rtModeControl_B.ControlMode_d = IDLE;
 }
 break;

 case IN_PAPER_EXHAUST:

 if (sensor.paper_exhaust_sw == 0) {
 rtModeControl_DW.is_NORMAL = (uint8_T)IN_IDLE;
 rtModeControl_B.ControlMode_d = IDLE;
 }
 break;

 case IN_PAPER_FEED:

 if (sensor.paper_feed_sw == 0) {
 rtModeControl_DW.is_NORMAL = (uint8_T)IN_IDLE; rtModeControl_B.ControlMode_d = IDLE;
 }
 break;

 case IN_SCAN_CONTROL:

 if (rtModeControl_B.Switch == 0) {
 rtModeControl_DW.is_NORMAL = (uint8_T)IN_INITIALIZE; rtModeControl_B.ControlMode_d = INITIALIZE;
 }
 break;

 default:

 rtModeControl_DW.is_NORMAL = (uint8_T)IN_INITIALIZE;
 rtModeControl_B.ControlMode_d = INITIALIZE; break;
 }
 }
 break;

 default:
 rtModeControl_DW.is_c1_nxtscanner_lib = (uint8_T)IN_NORMAL;

 rtModeControl_DW.is_NORMAL = (uint8_T)IN_INITIALIZE;
 rtModeControl_B.ControlMode_d = INITIALIZE; break;
 }
 }

 ControlMode = rtModeControl_B.ControlMode_d;

 }
}
void ModeControl_initialize(void)
{

 {
 rtModeControl_B.ControlMode_d = ERROR;
 }
}

 - 85 -

Scanner_Head.c

 #include "Scanner_Head.h"

 #include "NXT_SCANNER.h"
#include "NXT_SCANNER_private.h"
#define DIR_L (1U)
#define DIR_R (0U)

 #define IN_INIT_ERROR_STOP (1)
#define IN_NO_ACTIVE_CHILD (0)

 #define IN_PAPER_FEED_L (1)
#define IN_RUNTIME_ERROR_STOP (2) #define IN_SCAN_ERROR (3)
#define IN_SCAN_ERROR_STOP (4)
#define IN_SCAN_INIT_POSITION (5)
#define IN_SCAN_LEFT (2)
#define IN_SCAN_NORMAL (6)

 #define IN_SCAN_RIGHT (3)
#define event_FINISH (1U) #define event_RUNTIME_ERROR (2U)
#define event_STOP (0U)

rtDW_Scanner_Head rtScanner_Head_DW;
static void broadcast_STOP(void);

 static void scan_timeover_check(uint32_T sf_arg_target_ms, uint32_T
 sf_arg_now_clock);

 static void scan_start_position_seek(void);
static void scan_init(uint8_T sf_arg_target_dir); static void scan_timeover_set(void);
static int8_T get_pwm_value(uint8_T sf_arg_dir, int32_T sf_arg_position, uint8_T
 sf_arg_max, uint8_T sf_arg_min);

 static uint16_T status_maker(uint8_T sf_arg_elp, uint8_T sf_arg_start, uint8_T
 sf_arg_stop, uint8_T sf_arg_dir);

 static void scan_control_right(void);
static void paper_feed(void); static void scan_control_left(void);
static void scan_usb_stop(void);
static void scan_environment(void);

 static void enter_atomic_SCAN_INIT_POSITION(void);
static void c2_nxtscanner_lib(void);

 static void broadcast_STOP(void)
{ uint8_T sf_previousEvent;
 sf_previousEvent = _sfEvent_;
 sfEvent = event_STOP;
 c2_nxtscanner_lib();
 sfEvent = sf_previousEvent;

 }

 static void scan_timeover_check(uint32_T sf_arg_target_ms, uint32_T
 sf_arg_now_clock)
{
 if (sf_arg_target_ms < sf_arg_now_clock - head.start_time) {
 broadcast_STOP();

 }
}

static void scan_start_position_seek(void) {
 if (sensor.scanner_head_reset_sw == 1) {
 head.pwm_out = 0;

 ScanMode = SCAN_IDLE;
 head.scan_init_end_flg = 1U;

 } else if (head.scan_init_end_flg == 1) {
 broadcast_STOP(); } else {
 head.pwm_out = SCAN_INITIALIZE_PWM;
 scan_timeover_check(SCAN_INITIALIZE_TIMEOUT, sensor.systick_ms);
 }
}

 - 86 -

 static void scan_init(uint8_T sf_arg_target_dir)
{

 head.line_end_flg = 0U;
 head.packet_cnt = 0U; ScanMode = SCAN_SCAN;
 head.encoder_base = (int32_T)SCAN_START;
 if (sf_arg_target_dir == DIR_L) {

 head.start_position = sensor.scanner_head_rev + BACKLASH_ADJUST;
 } else if (head.start_flg == 1) {

 head.start_position = (sensor.scanner_head_rev - RELEASE_TOUCH_SENSOR) -
 BACKLASH_ADJUST; } else {
 head.start_position = sensor.scanner_head_rev - BACKLASH_ADJUST;
 }

 }

 static void scan_timeover_set(void)
{ head.start_time = sensor.systick_ms;
}

static int8_T get_pwm_value(uint8_T sf_arg_dir, int32_T sf_arg_position, uint8_T
 sf_arg_max, uint8_T sf_arg_min)

 {
 int8_T sf_pwm;

 if (sf_arg_position < 0) {
 sf_pwm = (int8_T)sf_arg_max;
 } else if (sf_arg_position > SCAN_EDGE) {
 sf_pwm = 0;
 } else if (sf_arg_position > SCAN_EDGE - 60) {

 sf_pwm = (int8_T)sf_arg_min;
 } else {

 sf_pwm = (int8_T)sf_arg_max;
 }
 if (sf_arg_dir == 0) {
 return (int8_T)(-sf_pwm);

 }

 return sf_pwm;
}
static uint16_T status_maker(uint8_T sf_arg_elp, uint8_T sf_arg_start, uint8_T
 sf_arg_stop, uint8_T sf_arg_dir)
{
 uint16_T sf_out;

 sf_out = 1U;
 if (sf_arg_elp == 1) { sf_out = 17U;
 }

 if (sf_arg_start == 1) {
 sf_out += 8;

 }

 if (sf_arg_stop == 1) {
 sf_out += 4; }

 if (sf_arg_dir == 1) {

 sf_out += 2;
 }

 return sf_out; }

 - 87 -

 static void scan_control_right(void)
{

 uint8_T sf_previousEvent;
 head.now_position = head.start_position - sensor.scanner_head_rev; head.pwm_out = get_pwm_value(DIR_R, head.now_position, SCAN_R_MAX_PWM,
 SCAN_R_MIN_PWM);
 if ((sensor.scanner_head_reset_sw == 1) && (head.now_position > 0)) {

 broadcast_STOP();
 } else if (head.pwm_out == 0) {

 FeedMode = FEED_PAPERFEED;
 ScanMode = SCAN_FEED; } else {
 if ((head.now_position > SCAN_START) && (head.now_position >
 head.encoder_base)) {
 if (head.now_position <= SCAN_EDGE - SCAN_START) {
 head.encoder_base = head.encoder_base + 2;

 scanner.buffer_data[head.select + (scanner.buffer_number[(int32_T)
 head.select] << 1)] = sensor.light_data;

 scanner.buffer_number[(int32_T)head.select] = (uint8_T)
 (scanner.buffer_number[(int32_T)head.select] + 1);
 ScannerBuffer_Info[(int32_T)head.select] = STORING;
 if (scanner.buffer_number[(int32_T)head.select] >= 30) {
 head.packet_cnt = (uint8_T)(head.packet_cnt + 1);

 ScannerBuffer_Info[(int32_T)head.select] = FULL_UP;
 scanner.buffer_status[(int32_T)head.select] = status_maker(0U,

 head.start_flg, 0U, DIR_R);
 scanner.buffer_pnum[(int32_T)head.select] = head.packet_cnt; head.start_flg = 0U;
 if (head.select == 1) {
 head.select = 0U;

 } else {
 head.select = 1U;

 }
 } } else {
 if (head.line_end_flg == 0) {
 head.line_end_flg = 1U;

 head.line_cnt = head.line_cnt + 1U;
 ScannerBuffer_Info[(int32_T)head.select] = FULL_UP;

 head.packet_cnt = (uint8_T)(head.packet_cnt + 1);
 scanner.buffer_pnum[(int32_T)head.select] = head.packet_cnt; if (head.line_cnt >= 127U) {
 scanner.buffer_status[(int32_T)head.select] = status_maker(1U,
 head.start_flg, 1U, DIR_R);
 ScanMode = SCAN_INIT;
 sf_previousEvent = _sfEvent_;

 sfEvent = event_FINISH;
 c2_nxtscanner_lib();

 sfEvent = sf_previousEvent;
 } else {
 scanner.buffer_status[(int32_T)head.select] = status_maker(1U,
 head.start_flg, 0U, DIR_R);
 }

 }
 }

 }
 } }

static void paper_feed(void)

 {
 if (FeedMode == FEED_IDLE) {

 ScanMode = SCAN_SCAN;
 } }

 - 88 -

 static void scan_control_left(void)
{

 uint8_T sf_previousEvent;
 head.now_position = sensor.scanner_head_rev - head.start_position; head.pwm_out = get_pwm_value(DIR_L, head.now_position, SCAN_L_MAX_PWM,
 SCAN_L_MIN_PWM);
 if ((sensor.scanner_head_reset_sw == 1) && (head.now_position > 0)) {

 sf_previousEvent = _sfEvent_;
 sfEvent = event_RUNTIME_ERROR;

 c2_nxtscanner_lib();
 sfEvent = sf_previousEvent; } else {
 if (head.pwm_out == 0) {
 ScanMode = SCAN_FEED;

 }
 }

 }
 static void scan_usb_stop(void)
{
 head.pwm_out = 0;
 ScannerBuffer_Info[(int32_T)head.select] = FULL_UP;
 scanner.buffer_status[(int32_T)head.select] = status_maker(1U, head.start_flg,

 1U, DIR_R);
 scanner.buffer_pnum[(int32_T)head.select] = (uint8_T)(head.packet_cnt + 1);

 }

static void scan_environment(void)
{
 head.start_flg = 1U;

 head.select = 0U;
 head.line_cnt = 0U;

 head.line_end_flg = 0U;
 head.packet_cnt = 0U; head.scan_init_end_flg = 0U;
}

 static void enter_atomic_SCAN_INIT_POSITION(void)
{

 if (rtScanner_Head_DW.is_c2_nxtscanner_lib != IN_SCAN_INIT_POSITION) {
 rtScanner_Head_DW.is_c2_nxtscanner_lib = (uint8_T)IN_SCAN_INIT_POSITION; scan_environment();
 scan_timeover_set();
 scan_start_position_seek();
 }
}

static void c2_nxtscanner_lib(void) {
 if (rtScanner_Head_DW.is_active_c2_nxtscanner_lib == 0) {
 rtScanner_Head_DW.is_active_c2_nxtscanner_lib = 1U;
 if (rtScanner_Head_DW.is_c2_nxtscanner_lib != IN_SCAN_INIT_POSITION) {
 rtScanner_Head_DW.is_c2_nxtscanner_lib = (uint8_T)IN_SCAN_INIT_POSITION;

 scan_environment();
 scan_timeover_set();

 scan_start_position_seek();
 } } else {
 switch (rtScanner_Head_DW.is_c2_nxtscanner_lib) {
 case IN_INIT_ERROR_STOP:

 if (ControlMode == ERROR) {
 rtScanner_Head_DW.is_c2_nxtscanner_lib = (uint8_T)IN_SCAN_ERROR;

 head.pwm_out = 0;
 } break;

 case IN_RUNTIME_ERROR_STOP:

 break;

 case IN_SCAN_ERROR:
 break;

 - 89 -

 case IN_SCAN_ERROR_STOP:
 break;

 case IN_SCAN_INIT_POSITION: if (_sfEvent_ == event_STOP) {
 rtScanner_Head_DW.is_c2_nxtscanner_lib = (uint8_T)IN_INIT_ERROR_STOP;
 head.pwm_out = 0;

 ErrorCode = ERROR_001;
 } else if (ControlMode == ERROR) {

 rtScanner_Head_DW.is_c2_nxtscanner_lib = (uint8_T)IN_SCAN_ERROR;
 head.pwm_out = 0; } else if ((ControlMode == SCAN) && (ScanMode == SCAN_IDLE)) {
 rtScanner_Head_DW.is_c2_nxtscanner_lib = (uint8_T)IN_SCAN_NORMAL;
 if (rtScanner_Head_DW.is_SCAN_NORMAL != IN_SCAN_RIGHT) {

 rtScanner_Head_DW.is_SCAN_NORMAL = (uint8_T)IN_SCAN_RIGHT;
 scan_init(DIR_R);

 scan_timeover_set();
 scan_control_right(); }
 } else {
 scan_start_position_seek();
 }
 break;

 case IN_SCAN_NORMAL:

 if (rtScanner_Head_DW.is_c2_nxtscanner_lib == IN_SCAN_NORMAL) {
 if (ControlMode == ERROR) {
 scan_usb_stop();
 rtScanner_Head_DW.is_SCAN_NORMAL = (uint8_T)IN_NO_ACTIVE_CHILD;
 rtScanner_Head_DW.is_c2_nxtscanner_lib = (uint8_T)IN_SCAN_ERROR;

 head.pwm_out = 0;
 } else if ((ControlMode != ERROR) && (ControlMode != SCAN)) {

 scan_usb_stop();
 rtScanner_Head_DW.is_SCAN_NORMAL = (uint8_T)IN_NO_ACTIVE_CHILD; rtScanner_Head_DW.is_c2_nxtscanner_lib = (uint8_T)IN_NO_ACTIVE_CHILD;
 enter_atomic_SCAN_INIT_POSITION();
 } else if (_sfEvent_ == event_FINISH) {

 rtScanner_Head_DW.is_SCAN_NORMAL = (uint8_T)IN_NO_ACTIVE_CHILD;
 rtScanner_Head_DW.is_c2_nxtscanner_lib = (uint8_T)IN_NO_ACTIVE_CHILD;

 enter_atomic_SCAN_INIT_POSITION();
 } else if (_sfEvent_ == event_STOP) { rtScanner_Head_DW.is_SCAN_NORMAL = (uint8_T)IN_NO_ACTIVE_CHILD;
 rtScanner_Head_DW.is_c2_nxtscanner_lib = (uint8_T)IN_SCAN_ERROR_STOP;
 scan_usb_stop();
 ErrorCode = ERROR_001;
 } else if (_sfEvent_ == event_RUNTIME_ERROR) {

 rtScanner_Head_DW.is_SCAN_NORMAL = (uint8_T)IN_NO_ACTIVE_CHILD;
 rtScanner_Head_DW.is_c2_nxtscanner_lib = (uint8_T)IN_NO_ACTIVE_CHILD; if (rtScanner_Head_DW.is_c2_nxtscanner_lib != IN_RUNTIME_ERROR_STOP) {
 rtScanner_Head_DW.is_c2_nxtscanner_lib = (uint8_T)
 IN_RUNTIME_ERROR_STOP;
 head.pwm_out = 7;
 ErrorCode = ERROR_001;

 ScannerBuffer_Info[(int32_T)head.select] = FULL_UP;
 scanner.buffer_status[(int32_T)head.select] = status_maker(1U,

 head.start_flg, 1U, DIR_L);
 } } else {
 switch (rtScanner_Head_DW.is_SCAN_NORMAL) {
 case IN_PAPER_FEED_L:

 if (ScanMode == SCAN_SCAN) {
 rtScanner_Head_DW.is_SCAN_NORMAL = (uint8_T)IN_SCAN_RIGHT;

 scan_init(DIR_R);
 scan_timeover_set(); scan_control_right();
 } else {
 paper_feed();

 scan_timeover_check(SCAN_F_TIMEOUT, sensor.systick_ms);
 }
 break;

 - 90 -

 case IN_SCAN_LEFT:
 if (rtScanner_Head_DW.is_SCAN_NORMAL == IN_SCAN_LEFT) {

 if (ScanMode == SCAN_FEED) {
 rtScanner_Head_DW.is_SCAN_NORMAL = (uint8_T)IN_PAPER_FEED_L; scan_timeover_set();
 paper_feed();
 } else {

 scan_control_left();
 scan_timeover_check(SCAN_L_TIMEOUT, sensor.systick_ms);

 }
 } break;

 case IN_SCAN_RIGHT:

 if (rtScanner_Head_DW.is_SCAN_NORMAL == IN_SCAN_RIGHT) {
 if (ScanMode == SCAN_FEED) {

 ScanMode = SCAN_SCAN;
 rtScanner_Head_DW.is_SCAN_NORMAL = (uint8_T)IN_SCAN_LEFT; scan_init(DIR_L);
 scan_timeover_set();
 scan_control_left();
 } else {
 scan_control_right();

 scan_timeover_check(SCAN_R_TIMEOUT, sensor.systick_ms);
 }

 }
 break;

 default:
 rtScanner_Head_DW.is_SCAN_NORMAL = (uint8_T)IN_NO_ACTIVE_CHILD;

 break;
 }

 }
 } break;

 default:

 rtScanner_Head_DW.is_c2_nxtscanner_lib = (uint8_T)IN_NO_ACTIVE_CHILD;
 break;

 }
 } }

void scanner_head_main_Init(void)
{
 {

 int32_T i;
 rtScanner_Head_DW.is_SCAN_NORMAL = 0U; rtScanner_Head_DW.is_active_c2_nxtscanner_lib = 0U;
 rtScanner_Head_DW.is_c2_nxtscanner_lib = 0U;
 head.start_position = 0;
 head.select = 0U;
 head.start_flg = 0U;

 head.line_cnt = 0U;
 head.line_end_flg = 0U;

 head.packet_cnt = 0U;
 head.scan_init_end_flg = 0U; head.start_time = 0U;
 for (i = 0; i < 6; i++) {
 polyspace[i] = 0;

 }

 head.pwm_out = 0;
 head.now_position = 0; head.encoder_base = 0;
 }
}

 - 91 -

 void scanner_head_main(void)
{

 {
 uint8_T sf_previousEvent; sf_previousEvent = _sfEvent_;
 sfEvent = CALL_EVENT;
 c2_nxtscanner_lib();

 sfEvent = sf_previousEvent;
 }

 }
 void Scanner_Head_Init(void)
{
 scanner_head_main_Init();

 }

 void Scanner_Head(void)
{ scanner_head_main();
}

 - 92 -

Paper_Feed.c

 #include "Paper_Feed.h"

 #include "NXT_SCANNER.h"
#include "NXT_SCANNER_private.h"
void task_stop_Start(rtB_task_stop *localB)
{

 localB->PWM = 0;
 localB->Constant2 = FALSE;

 }
 void task_stop(rtB_task_stop *localB)
{
 localB->PWM = 0;
 localB->Constant2 = FALSE;
}

void Paper_Feed_Init(void) {
 rtDWork.RotDir = false;
}

void Paper_Feed_Disable(void)

 {
 rtDWork.Counter_For_Error_MODE = SUBSYS_DISABLED;

 }
 void Paper_Feed_Start(void)
{
 rtB.PWM_f = 100;

 rtB.Constant1_c = FALSE;
 rtB.Constant2_m = TRUE;

 rtB.PWM_o = -100;
 rtB.Constant1 = TRUE; rtB.Constant2_i = TRUE;
 task_stop_Start(&rtB.task_stop_n);
 rtB.PWM_c = 100;

 rtB.PWM_c = 100;
 rtB.Constant2_l = TRUE;

 rtB.PWM_l = 100;
 rtB.PWM_l = 100; rtB.PWM_l = 100;
 rtB.Constant2 = TRUE;
 rtDWork.Memory1_PreviousInput = ((uint8_T)0U);
 rtDWork.UnitDelay_DSTATE = 0;
 rtB.ErrorCode_i = NO_ERROR;

 }

 void Paper_Feed(void)
{
 int32_T rtb_Switch1;

 {

 boolean_T rtb_ErrDetect;
 uint8_T rtb_Sum1_d;

 int32_T rtb_Switch;
 int32_T rtb_EncoderDiff_o; if (ControlMode == INITIALIZE) {
 if (FeedMode == FEED_INIT) {
 rtB.SFunction_o6 = rtB.RevolutionSensor_B;

 if (!rtDWork.ROTOR_FLAG) {
 rtDWork.ROTOR_INIT = rtB.SFunction_o6;

 rtDWork.ROTOR_FLAG = TRUE;
 rtB.PWM_l = 100; } else {
 if (rtB.SFunction_o6 - rtDWork.ROTOR_INIT < 1000) {
 rtDWork.ROTOR_FLAG = TRUE;

 - 93 -

 FeedMode = FEED_INIT;
 rtB.PWM_l = 100;

 } else {
 rtDWork.ROTOR_FLAG = FALSE; FeedMode = FEED_IDLE;
 rtB.PWM_l = 0;
 }

 }

 rtB.Constant2 = TRUE;
 rtB.PWM = rtB.PWM_l; rtb_ErrDetect = rtB.Constant2;
 } else {
 task_stop(&rtB.task_stop_n);

 rtB.PWM = rtB.task_stop_n.PWM;
 rtb_ErrDetect = rtB.task_stop_n.Constant2;

 }
 } else if (ControlMode == PAPERFEED) { rtB.PWM_f = 100;
 rtB.Constant1_c = FALSE;
 rtB.Constant2_m = TRUE;
 rtB.PWM = rtB.PWM_f;
 rtDWork.RotDir = rtB.Constant1_c;

 rtb_ErrDetect = rtB.Constant2_m;
 } else if (ControlMode == PAPEREXHAUST) {

 rtB.PWM_o = -100;
 rtB.Constant1 = TRUE;
 rtB.Constant2_i = TRUE;
 rtB.PWM = rtB.PWM_o;
 rtDWork.RotDir = rtB.Constant1;

 rtb_ErrDetect = rtB.Constant2_i;
 } else if (ControlMode == IDLE) {

 task_stop(&rtB.task_stop_n);
 rtB.PWM = rtB.task_stop_n.PWM; rtb_ErrDetect = rtB.task_stop_n.Constant2;
 } else if (ControlMode == ERROR) {
 task_stop(&rtB.task_stop_n);

 rtB.PWM = rtB.task_stop_n.PWM;
 rtb_ErrDetect = rtB.task_stop_n.Constant2;

 } else if (FeedMode == FEED_PAPERFEED) {
 rtB.SFunction_o4 = rtB.RevolutionSensor_B; rtB.SFunction_o5 = rtDWork.RotDir;
 if (!rtDWork.ROTOR_FLAG) {
 rtDWork.ROTOR_INIT = rtB.SFunction_o4;
 rtDWork.ROTOR_FLAG = TRUE;
 rtB.PWM_c = 100;

 rtB.RotOffset = rtB.SFunction_o5;
 } else { rtb_EncoderDiff_o = rtB.SFunction_o4 - rtDWork.ROTOR_INIT;
 if (rtB.SFunction_o5) {
 rtb_Switch1 = rtb_EncoderDiff_o;
 } else {
 rtb_Switch1 = rtb_EncoderDiff_o + 50;

 }

 if (rtB.SFunction_o5) {
 rtb_Switch = 50; } else {
 rtb_Switch = 0;
 }

 if (rtb_EncoderDiff_o < rtb_Switch + 102) {

 rtDWork.ROTOR_FLAG = TRUE;
 FeedMode = FEED_PAPERFEED; {
 uint32_T iLeft;
 if (rtb_Switch1 <= 0) {

 iLeft = 0;
 } else if (rtb_Switch1 >= 150) {
 iLeft = 15U;

 - 94 -

 } else {
 iLeft = (uint32_T)(rtb_Switch1) / 10;

 { uint32_T remainder;
 remainder = (uint32_T)(rtb_Switch1) % 10;
 if ((10 - remainder) <= remainder) {

 iLeft++;
 }

 }
 }
 rtB.PWM_c = (rtConstP.LookupTable_YData[iLeft]);
 }

 rtB.RotOffset = rtB.SFunction_o5;

 } else {
 rtDWork.ROTOR_FLAG = FALSE;

 FeedMode = FEED_IDLE;
 rtB.PWM_c = 0;
 rtB.RotOffset = FALSE;
 }
 }

 rtB.Constant2_l = TRUE;

 rtB.PWM = rtB.PWM_c;
 rtDWork.RotDir = rtB.RotOffset; rtb_ErrDetect = rtB.Constant2_l;
 } else {
 task_stop(&rtB.task_stop_n);

 rtB.PWM = rtB.task_stop_n.PWM;
 rtb_ErrDetect = rtB.task_stop_n.Constant2;

 }
 if (rtb_ErrDetect) {
 if (rtDWork.Counter_For_Error_MODE == SUBSYS_DISABLED) {
 rtDWork.Memory1_PreviousInput = ((uint8_T)0U);

 rtDWork.UnitDelay_DSTATE = 0;
 rtDWork.Counter_For_Error_MODE = SUBSYS_ENABLED;

 }
 rtb_Sum1_d = (uint8_T)(uint32_T)(rtDWork.Memory1_PreviousInput + ((uint8_T)
 1U));
 if (rtb_Sum1_d > ((uint8_T)10U)) {
 rtb_Sum1_d -= ((uint8_T)10U);
 }

 rtb_ErrDetect = (rtb_Sum1_d == ((uint8_T)10U));

 if (rtb_ErrDetect && (rtPrevZCSigState.Error_Detection_Trig_ZCE !=
 POS_ZCSIG)) {
 if ((rtDWork.UnitDelay_DSTATE == rtB.RevolutionSensor_B) &&
 (rtB.RevolutionSensor_B != 0)) {
 rtB.ErrorCode_i = ERROR_002;

 }

 rtDWork.UnitDelay_DSTATE = rtB.RevolutionSensor_B;
 }
 rtPrevZCSigState.Error_Detection_Trig_ZCE = rtb_ErrDetect ? POS_ZCSIG :
 ZERO_ZCSIG;

 rtDWork.Memory1_PreviousInput = rtb_Sum1_d;
 } else {

 if (rtDWork.Counter_For_Error_MODE == SUBSYS_ENABLED) {
 rtDWork.Counter_For_Error_MODE = SUBSYS_DISABLED; }
 }

 ErrorCode = rtB.ErrorCode_i;
 }
}

 - 95 -

Reference

[1] Embedded Coder Robot NXT

http://www.mathworks.com/matlabcentral/fileexchange/13399

[2] Philo’s Home Page LEGO Mindstorms NXT

http://www.philohome.com/

[3] NXT GamePad

http://lejos-osek.sourceforge.net/utilities.htm

[4] Excel Interface API for Simulink Data Object

http://www.mathworks.com/matlabcentral/fileexchange/20316

http://lejos-osek.sourceforge.net/utilities.htm

	Introduction
	Preparation
	Required Products
	 File Lists
	Index
	1 Model-Based Design
	1.1 What is Model-Based Design?
	1.2 V-process
	1.3 Merits of MBD

	2 Product design
	2.1 What is an NXT Scanner and an NXT Viewer?

	3 Mechanisms for the NXT Scanner
	3.1 Hardware structure
	3.2 Backlash
	3.3 Sensors and Actuators

	4 System design
	4.1 Overview of total system
	4.2 MODE CONTROL SYSTEM
	4.3 PAPER FEED CONTROL SYSTEM
	4.4 SCAN CONTROL SYSTEM
	4.5 USB COMMUNICATION CONTROL SYSTEM

	5 Module design for the NXT Scanner
	5.1 Using library model for functional unit models
	5.2 Shared data (Global variable data) for the total system

	6 Unit design
	6.1 Using enumerated type (New feature of R2008b)
	6.2 Utilize Simulink function (New feature of R2008b)
	6.3 MODE CONTROL MODEL
	6.4 PAPER FEED CONTROL MODEL
	6.5 SCAN CONTROL MODEL
	6.6 USB COMMUNICATION CONTROL MODEL

	7 Simulation for each models
	7.1 Test signals for Simulation
	7.2 Introduce of verification tools and function

	8 The NXT Scanner controller model (integrated each models)
	8.1 Control program summary
	8.2 The NXT Scanner model summary
	8.3 Initialization task: task_init
	8.4 2ms task: task_ts1
	8.5 10ms task: task_ts2
	8.6 20ms task: task_ts3
	8.7 60ms task: task_ts4
	8.8 Tuning parameters

	9 Code generation and implementation
	9.1 Target hardware and software
	9.2 How to generate code and download

	10 Verification of generated code
	10.1 What is PolySpace?
	10.2 PolySpace configuration
	10.3 PolySpace can find runtime errors
	10.4 Results of PolySpace verification

	11 What is an NXT Viewer?
	11.1 How to use the NXT Viewer
	11.2 Command for USB communication (nxtusb)
	11.3 Overview of the image display
	11.4 About image processing

	12 Experimental results
	13 Challenges for readers
	Appendix Generated code
	 Reference

