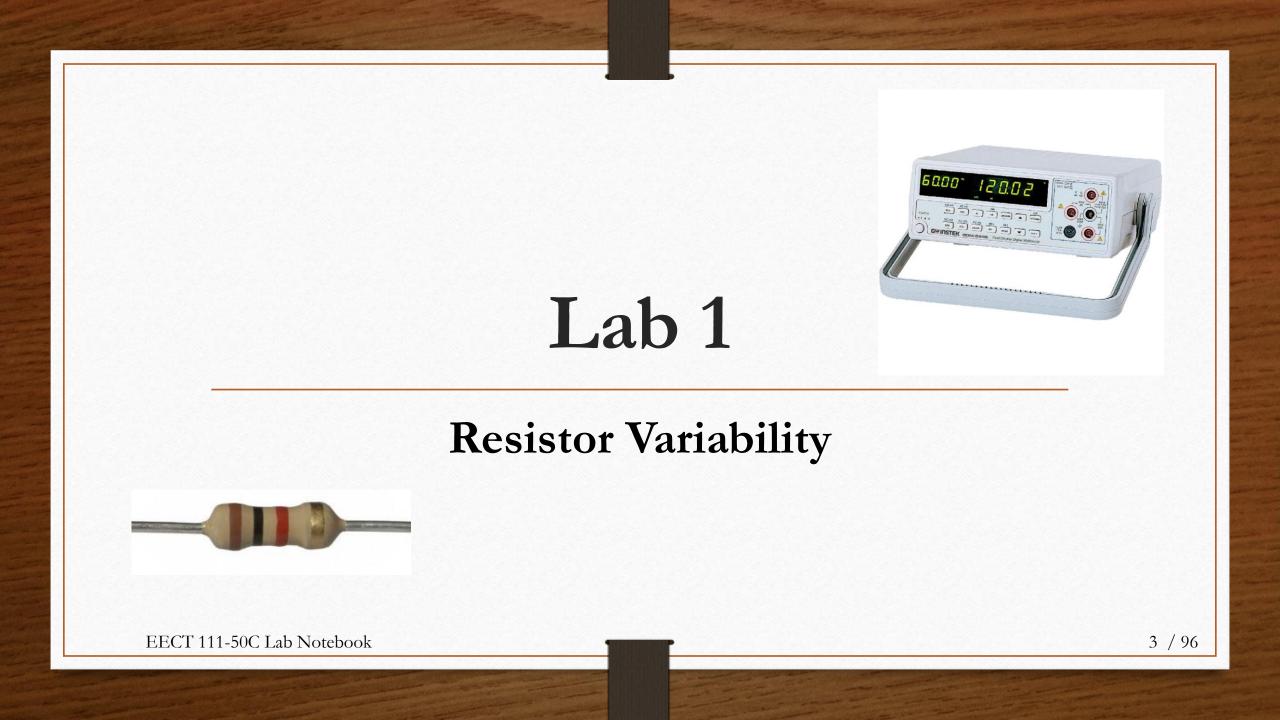

Lab Notebook


EECT111-50C

Circuit Analysis Spring 2015 Mari Martin 5/7/15

CONTENTS

Lab 1 – Resistor Variability	3
Lab 2 – Reading and Sorting Resistors	10
Lab 3 – Series Resistors Current and Voltage	16
Lab 4 – Black Box Design, Series Resistors	24
Lab 5 – Black Box Design, Parallel Resistors	32
Lab $6 - N/A$	40
Lab 7 – Resistor Parallel Circuit	41
Lab 8 – Black Box Design, Equal Value Resistors	50
Lab 9 – Series/Parallel Resistors	60
Lab 10 – Series/Parallel Capacitors	71
Lab 11 – RC Lab	79
Lab 12 – Series/Parallel Inductors	90

Lab 1: Resistor Variability (1)

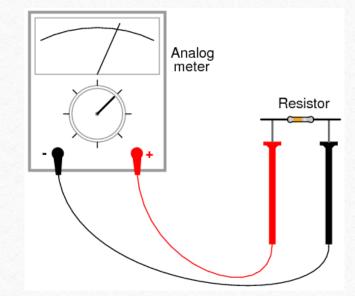
Objective:

Learn how resistors vary using 10 resistors with the same color code.

Equipment/Materials:

	Brand	Model	S/N
Digital Multimeter	GW INSTEK	GDM-8245	CL860260
$10 \ge 1 k\Omega$ resistors	N/A	N/A	N/A

Digital Multimeter


Lab 1: Resistor Variability (2)

Procedures:

Connect a resistor to the red and black ends of a Digital Multimeter to measure the resistors' value.

Calculation:

Mean	982.6	= AVERAGEA(C12:C81)
Std. Dev	5.8	= STDEV(C12:C81)
Median	981	= MEDIAN(C12:C81)
Mode	980	= MODE(C12:C81)
Smallest	975	= MIN(C12:C81)
Largest	1002	= MAX(C12:C81)
Range	27	= C88-C87

Lab 1: Resistor Variability (3) Measured Data:

	А	В	С	E	F	G
10			Measured Value	Resi	Resistor Tolerance	
11			Resistance (Ω)	Low Tolerance	High Tolerance	Nominal
12	Group1	1	982	950	1050	1000
13		2	980	950	1050	1000
14		3	981	950	1050	1000
15		4	984	950	1050	1000
16		5	978	950	1050	1000
17		6	980	950	1050	1000
18		7	980	950	1050	1000
19		8	8 980 950 1050		1050	1000
20		9 981		950	1050	1000
21		10	982	950	1050	1000
22	Group2	11	979	950	1050	1000
23		12	982	950	1050	1000
24		13	978	950	1050	1000
25		14	979	950	1050	1000
26		15	999	950	1050	1000
27		16	987	950	1050	1000
28		17	987	950	1050	1000
29		18	982	950	1050	1000
30		19	980	950	1050	1000
31		20	1000	950	1050	1000

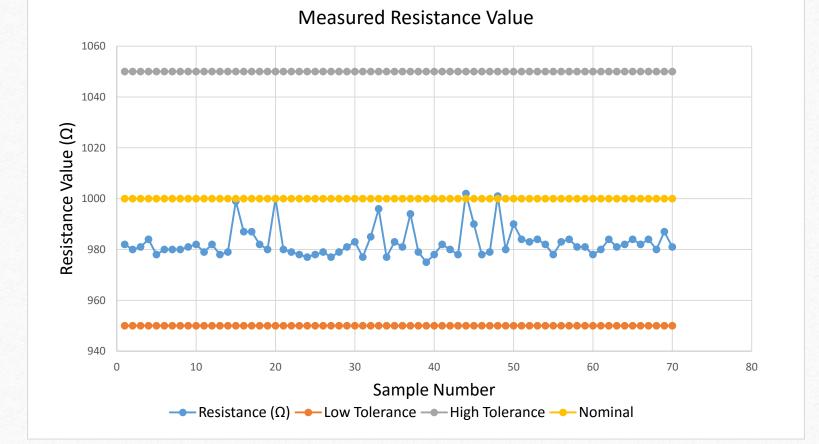
	А	В	С	E	F	G	
10			Measured Value	Resistor Tolerance			
11			Resistance (Ω)	Low Tolerance	High Tolerance	Nominal	
32	Group3	21	980	950	1050	1000	
33		22	979	950	1050	1000	
34		23	978	950	1050	1000	
35		24	977	950	1050	1000	
36		25	978	950	1050	1000	
37		26	979	950	1050	1000	
38		27	977	950	1050	1000	
39		28	979	950	1050	1000	
40		29	981	950	1050	1000	
41		30	983	950	1050	1000	
42	Group4	31	977	950	1050	1000	
43		32	985	950	1050	1000	
44		33	996	950	1050	1000	
45		34	977	950	1050	1000	
46		35	983	950	1050	1000	
47		36	981	950	1050	1000	
48		37	994	950	1050	1000	
49		38	979	950	1050	1000	
50		39	975	950	1050	1000	
51		40	978	950	1050	1000	

EECT 111-50C Lab Notebook

6 / 96

Lab 1: Resistor Variability (4) Measured Data:

	А	В	С	E	F	G		
10			Measured Value	Resistor Tolerance				
11			Resistance (Ω)	Low Tolerance	High Tolerance	Nominal		
52	Group5	41	982	950	1050	1000		
53		42	980	950	1050	1000		
54		43	978	950	1050	1000		
55		44	1002	950	1050	1000		
56		45	990	950	1050	1000		
57		46	978	950	1050	1000		
58		47	979	950	1050	1000		
59		48	1001	950	1050	1000		
60		49	980	950	1050	1000		
61		50	990	950	1050	1000		
62	Group6	51	984	950	1050	1000		
63		52	983	950	1050	1000		
64		53	984	950	1050	1000		
65		54	982	950	1050	1000		
66		55	978	950	1050	1000		
67		56	983	950	1050	1000		
68		57	984	950	1050	1000		
69		58	981	950	1050	1000		
70		59	981	950	1050	1000		
71		60	978	950	1050	1000		

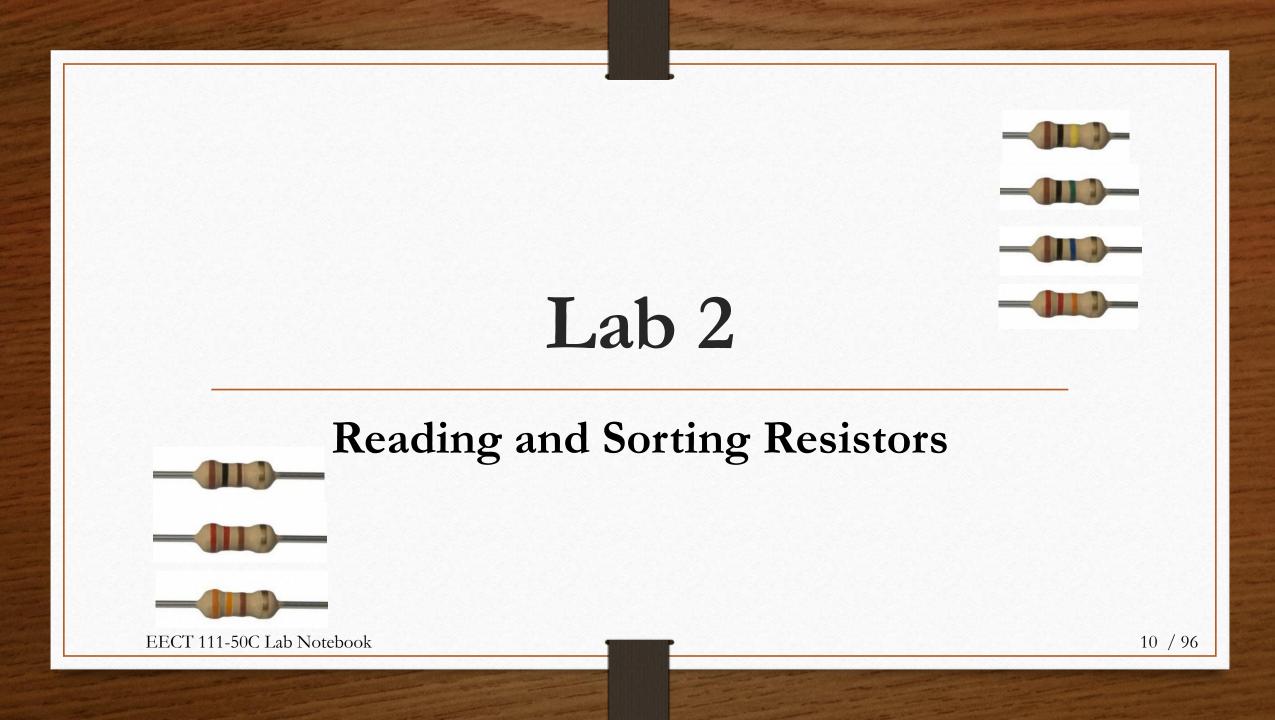

	А	В	С	E	F	G
10			Measured Value	Resi	stor Tolerance	
11			Resistance (Ω)	Low Tolerance	High Tolerance	Nominal
72	Group7	61	980	950	1050	1000
73		62	984	950	1050	1000
74		63	981	950	1050	1000
75		64	982	950	1050	1000
76		65	984	950	1050	1000
77		66	982	950	1050	1000
78		67	984	950	1050	1000
79		68	980	950	1050	1000
80		69	987	950	1050	1000
81		70	981	950	1050	1000

Mean	982.6	= AVERAGEA(C12:C81)
Std. Dev	5.8	= STDEV(C12:C81)
Median	981	= MEDIAN(C12:C81)
Mode	980	= MODE(C12:C81)
Smallest	975	= MIN(C12:C81)
Largest	1002	= MAX(C12:C81)
Range	27	= C88-C87

EECT 111-50C Lab Notebook

7 / 96

Lab 1: Resistor Variability (5) Graph Result:

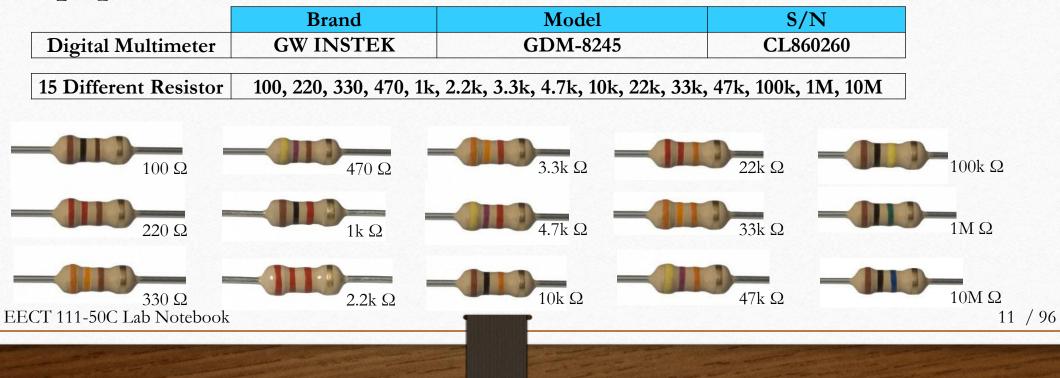


EECT 111-50C Lab Notebook

Lab 1: Resistor Variability (6)

Conclusion:

All measured data were lower than nominal value. When we switch around resistance code, the value of resistance didn't change. We observed that standard resistors do not have the exact value as the color code value.



Lab 2: Reading and Sorting Resistors (1)

Objective:

Learn the resistor color code using 15 resistors.

Equipment/Materials:

Lab 2: Reading and Sorting Resistors (2)

Procedures:

Build a specified resistor using color code and sort resistors based on color codes from smallest to largest and measure the resistance of each resistor and verify sorting.

Lab 2: Reading and Sorting Resistors (3)

Calculation:

The colored bands together give information about the resistance value, the tolerance as well as other parameters. The resistor can have from 3 to 6 bands. With the color code chart, the meaning of each band can be determined.

Color	Color Signficant figures		igures	Multiply	Tolerance (%)
black	0	0	0	× 1	
brown	1	1	1	× 10	1 (F)
red	2	2	2	x 100	2 (G)
orange	3	3	3	x 1K	
yellow	4	4	4	x 10K	
green	5	5	5	x 100K	0.5 (D)
blue	6	6	6	x 1M	0.25 (C)
violet	7	7	7	x 10M	0.1 (B)
grey	8	8	8	× 100M	0.05 (A)
white	9	9	9	x 1G	
gold			3th digit	x 0.1	5 (J)
silver		1	only for 5 and 6	x 0.01	10 (K)
none			bands		20 (M)

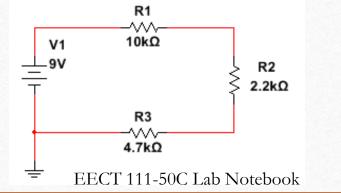
http://electricalengineeringbasics.weebly.com/resistor-color-code.html 13 / 96

Lab 2: Reading and Sorting Resistors (4)

Measured Data:

	Nominal [Ω]	Co	olor Co	de	Tolerance [%]	Measured Value [Ω]	Low [Ω]	Max [Ω]	In Tolerance?	Too Low?	Too High?
1	100	Brown	Black	Brown	5	99	95	105	Yes	No	No
2	220	Red	Red	Brown	0.05	216	209	231	Yes	No	No
3	330	Orange	Orange	Brown	0.05	322	314	347	Yes	No	No
4	470	Yellow	Violet	Brown	0.05	462	447	494	Yes	No	No
5	1,000	Brown	Black	Red	0.05	980	950	1,050	Yes	No	No
6	2,200	Red	Red	Red	0.05	2,170	2,090	2,310	Yes	No	No
7	3,300	Orange	Orange	Red	0.05	3,250	3,135	3,465	Yes	No	No
8	4,700	Yellow	Violet	Red	0.05	4,620	4,465	4,935	Yes	No	No
9	10,000	Brown	Black	Orange	0.05	9,750	9,500	10,500	Yes	No	No
10	22,000	Red	Red	Orange	0.05	21,600	20,900	23,100	Yes	No	No
11	33,000	Orange	Orange	Orange	0.05	32,900	31,350	34,650	Yes	No	No
12	47,000	Yellow	Violet	Orange	0.05	45,670	44,650	49,350	Yes	No	No
13	100,000	Brown	Black	Yellow	0.05	100,100	95,000	105,000	Yes	No	No
14	1,000,000	Brown	Black	Green	0.05	998,000	950,000	1,050,000	Yes	No	No
15	10,000,000	Brown	Black	Blue	0.05	10,220,000	9,500,000	10,500,000	Yes	No	No

Lab 2: Reading and Sorting Resistors (5)


Conclusion:

We found that the different combinations of color showed different measured values. All measured values were within 5 % tolerance.

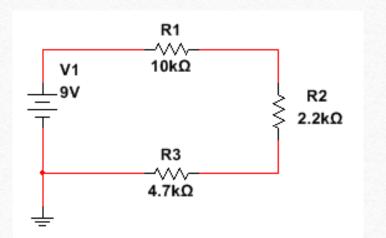
Lab 3

Series Resistors Current and Voltage

16 / 96

Lab 3: Series Resistors Current and Voltage (1)

Objective:


Experiment with series circuits and verify that the simulation, analysis (calculations) and measured test results all agree.

Equipment/Materials:

	Brand	Model	S/N	
Digital Multimeter	GW INSTEK	GDM-8245	CL860260	
Elvis II	National Instruments	NI Elvis II+	1677D5B	
Resistors	10K, 2.2K, and 4.7K Ω.			

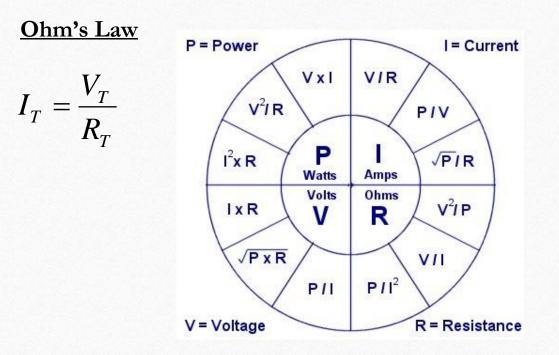
Lab 3: Series Resistors Current and Voltage (2)

Schematic:

Lab 3: Series Resistors Current and Voltage (3)

Procedures:

Measure and record the value of each resistor. Connect the resistors in series in the following order; 10K, 2.2K, and 4.7K Ω and measure each resistor and total resistor. Then, apply 9 V to the circuit using Elvis II and measure and record with the Digital Multimeter the current and voltages of the series


circuit.

Lab 3: Series Resistors Current and Voltage (4)

Calculation:

Resistor Color Codes

R1	Brown	Black	Orange	10k	Ω
R2	Red	Red	Yellow	2.2k	Ω
R3	Yellow	Violet	Red	4.7k	Ω

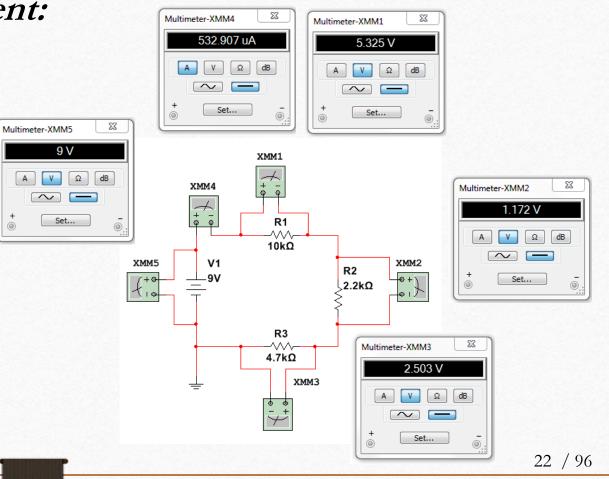
http://www.rmcybernetics.com/science/cybernetics/electronics volts amps watts.htm

EECT 111-50C Lab Notebook

20 / 96

Lab 3: Series Resistors Current and Voltage (5)

Multisim – Resistance:


	В	С	D	E	F	
10		Unit	Calculated	Measured	Simulated	
11	v	V	9.000E+0	9.086E+0	9.000E+0	
12	2 R1 Ω		10.000E+3	9.750E+3	10.000E+3	
13	R2 Ω		2.200E+3	2.170E+3	2.200E+3	
14	R3 Ω		4.700E+3	4.620E+3	4.700E+3	
15	RT Ω		16.900E+3	16.570E+3	16.900E+3	
16	IT	Α	532.544E-6	548.340E-6	532.544E-6	
17	7 IT Equation		= D11 / D15	= E11 / E15	= F11 / F15	

Lab 3: Series Resistors Current and Voltage (6)

Multisim – Voltage and Current:

	В	С	D	E	F	
18	Unit		Calculated	Measured	Simulated	
19	v	V	9.000E+0	9.086E+0	9.000E+0	
20	R1	Ω	10.000E+3	9.750E+3	10.000E+3	
21	R2	Ω	2.200E+3	2.170E+3	2.200E+3	
22	R3	Ω	4.700E+3	4.620E+3	4.700E+3	
23	RT	Ω	16.900E+3	16.570E+3	16.900E+3	
24	IT	Α	532.544E-6	548.340E-6	532.544E-6	
25	V1	V	9.000E+0	9.086E+0	9.000E+0	
26	VA	V	5.325E+0	3.703E+0	5.325E+0	
27	VB V		1.172E+0	2.520E+0	1.172E+0	
28	VC V		2.503E+0	2.502E+0	2.503E+0	
29	VA Equation		= D20 * \$D\$24	N/A	N/A	
30	VB Equation		= D21 * \$D\$24	N/A	N/A	
31	1 VC Equation		= D22 * \$D\$24	N/A	N/A	

Lab 3: Series Resistors Current and Voltage (7)

Conclusion:

We found that measured values were similar to the expected values. Also, the results of simulations were similar to the measured values. We observed that a series circuit has the same current throughout the series.

Total voltage in a series circuit was the sum of the voltage that is lost through each resistor.

Lab 4

V1

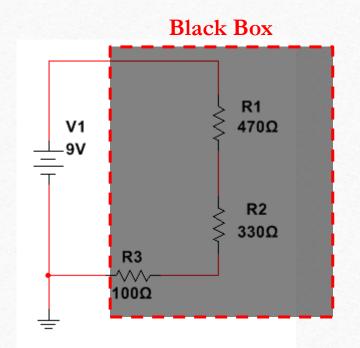
⊥_9v

÷

Black Box Design, Series Resistors

Lab 4: Black Box Design, Series Resistors (1)

Objective:


Learn about series circuits.

Equipment/Materials:

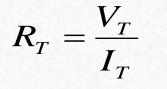
	Brand	Model	S/N
Digital Multimeter	GW INSTEK	GDM-8245	CL860260
Elvis II	National Instruments	NI Elvis II+	1677D5B
Resistors	470, 33	60, and 100 Ω.	
Wires			

Lab 4: Black Box Design, Series Resistors (2)

Schematic:

Lab 4: Black Box Design, Series Resistors (3)

Procedures:


Measure each resistor using Digital Multimeter and set them on the Elvis II in series.

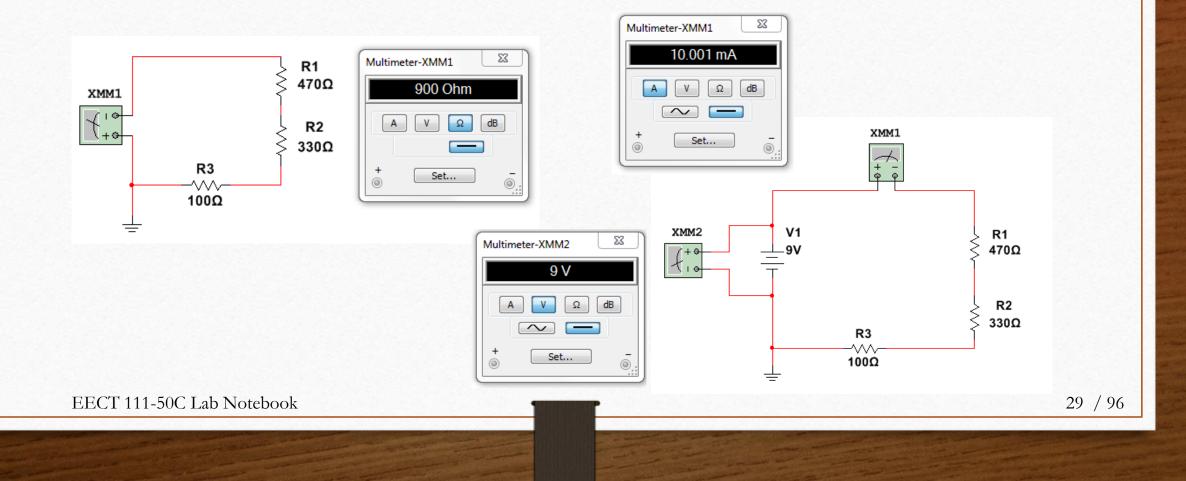
Set three wires to connect source voltage and series resistors. Apply 9 V to the circuit using Elvis II and determine what combination of three resistors making the current draw is 10 mA.

Lab 4: Black Box Design, Series Resistors (4)

Calculation:

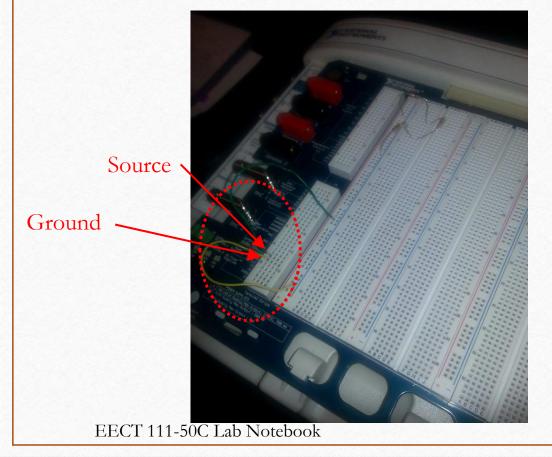
Total Resistance in Series

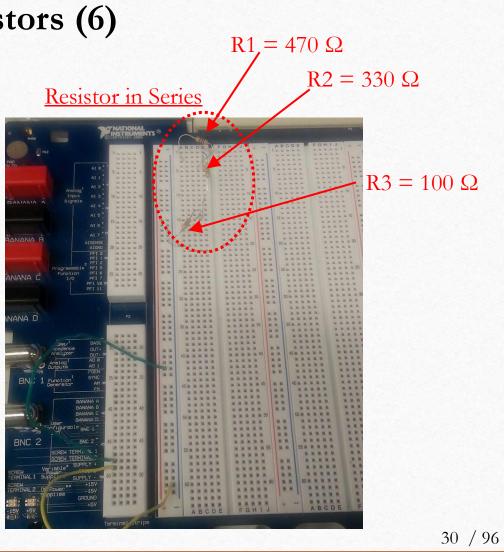
$$R_T = R_1 + R_2 + R_3$$


	В	С	D	E	F	G	Н	
7		Unit	Design	Measured	Calculated (Measured)	Simulated	% Error (Design vs. Measured)	
8	V1	V	9.000E+0	9.004E+0	8.896E+0	9.000E+0	0.04	
9	IT	Α	10.000E-3	10.029E-3	10.151E-3	1.001E-3	0.29	
10	RT	Ω	900.000E+0	886.990E+0	886.990E+0	900.000E+0	1.45	
11	R1	Ω	470.000E+0	464.120E+0	464.120E+0	470.000E+0	1.25	
12	R2	Ω	330.000E+0	324.410E+0	324.410E+0	330.000E+0	1.69	
13	R3	Ω	100.000E+0	98.460E+0	98.460E+0	100.000E+0	1.54	
14	4 RT Equation = D8 / D9		= D8 / D9	N/A	= F11 + F12 + F13	= G11 + G12 + G13		

EECT 111-50C Lab Notebook

28 / 96


Lab 4: Black Box Design, Series Resistors (5)


Multisim – Voltage, Resistance, and Current:

Lab 4: Black Box Design, Series Resistors (6)

Settings of Elvis II:

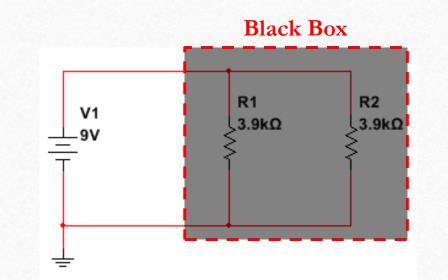
Lab 4: Black Box Design, Series Resistors (7)

Conclusion:

We designed a series circuit using knowledge that a series circuit has same current throughout the series. Total current was within 5% tolerance and we proved that our design was correct.

Lab 5

Black Box Design, Parallel Resistors


Lab 5: Black Box Design, Parallel Resistors (1)

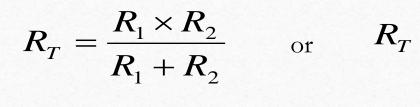
Objective: Learn about parallel circuits. *Equipment/Materials:*

Brand	Model	S/N	
Digital Multimeter	GW INSTEK	GDM-8245	CL860333
National Instruments	NI Elvis II+	1677D5B (A242480)	
Standard Resistors (Ω)	2 x 3.900E+3		

Lab 5: Black Box Design, Parallel Resistors (2)

Schematic:

Lab 5: Black Box Design, Parallel Resistors (3)

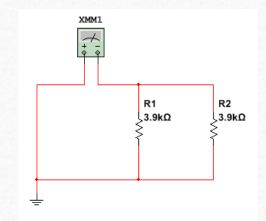

Procedures:

Measure each resistor using Digital Multimeter and set them on the Elvis II in parallel. Set two wires to connect source voltage and parallel resistors. Apply 9 V to the circuit using Elvis II and determine what combination of two resistors making the current draw is 4.9 mA.

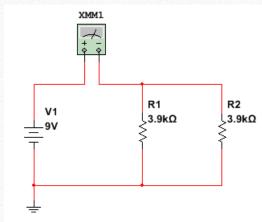
Lab 5: Black Box Design, Parallel Resistors (4)

Calculation:

Total Resistance in Parallel (2 Resistors)

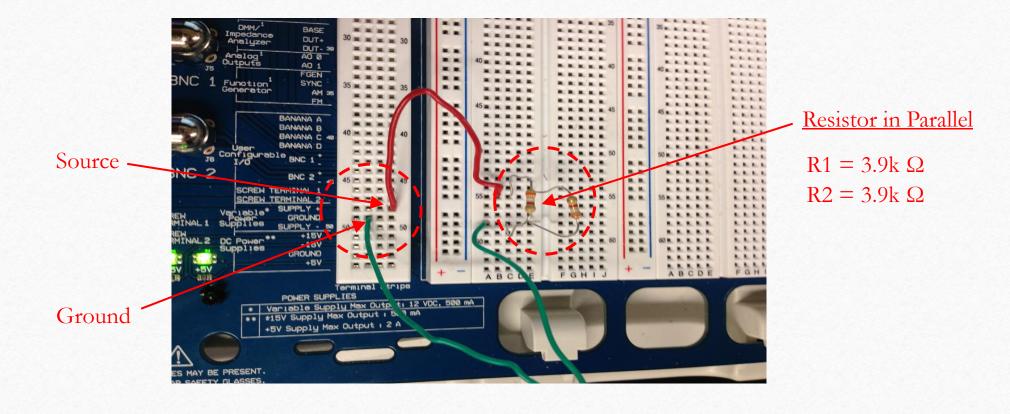


$$=\frac{1}{(\frac{1}{R_1})+(\frac{1}{R_2})}$$


	С	D	E	F	G	Н	1	J
10		Unit	Design	Calculated (Design)	Measured	Calculated (Measured)	% Error	Simulated
11	V1	V	9.000E+0	9.052E+0	9.004E+0	8.554E+0	0.04	9.000E+0
12	IT	Α	4.642E-3	4.615E-3	4.415E-3	4.647E-3	4.89	4.617E-3
13	RT	Ω	1.950E+3	1.950E+3	1.938E+3	1.925E+3	0.64	19.500E+3
14	R1	Ω	3.900E+3	3.833E+3	3.833E+3	3.833E+3	1.72	3.900E+3
15	R2	Ω	3.900E+3	3.869E+3	3.869E+3	3.869E+3	0.79	3.900E+3
16	16 RT Equation		= (E14 * E15) / (E14 + E15)	= (F14 * F15) / (F14 + F15)	N/A	= (H14 * H15) / (H14 + H15)	N/A	N/A

Lab 5: Black Box Design, Parallel Resistors (5)

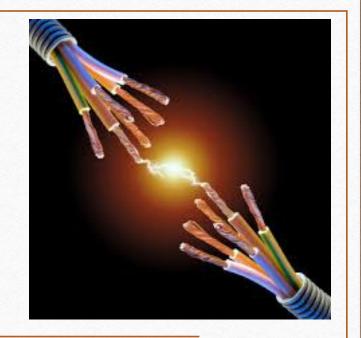
Multisim – Resistance and Current:



	С	D	E	F	G	Н	l I	J
10		Unit	Design	Calculated (Design)	Measured	Calculated (Measured)	% Error	Simulated
11	V1	V	9.000E+0	9.052E+0	9.004E+0	8.554E+0	0.04	9.000E+0
12	ΙТ	Α	4.642E-3	4.615E-3	4.415E-3	4.647E-3	4.89	4.617E-3
13	RT	Ω	1.950E+3	1.950E+3	1.938E+3	1.925E+3	0.64	19.500E+3
14	R1	Ω	3.900E+3	3.833E+3	3.833E+3	3.833E+3	1.72	3.900E+3
15	R2	Ω	3.900E+3	3.869E+3	3.869E+3	3.869E+3	0.79	3.900E+3

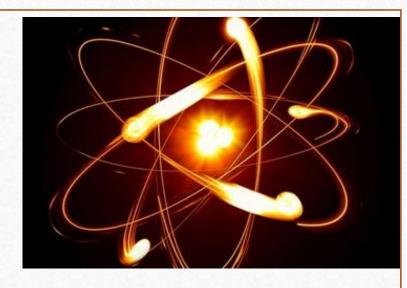
EECT 111-50C Lab Notebook

Lab 5: Black Box Design, Parallel Resistors (6)

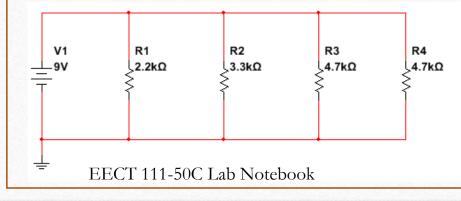

Settings of Elvis II:

Lab 5: Black Box Design, Parallel Resistors (7)

Conclusion:


We designed a parallel circuit using a knowledge that a parallel circuit has the same voltage, and different current depending on the resistor through the parallel route. Total current was within 5% tolerance and we proved that our design was correct.

Lab 6


N/A

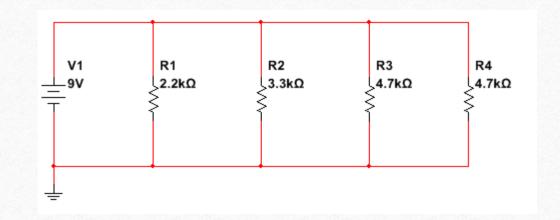
EECT 111-50C Lab Notebook

Lab 7

Resistor Parallel Circuit

Lab 7: Resistor Parallel Circuit (1)

Objective:


Learn about parallel circuits.

Equipment/Materials:

Brand	Model	S/N	
Digital Multimeter	GW INSTEK	GDM-8245	CL860333
National Instruments	NI Elvis II+	1677D5B (A242480)	
Standard Resistors (Ω)	2.2k	3.3k	2 x 4.7k

Lab 7: Resistor Parallel Circuit (2)

Schematic:

Lab 7: Resistor Parallel Circuit (3)

Procedures:

Measure each resistor using Digital Multimeter and set them on the Elvis II in parallel. Set four wires to connect source voltage and parallel resistors. Apply 9 V to the circuit using Elvis II and measure total current and current through each of the branches.

Lab 7: Resistor Parallel Circuit (4)

Calculation:

Total Resistance in Parallel (Any Number of Resistors)

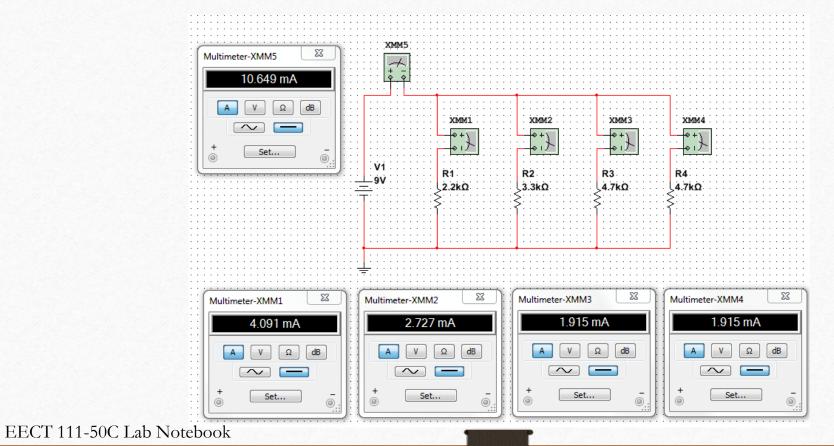
$$R_T = \frac{1}{(\frac{1}{R_1}) + (\frac{1}{R_2}) + (\frac{1}{R_3}) + (\frac{1}{R_4})}$$

Total Current

Current through Each Resistor

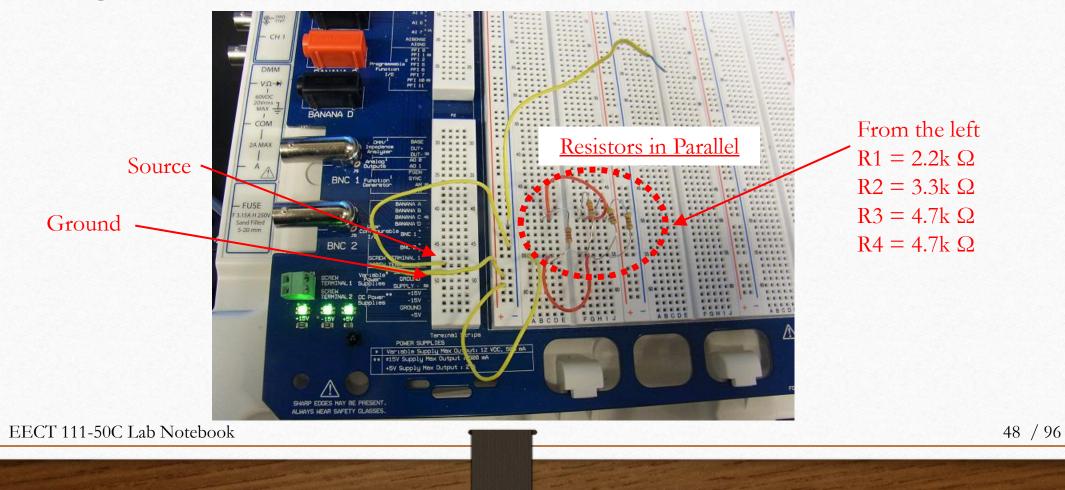
$$I_T = \frac{V_T}{R_T}$$

$$V_n = \frac{V_n}{R_n}$$


Lab 7: Resistor Parallel Circuit (5)

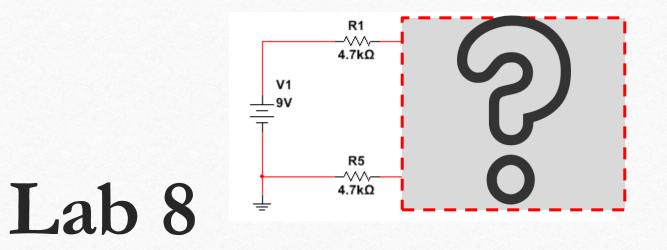
Calculation:

	С	D	E	F	G	Н	1	J
9		Unit	Design	Calculated (Design)	Measured	Calculated (Measured)	% Error	Simulated
10	V1	<	9.000E+0	9.000E+0	9.003E+0	9.138E+0	0.03	9.000E+0
11	Π	Α	10.648E-3	10.648E-3	10.665E-3	10.812E-3	0.16	10.649E-3
12	11	Α	4.091E-3	4.091E-3	3.986E-3	4.176E-3	2.56	4.091E-3
13	12	Α	2.727E-3	2.727E-3	2.691E-3	2.778E-3	1.33	2.727E-3
14	13	Α	1.915E-3	1.915E-3	1.864E-3	1.907E-3	2.66	1.915E-3
15	14	Α	1.915E-3	1.915E-3	1.917E-3	1.962E-3	0.11	1.195E-3
16	RT	Ω	845.232E+0	845.232E+0	832.700E+0	845.232E+0	1.48	844.859E+0
17	R1	Ω	2.200E+3	2.200E+3	2.156E+3	2.200E+3	2.00	2.200E+3
18	R2	Ω	3.300E+3	3.300E+3	3.241E+3	3.300E+3	1.79	3.300E+3
19	R3	Ω	4.700E+3	4.700E+3	4.722E+3	4.700E+3	0.47	4.700E+3
20	R4	Ω	4.700E+3	4.700E+3	4.589E+3	4.700E+3	2.36	4.700E+3
21	IT Equa	tion	= E10 / E16	= E10 / E16	N/A	= E10 / E16	N/A	N/A
22	RT Equa	tion	= (1 / ((1/E17) + (1/E18) + (1/E19) + (1/E20)))	= (1 / ((1/F17) + (1/F18) + (1/F19) + (1/F20)))	N/A	= (1 / ((1/H17) + (1/H18) + (1/H19) + (1/H20)))	N/A	N/A


Lab 7: Resistor Parallel Circuit (6)

Multisim – Current:

Lab 7: Resistor Parallel Circuit (7)


Settings of Elvis II:

Lab 7: Resistor Parallel Circuit (8)

Conclusion:

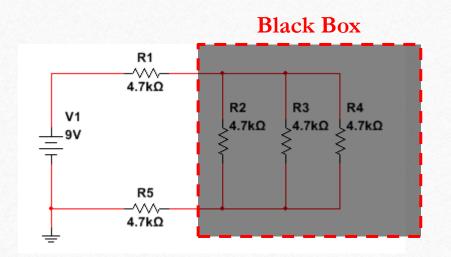
We observed that the higher the resistance in parallel path, the lower the current, and total current was equivalent to the sum of the current through all parallel paths. Current and voltage were within 5% tolerance.

Black Box Design, Equal Value Resistors

Lab 8: Black Box Design, Equal Value Resistors (1)

Objective:

Learn about building a circuit that produces exactly 1.3V.


Equipment/Materials:

Brand	Model	S/N
Digital Multimeter	GW INSTEK	GDM-8245
Elvis II	National Instruments	1677D5B (A242480)
10k Ω pot		
Standard resistor	5 X 4700Ω	

Lab 8: Black Box Design, Equal Value Resistors (2)

Schematic:

Lab 8: Black Box Design, Equal Value Resistors (3)

Procedures:

Measure each resistor using Digital Multimeter. Determine three equal resistors, R₂, R₃, and R₄, that are parallel or series with the two 4.7k Ω resistors, R₁ and R₅, in series in order to design a circuit that V₂₃₄ would be 1.286 V. Apply 9 V to the circuit using Elvis II and measure loss of voltage in V₂₃₄.

Then, replace R_1 to a 10k Ω pot and adjust it so that the output voltage is exactly 1.3 V using 10k Ω pot.

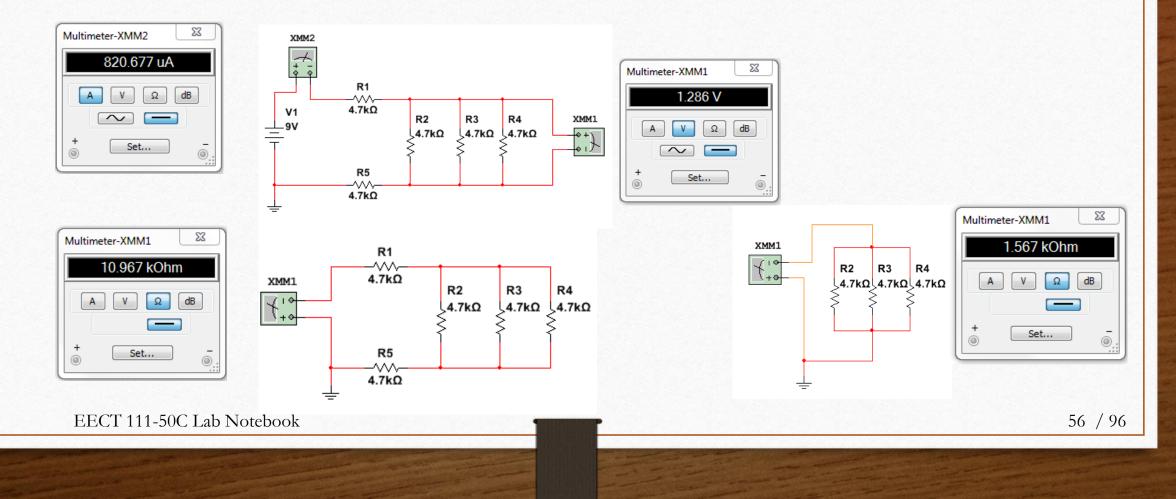
Lab 8: Black Box Design, Equal Value Resistors (4) *Calculation:*

Total Current

$$I_{234} = I_1 = I_5 = I_T = \frac{V_T}{R_T}$$
 Since R_1 is in series.

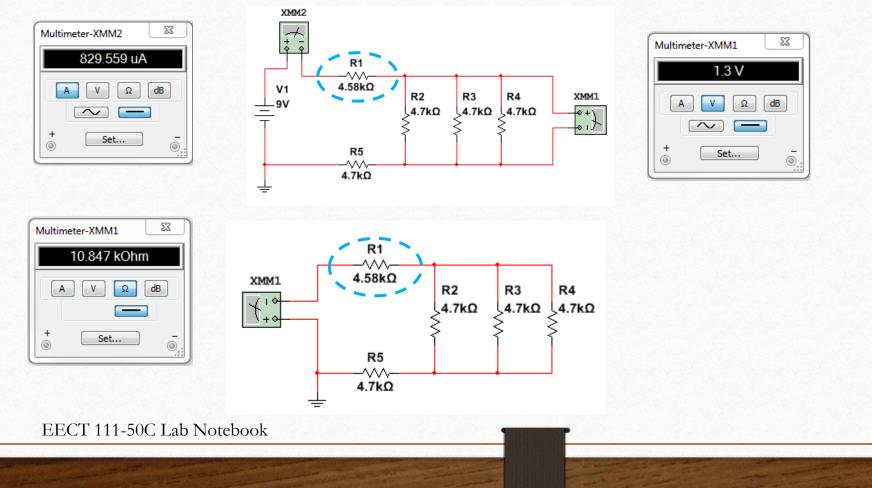
Total Resistance R2, R3, and R4 in Parallel

$$R_{234} = \frac{1}{(\frac{1}{R_2}) + (\frac{1}{R_3}) + (\frac{1}{R_4})} = \frac{1}{(\frac{1}{R_2}) + (\frac{1}{R_2}) + (\frac{1}{R_2})} = \frac{R_2}{3}$$
$$R_{234} = \frac{V_{234}}{I_T}$$

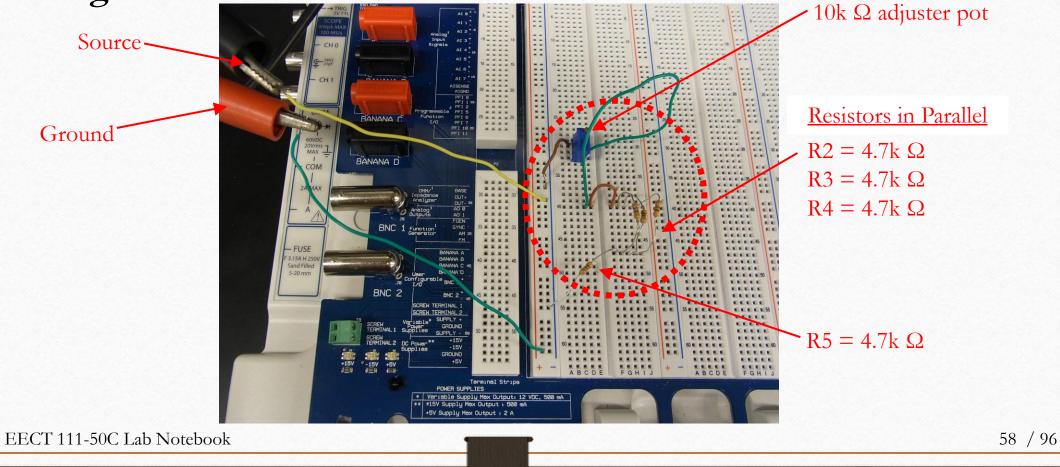

Since R_2 , R_3 , and R_4 are equal value.

Lab 8: Black Box Design, Equal Value Resistors (5)

Calculation:

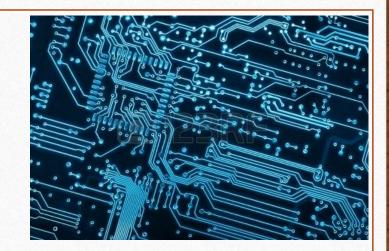

	Unit	Design	Calculated (Design)	Measured	Measured (Adjusted)	% Error	Simulated
V1	V	9.000E+0	9.000E+0	9.020E+0	9.020E+0	0.22	9.000E+0
VA	V	5.143E+0	5.143E+0	5.149E+0	5.149E+0	0.12	5.143E+0
VB	V	3.857E+0	3.857E+0	3.858E+0	3.858E+0	0.02	3.857E+0
VA-VB	V	1.286E+0	1.286E+0	1.291E+0	1.291E+0	0.41	1.286E+0
(VA-VB)adj	А	1.300E+0	1.300E+0	N/A	1.301E+0	N/A	1.300E+0
IT	А	820.669E-6	820.669E-6	1.530E-3	N/A	N/A	820.677E-6
R1	Ω	4.700E+3	4.700E+3	4.604E+3	N/A	2.04	4.700E+3
R2	Ω	4.700E+3	4.700E+3	4.690E+3	4.690E+3	0.21	4.700E+3
R3	Ω	4.700E+3	4.700E+3	4.608E+3	4.608E+3	1.96	4.700E+3
R4	Ω	4.700E+3	4.700E+3	4.579E+3	4.579E+3	2.57	4.700E+3
R5	Ω	4.700E+3	4.700E+3	4.604E+3	4.604E+3	2.04	4.700E+3
R234	Ω	1.567E+3	1.567E+3	1.545E+3	1.545E+3	1.38	1.567E+3
RT	Ω	10.967E+3	10.967E+3	N/A	N/A	N/A	10.967E+3
R1adj	Ω	N/A	N/A	N/A	4.520E+3	N/A	4.580E+3

Lab 8: Black Box Design, Equal Value Resistors (6) Multisim – Current, Voltage, and Resistance:

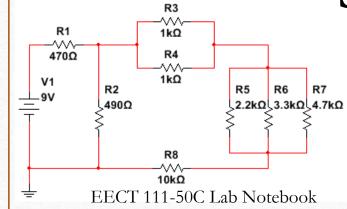

Lab 8: Black Box Design, Equal Value Resistors (7)

Multisim – Current, Voltage, and Resistance (Adjusted):

Lab 8: Black Box Design, Equal Value Resistors (8)


Settings of Elvis II:

Lab 8: Black Box Design, Equal Value Resistors (9)


Conclusion:

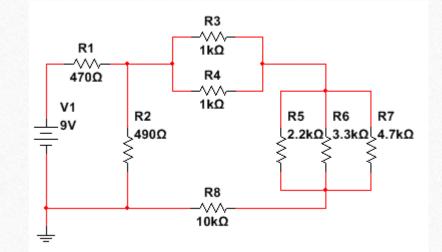
The resistors in the black box could be derived by the calculation using Ohm's law. The calculated value and measured value in the black box were very similar. This means that we proved Ohm's law to be true.

Lab 9

Series/Parallel Resistors

Lab 9: Series/Parallel Resistors (1)

Objective:


Experiment with series/parallel circuits and verify that the simulation, analysis (calculations) and test results all agree.

Equipment/Materials:

Brand	Model	S/N		
Digital Multimeter	GW INSTEK	GDM-8245		
Digital Multimeter	GW INSTER	CL860333		
RSR	HY1802D (60Hz, 110V/2A)	22510028		
Standard Resister	2-470, 2-1K, 2.2K, 3.3K,	4.7K, 10K Ω		
Breadboard				
Wires				
$10 \mathrm{k} \ \Omega$ pot				

Lab 9: Series/Parallel Resistors (2)

Schematic:

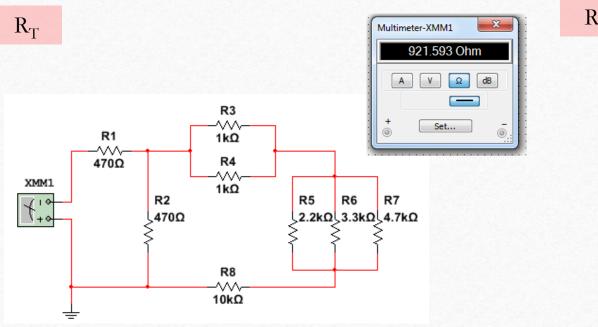
Lab 9: Series/Parallel Resistors (3)

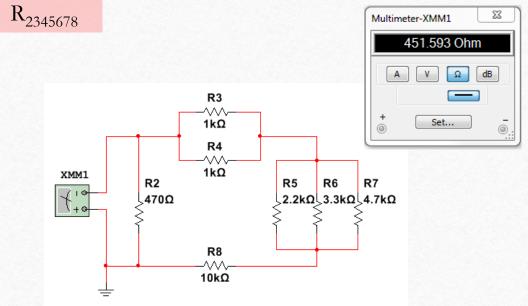
Procedures:

Build series and parallel circuit as specified and measure the total resistance. Then connect the resistors to the 9 V source. Then measure and record the current and voltages of the circuit. Adjust R2 so that the VA voltage is equal to 4.5 V. Then measure the value of the new R2 and calculate and simulate a value that would produce 4.5 V.

Lab 9: Series/Parallel Resistors (4)

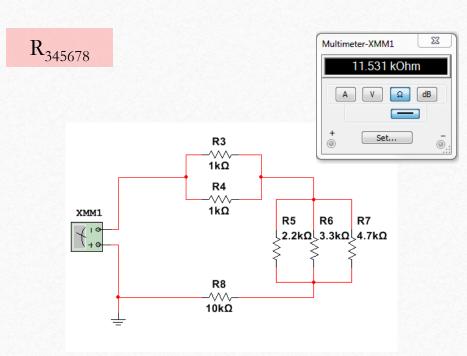
Calculation:

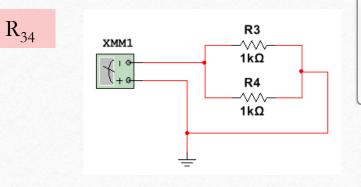

A	= D12 / D19
A	= D13 / D21
A	= E13 / D30
Ω	= D20 + D31
Ω	= 1 / ((1/D22) + (1/D23))
Ω	= 1 / ((1/D24) + (1/D25) + (1/D26))
Ω	= D28 + D29 + D27
Ω	= 1 / ((1/D30) + (1/D21))
	Α Α Ω Ω Ω

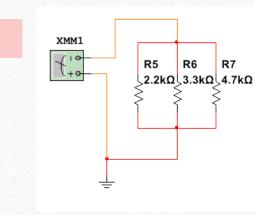

	В	С	D	E	F	Н	I.
11		Unit	Design	Calculated (Design)	Measured	% Error	Simulated
12	VT	v	9.000E+0	9.000E+0	9.026E+0	0.29	9.000E+0
13	VA	v	4.410E+0	4.410E+0	4.434E+0	0.54	4.410E+0
14	VB	v	4.219E+0	4.219E+0	4.241E+0	0.52	4.219E+0
15	VC	v	3.825E+0	3.825E+0	3.843E+0	0.48	3.825E+0
16	IT	А	9.766E-3	9.766E-3	9.964E-3	2.03	9.766E-3
17	12	А	9.383E-3	9.383E-3	N/A	N/A	N/A
18	1345678	А	382.472E-6	382.472E-6	N/A	N/A	N/A
19	RT	Ω	921.593E+0	921.593E+0	905.900E+0	1.70	921.593E+0
20	R1	Ω	470.000E+0	470.000E+0	460.650E+0	1.99	470.000E+0
21	R2	Ω	470.000E+0	470.000E+0	463.240E+0	1.44	470.000E+0
22	R3	Ω	1.000E+3	1.000E+3	979.000E+0	2.10	1.000E+3
23	R4	Ω	1.000E+3	1.000E+3	977.000E+0	2.30	1.000E+3
24	R5	Ω	2.200E+3	2.200E+3	2.156E+3	2.00	2.200E+3
25	R6	Ω	3.300E+3	3.300E+3	3.245E+3	1.67	3.300E+3
26	R7	Ω	4.700E+3	4.700E+3	4.631E+3	1.47	4.700E+3
27	R8	Ω	10.000E+3	10.000E+3	9.780E+3	2.20	10.000E+3
28	R34	Ω	500.000E+0	500.000E+0	488.800E+0	2.24	500.000E+0
29	R567	Ω	1.031E+3	1.031E+3	1.012E+3	1.77	1.031E+3
30	R345678	Ω	11.531E+3	11.531E+3	11.278E+3	2.19	11.531E+3
31	R2345678	Ω	451.593E+0	451.593E+0	444.840E+0	1.50	451.593E+0

EECT 111-50C Lab Notebook

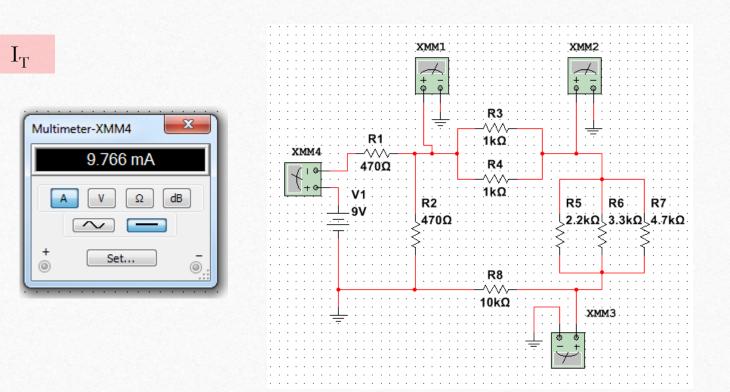
Lab 9: Series/Parallel Resistors (5)


Multisim – Resistance:

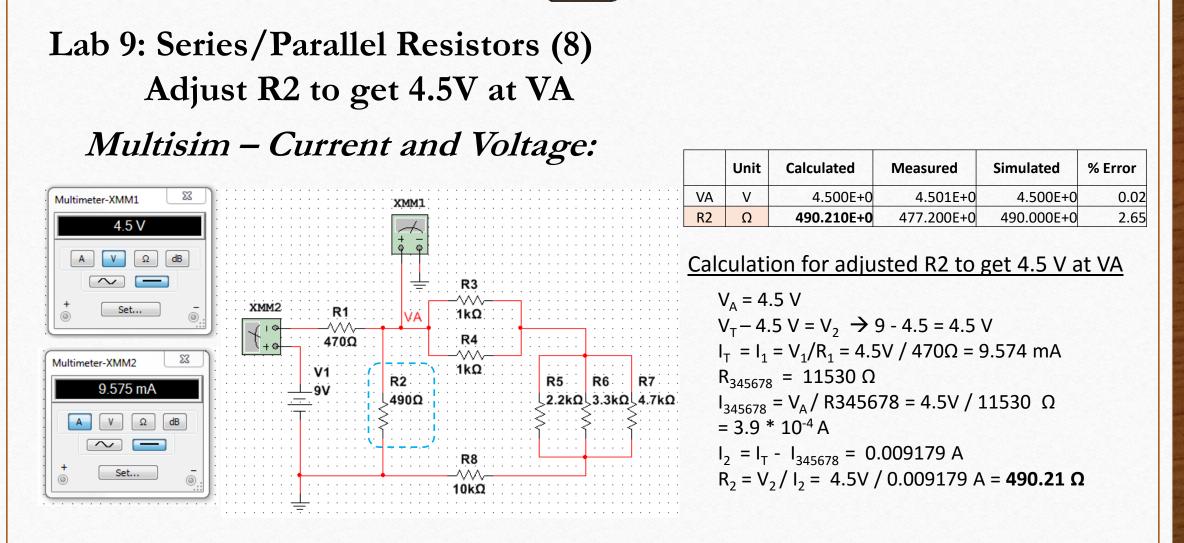



Lab 9: Series/Parallel Resistors (6)

Multisim – Resistance:

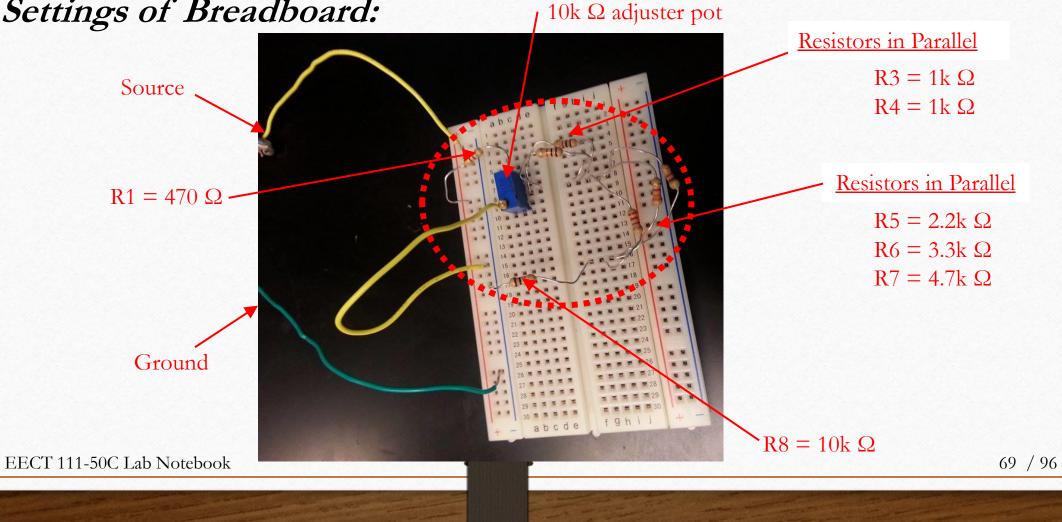


R₅₆₇



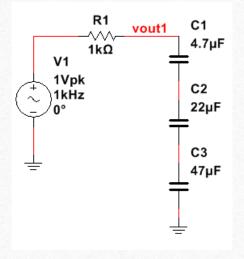
Lab 9: Series/Parallel Resistors (7)

Multisim – Current:

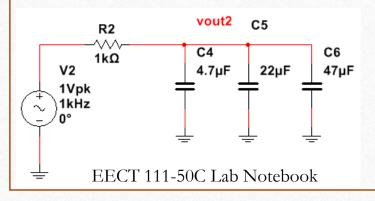

67 / 96

EECT 111-50C Lab Notebook

Lab 9: Series/Parallel Resisters (9)


Settings of Breadboard:

Lab 9: Series/Parallel Resisters (10)


Conclusion:

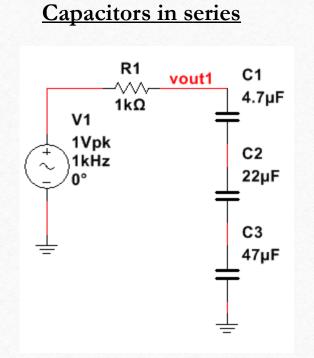
Measured resistance value was within 5% deviation compared to the designed value. When voltage as VA changed, the total resistance changed. This means that total current also changes. We observed those changes through this experiment and our percentage error of calculated value and measured data was 2.65%.

Lab 10

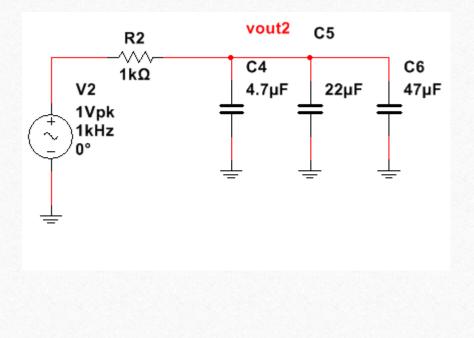
Series/Parallel Capacitors

Lab 10: Series/Parallel Capacitors (1)

Objective:


Experiment with series/parallel circuits and combination of capacitors.

Equipment/Materials:


Brand	Model	S/N
LCR Meter	INSTEC LRC Meter	E121001
Capacitors	4.7μF, 22μF, 47μF	
Bread Board	Table 4	

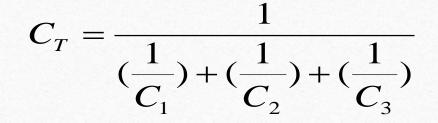
Lab 10: Series/Parallel Capacitors (2)

Schematic:

Capacitors in parallel

Lab 10: Series/Parallel Capacitors (3)

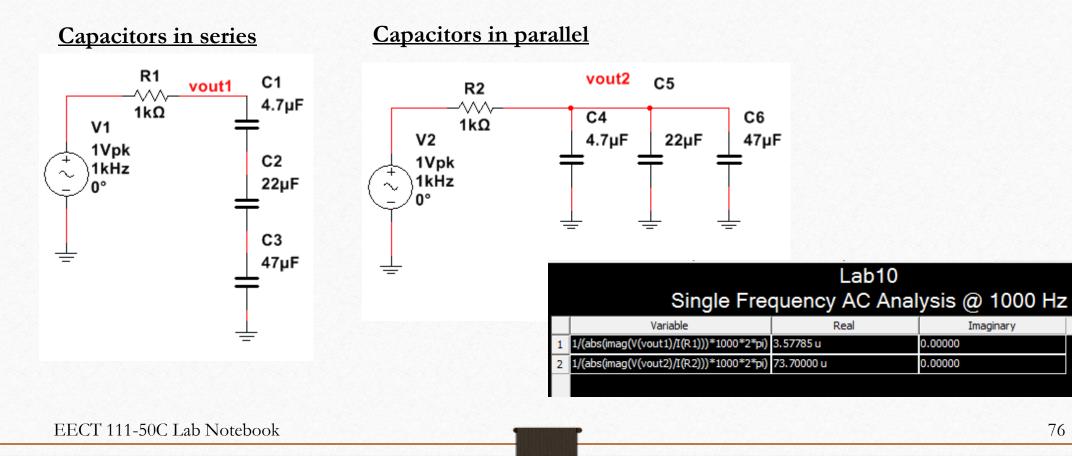
Procedures:


Measure and record the capacitance of each capacitor using the LCR meter. Connect all capacitors in series and measure and record the total capacitance. Then, connect all capacitors in parallel and measure and record the total capacitance.

Lab 10: Series/Parallel Capacitors (4)

Calculation:

Total Capacitance in Series



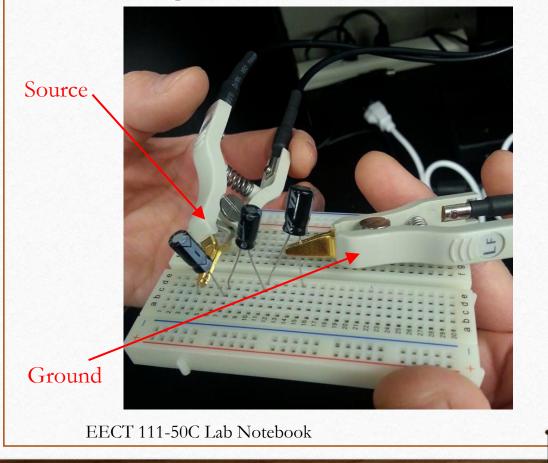
 $C_T = C_1 + C_2 + C_3$

	Unit	Design	Calculated (Design)	Measured	Calculated (Measured)	% Error	Simulated
C1	μF	4.700E+0	4.700E+0	4.240E+0	4.240E+0	9.79	N/A
C2	μF	22.000E+0	22.000E+0	18.381E+0	18.381E+0	16.45	N/A
C3	μF	47.000E+0	47.000E+0	36.139E+0	36.139E+0	23.11	N/A
CT (Series)	μF	3.578E+0	3.578E+0	3.049E+0	3.145E+0	12.09	3.578E+0
CT (Parallel)	μF	73.700E+0	73.700E+0	54.420E+0	58.760E+0	20.27	73.700E+0

Lab 10: Series/Parallel Capacitors (5)

Multisim – Total Capacitance:

76 / 96


Imaginary

0.00000

0.00000

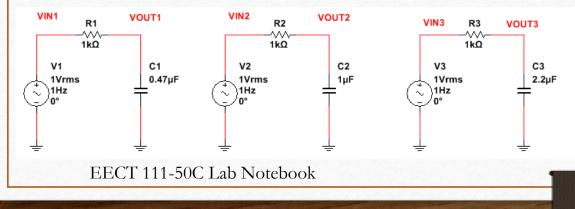
Lab 10: Series/Parallel Capacitors (6)

Settings of Breadboard:

Capacitors in Series 4.7 μF 22 µF 47 μF C 3.0526uF D.0048 TESTIN F:1.0000 kHz R.H ON U:1.000 V C.V ON MEN AUTC MANU INT. B OF LCR - 819 LCR Meter Screen 77 / 96

Lab 10: Series/Parallel Capacitors (7)

Conclusion:


As we predicted, total capacitance in series was smaller than the total capacitance in parallel.

Percentage error was greater compared to the other experiment, such as measuring resistance, voltage, or current. (We used a 4.7 μ F capacitor instead of 10 μ F which the instruction specified because there weren't enough numbers of 10 μ F capacitors for all students.)

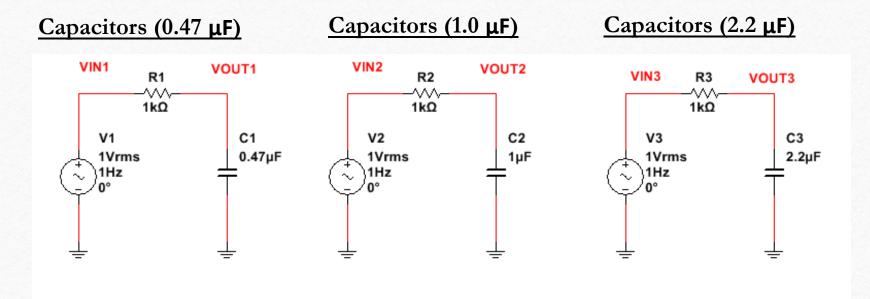
Lab 11

RC Lab

79 / 96

Lab 11: RC Lab (1)

Objective:


Experiment with RC (Resistor & Capacitor) circuits.

Equipment/Materials:

Brand	Model	S/N	
Digital Multimeter	GW INSTEK	GDM-8245	CL860333
LCR Meter	INSTEC LRC Meter	E121001	
Oscilloscope	Tektronix TDS 220	TDS220	B083259
Function Generator	Tektronix GFG 8210	C705254	
Capacitors	0.47μF, 2.2μF, 1.0μF		
Resistor	1000Ω		

Lab 11: RC Lab (2)

Schematic:

Lab 11: RC Lab (3)

Procedures:

Measure and record the resistor value using the DMM and measure and record the capacitor values using LCR meter. Connect all resistors and one capacitor in series and connect Channel 1 of the Oscilloscope to the input and Channel 2 to the output.

Adjust the voltage of the function generator to 1Vpp at the frequencies 10 through 10,000.

Measure the input and output voltages using the Oscilloscope for each frequency. Repeat this measurement procedure for the each EFCapacitOrNandsrecord the value.

82 / 96

Lab 11: RC Lab (4)

Calculation:

Capacitive Reactance (X_C)

Impedance (Z)

$$X_C = \frac{1}{2\pi fC}$$

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

Current through Capacitance (I_C)

$$I_C = \frac{V_S}{Z}$$

Output Voltage (V)

$$V_{out} = Z \times I_C$$

Lab 11: RC Lab (5)

Calculation:

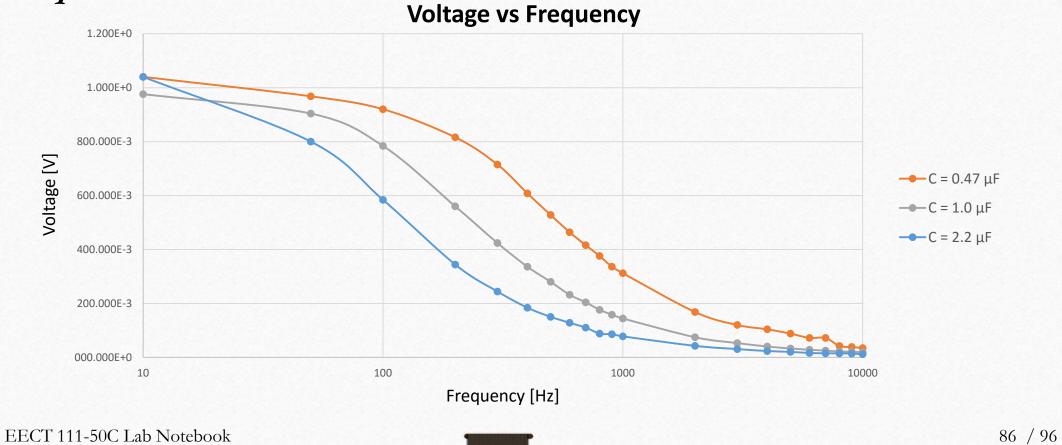
	А	В	С	D
12		Unit	Design	Measured
13	C1	F	470.000E-9	432.000E-3
14	C2	F	2.200E-6	2.036E+0
15	C3	F	1.000E-6	1.024E+0
16	R1	Ω	1.000E+3	978.700E+0
17	Vs	V	1.000E+0	1.020E+0

Output	
Voltage [V]	= E22 * C22
X _c [Ω]	= 1 / (2 * PI() * A22 * \$C\$13)
Ζ [Ω]	= SQRT (\$C\$16 ^2 + C22 ^2)
I _C [A]	= \$C\$17 / D22

4	А	В	С	D	E	F	G
19		Į	C	:			
20		^	Expe	Measured			
21	Frequency [Hz]	Output Voltage [V]	X _c [Ω]	Ζ [Ω]	I _c [A]	Input Voltage [V]	Output Voltage [V]
22	10	999.564E-3	33.863E+3	33.878E+3	29.518E-6	1.020E+0	1.040E+
23	50	989.274E-3	6.773E+3	6.846E+3	146.071E-6	984.000E-3	968.000E-
24	100	959.055E-3	3.386E+3	3.531E+3	283.218E-6	976.000E-3	920.000E-
25	200	861.036E-3	1.693E+3	1.966E+3	508.544E-6	968.000E-3	816.000E-
26	300	748.508E-3	1.129E+3	1.508E+3	663.125E-6	960.000E-3	715.000E-
27	400	646.127E-3	846.569E+0	1.310E+3	763.230E-6	952.000E-3	608.000E-
28	500	560.755E-3	677.255E+0	1.208E+3	827.982E-6	944.000E-3	528.000E-
29	600	491.504E-3	564.379E+0	1.148E+3	870.875E-6	944.000E-3	464.000E-
30	700	435.475E-3	483.754E+0	1.111E+3	900.201E-6	944.000E-3	416.000E-
31	800	389.802E-3	423.284E+0	1.086E+3	920.899E-6	936.000E-3	376.000E-
32	900	352.151E-3	376.253E+0	1.068E+3	935.943E-6	936.000E-3	336.000E-
33	1000	320.737E-3	338.628E+0	1.056E+3	947.168E-6	936.000E-3	312.000E-
34	2000	166.938E-3	169.314E+0	1.014E+3	985.967E-6	928.000E-3	168.000E-
35	3000	112.164E-3	112.876E+0	1.006E+3	993.690E-6	936.000E-3	120.000E-
36	4000	84.355E-3	84.657E+0	1.004E+3	996.436E-6	936.000E-3	104.000E-
37	5000	67.571E-3	67.726E+0	1.002E+3	997.714E-6	928.000E-3	88.000E-
38	6000	56.348E-3	56.438E+0	1.002E+3	998.411E-6	928.000E-3	72.000E-
39	7000	48.319E-3	48.375E+0	1.001E+3	998.832E-6	928.000E-3	72.000E-
40	8000	42.291E-3	42.328E+0	1.001E+3	999.105E-6	926.000E-3	42.200E-
41	9000	37.599E-3	37.625E+0	1.001E+3	999.293E-6	926.000E-3	38.400E-
42	10000	33.843E-3	33.863E+0	1.001E+3	999.427E-6	928.000E-3	34.400E-

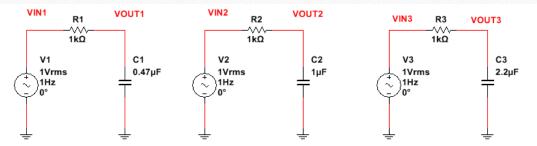
EECT 111-50C Lab Notebook

84 / 96

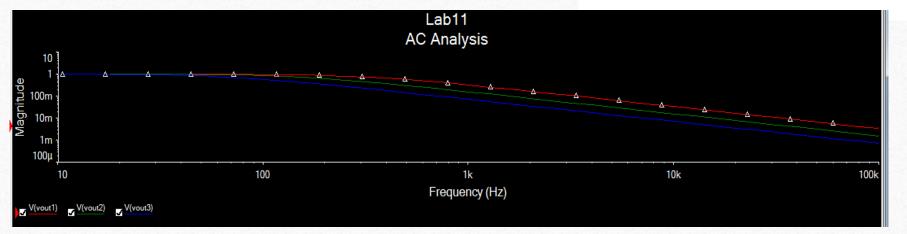

Lab 11: RC Lab (6)

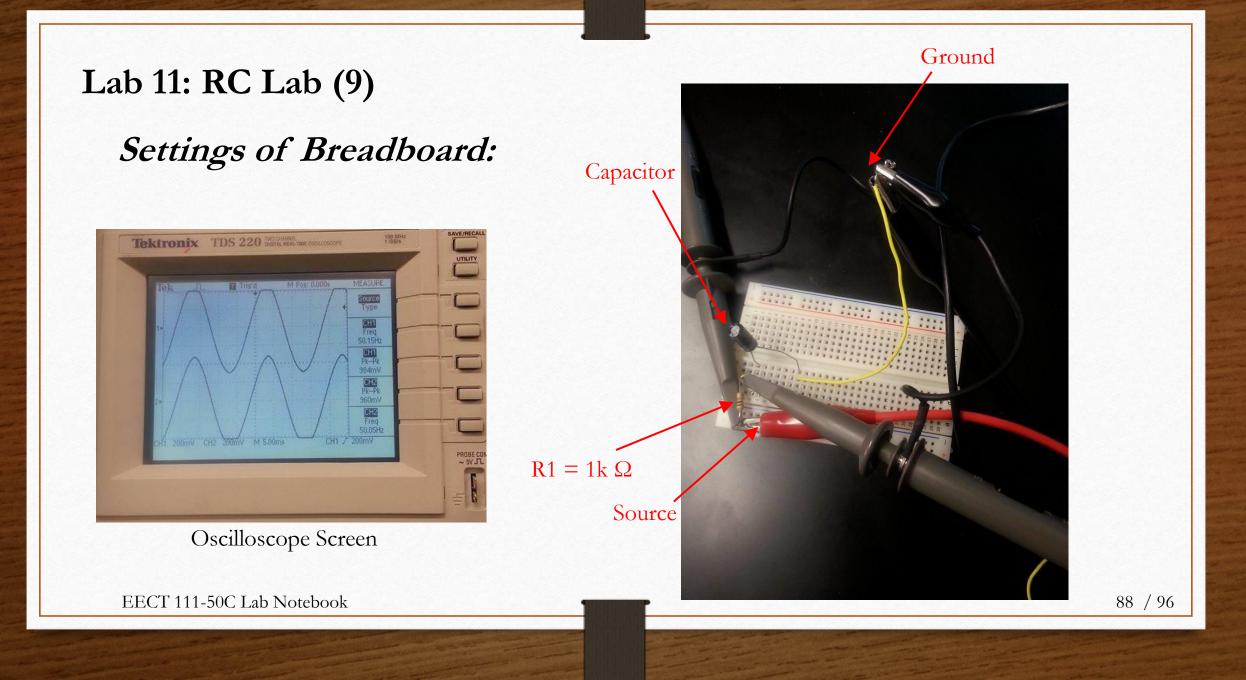
Calculation:

	А	Н	- I	J	K	L	М	N	0	Р	Q	R	S
19		Output Voltage C = 1.0 μF						Output Voltage C = 2.2 μF					
20		Expected			Mea	Measured Expecte			cted	ted		Measured	
21	Frequency [Hz]	Output Voltage [V]	X _c [Ω]	Ζ [Ω]	I _c [A]	Input Voltage [V]	Output Voltage [V]	Output Voltage [V]	X _c [Ω]	Ζ [Ω]	I _c [A]	Input Voltage [V]	Output Voltage [V]
22	10	990.581E-3	7.234E+3	7.303E+3	136.928E-6	984.000E-3	976.000E-3	998.032E-3	15.915E+3	15.947E+3	62.708E-6	1.020E+0	1.040E+0
23	50	822.637E-3	1.447E+3	1.759E+3	568.566E-6	976.000E-3	904.000E-3	954.028E-3	3.183E+3	3.336E+3	299.717E-6	1.010E+0	800.000E-3
24	100	586.134E-3	723.432E+0	1.234E+3	810.214E-6	968.000E-3	784.000E-3	846.733E-3	1.592E+3	1.880E+3	532.018E-6	1.020E+0	584.000E-3
25	200	340.147E-3	361.716E+0	1.063E+3	940.372E-6	944.000E-3	560.000E-3	622.677E-3	795.775E+0	1.278E+3	782.479E-6	1.010E+0	344.000E-3
26	300	234.424E-3	241.144E+0	1.029E+3	972.134E-6	944.000E-3	424.000E-3	468.650E-3	530.516E+0	1.132E+3	883.384E-6	1.000E+0	244.000E-
27	400	177.971E-3	180.858E+0	1.016E+3	984.036E-6	944.000E-3	336.000E-3	369.698E-3	397.887E+0	1.076E+3	929.152E-6	1.000E+0	184.000E-3
28	500	143.195E-3	144.686E+0	1.010E+3	989.694E-6	936.000E-3	280.000E-3	303.314E-3	318.310E+0	1.049E+3	952.891E-6	1.000E+0	150.000E-
29	600	119.705E-3	120.572E+0	1.007E+3	992.810E-6	936.000E-3	232.000E-3	256.391E-3	265.258E+0	1.035E+3	966.573E-6	1.000E+0	128.000E-3
30	700	102.800E-3	103.347E+0	1.005E+3	994.702E-6	936.000E-3	204.000E-3	221.706E-3	227.364E+0	1.026E+3	975.114E-6	1.000E+0	110.000E-
31	800	90.061E-3	90.429E+0	1.004E+3	995.936E-6	928.000E-3	176.000E-3	195.120E-3	198.944E+0	1.020E+3	980.779E-6	1.000E+0	88.000E-
32	900	80.123E-3	80.381E+0	1.003E+3	996.785E-6	928.000E-3	158.000E-3	174.137E-3	176.839E+0	1.016E+3	984.721E-6	1.000E+0	85.600E-
33	1000	72.155E-3	72.343E+0	1.003E+3	997.393E-6	928.000E-3	144.000E-3	157.177E-3	159.155E+0	1.013E+3	987.570E-6	1.000E+0	77.600E-
34	2000	36.148E-3	36.172E+0	1.001E+3	999.346E-6	928.000E-3	74.400E-3	79.327E-3	79.577E+0	1.003E+3	996.849E-6	1.000E+0	42.400E-
35	3000	24.107E-3	24.114E+0	1.000E+3	999.709E-6	928.000E-3	52.800E-3	52.977E-3	53.052E+0	1.001E+3	998.596E-6	1.010E+0	30.400E-3
36	4000	18.083E-3	18.086E+0	1.000E+3	999.836E-6	928.000E-3	40.000E-3	39.757E-3	39.789E+0	1.001E+3	999.209E-6	1.010E+0	23.200E-3
37	5000	14.467E-3	14.469E+0	1.000E+3	999.895E-6	928.000E-3	32.800E-3	31.815E-3	31.831E+0	1.001E+3	999.494E-6	1.010E+0	20.000E-
38	6000	12.056E-3	12.057E+0	1.000E+3	999.927E-6	928.000E-3	28.000E-3	26.516E-3	26.526E+0	1.000E+3	999.648E-6	1.010E+0	16.000E-
39	7000	10.334E-3	10.335E+0	1.000E+3	999.947E-6	928.000E-3	24.800E-3	22.731E-3	22.736E+0	1.000E+3	999.742E-6	1.010E+0	14.800E-
40	8000	9.043E-3	9.043E+0	1.000E+3	999.959E-6	928.000E-3	21.600E-3	19.890E-3	19.894E+0	1.000E+3	999.802E-6	1.000E+0	14.400E-
41	9000	8.038E-3	8.038E+0	1.000E+3	999.968E-6	928.000E-3	20.800E-3	17.681E-3	17.684E+0	1.000E+3	999.844E-6	1.000E+0	13.600E-
42	10000	7.234E-3	7.234E+0	1.000E+3	999.974E-6	1.000E+0	18.800E-3	15.913E-3	15.915E+0	1.000E+3	999.873E-6	1.000E+0	11.600E-


Lab 11: RC Lab (7)

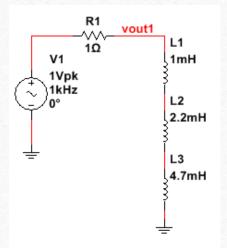
Graph:



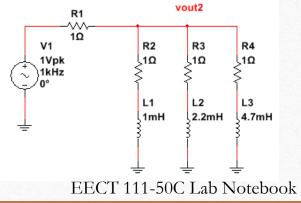

Lab 11: RC Lab (8)

Multisim – Voltage vs Frequency:

87 / 96



Lab 11: RC Lab (10)


Conclusion:

The higher the frequency, the lower the voltage output. The input voltage did not change. The smaller capacitor exhibited a higher voltage compared to the larger capacitor.

Lab 12

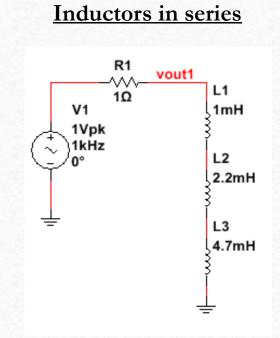
90 / 96

Lab 12: Series/Parallel Inductors (1)

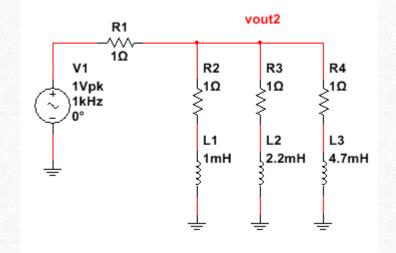
Objective:

Experiment with series circuit and parallel combinations of inductors.

Equipment/Materials:


Brand	Model	S/N
Bread Board	Table 4	
LCR Meter	INSTEC LRC Meter	E121001
Inductors	1mH, 2.2mH, 4.7mH	

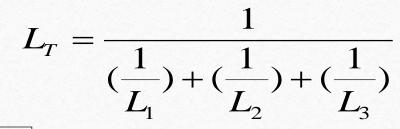
Procedures:


Measure and record the inductance of each inductor using the LCR meter. Connect all inductors in series and measure and record the total inductance.

Lab 12: Series/Parallel Inductors (2)

Schematic:

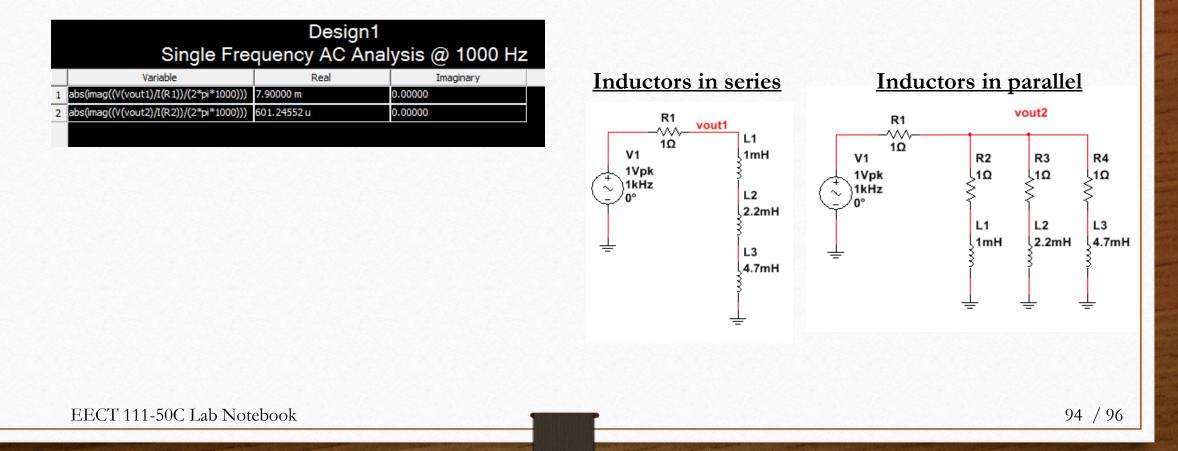
Inductors in parallel


Lab 12: Series/Parallel Inductors (3)

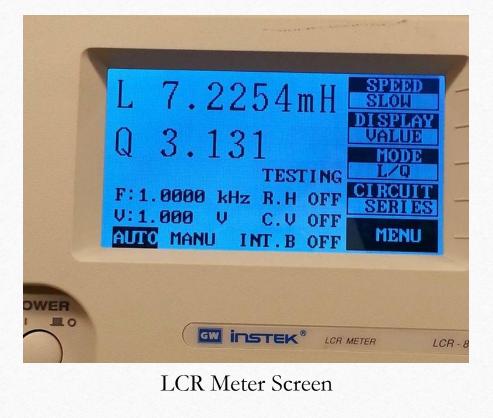
Calculation:

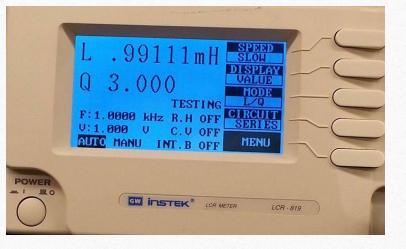
Total Inductors in parallel

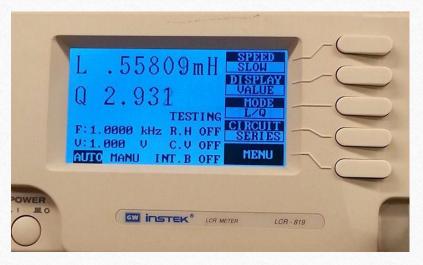
Total Inductors in Series


$$L_T = L_1 + L_2 + L_3$$

Series	unit	Design	Measured	Simulated	% Error
L1	Н	1.000E-3	990.850E-6	N/A	0.92
L2	Н	2.200E-3	2.180E-3	N/A	0.91
L3	Н	4.700E-3	4.310E-3	N/A	8.30
LT	Н	7.900E-3	7.280E-3	7.900E-3	7.85
Parallel	unit	Design	Measured	Simulated	% Error
L1	Н	1.000E-3	990.850E-6	N/A	0.92
L2	Н	2.200E-3	2.180E-3	N/A	0.91
L3	Н	4.700E-3	4.310E-3	N/A	8.30
LT	Н	599.768E-6	558.000E-6	601.246E-6	6.96


Lab 12: Series/Parallel Inductors (4)


Multisim – Voltage vs Frequency:



Lab 12: Series/Parallel Inductors (5)

Measured value of inductance:

Lab 12: Series/Parallel Inductors (6)

Conclusion:

All measurements were lower than expected. Both series circuit and parallel circuit showed total inductance that were expected. The inductance of measurement value increased quickly at first, then gradually it became slowly increased. We observed calculated value and measured data were within 10 % tolerance.