Class Sessions

Week 2. Chapter (2)
Juddo Abaker
Analysis Questions.
6/ Drawing a schematic.
R_{1}

7/ List of color coding resistors.
a. Brown, black, red and silver.
b. Red, violet and orange.
c. Brow, black, green and silver.
d. Brown, black, black and gold.

Juddo Abaker
EECT-111-S1C-C1 Chapter (3).
HW. Problems.

FIGER 3-7
7.V=IR then $\mathrm{R}=\mathrm{V} / \mathrm{I} \quad$ so $\mathrm{R}=41 \mathrm{~V} / 50 \mathrm{Ma}=.82 \Omega=820 \Omega$
10. $180 w * 1 / 3=60 \mathrm{~W}$
13. Power will increase, $P=V^{*}$ I.so, I is same and V doubled.
21. $V=$ sqr- of $P R$. Then $V=s q r$ of $100 \mathrm{Mw}^{*} 10 \mathrm{~K} \Omega=31.6227766^{\wedge} 2=1000 \mathrm{mv}=100 \mathrm{~V}$
$\mathrm{R}_{1}=12 \mathrm{k} \Omega$

Juddo Abaker

EETC-111
HW-Chapter (4)
20. $R_{T}=R_{1}+R_{2}+R_{3}+R_{4}+R_{5}+R_{6}$

$$
\mathrm{R}_{\mathrm{T}}=1 \mathrm{~K} \Omega+47 \mathrm{~K} \Omega+10 \mathrm{~K} \Omega+27 \mathrm{~K} \Omega+5 \mathrm{~K} \Omega+1 \mathrm{~K}=91 \mathrm{~K} \Omega
$$

$V_{T}=I_{T \times} R_{T}$

$$
\mathrm{R}_{4}=27 \mathrm{~K} \Omega
$$

$V_{4}=54 \mathrm{~K} \Omega$
$\mathrm{I}_{4}=\mathrm{V} 4 / \mathrm{R} 4=54 \mathrm{~V} / 27 \mathrm{~K} \Omega=2 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{T}}=(2 \mathrm{~mA} \times 91 \Omega)=182 \mathrm{~V}$
a. $V_{2}=I_{2 \times} R_{2}=(2 m A \times 47 K \Omega) \quad M_{1}=94 V$
b. $V_{3}=I_{3} \times R_{3}=(2 m A \times 1 k \Omega) M_{3}=2 V$
c. $I_{T}=2 \mathrm{~mA}$
d. $P_{T}=V_{T \times} I_{T}=(182 \mathrm{~V} \times 2 \mathrm{~mA})=364 \mathrm{~mW}$

New.
$\mathrm{R}_{\mathrm{T}}=91 \mathrm{~K} \Omega$
$\mathrm{P}_{\mathrm{T}}=2(364 \mathrm{Mw})=728 \mathrm{Mw}$
$P_{T}=V_{T}{ }^{2} / R_{T}$
$\mathrm{V}_{\mathrm{T}}=$ square root of $(728 \mathrm{Mw})(91 \mathrm{~K} \Omega)=257.39 \mathrm{~V}$
$I_{T}=$ square root of $\mathrm{P}_{\mathrm{T}} / \mathrm{R}_{\mathrm{T}}=$ sQrt of $728 \mathrm{Mw} / 91 \mathrm{k} \Omega=2.83 \mathrm{~mA}$
26. the circuit applied voltage increase.

Chapter (5).
8. $V_{T}=\quad I_{T \times} R_{T}$
$\mathrm{R}_{\mathrm{T}}=40 \mathrm{~V} / 10 \mathrm{~mA}=4 \mathrm{k} \Omega$
$1 / R_{T}=1 / 6 \mathrm{k} \Omega+1 / R_{1}$
$1 / 4 \mathrm{k} \Omega=\quad 1 / 6 \mathrm{k} \Omega+1 / \mathrm{R}_{1}$
$1 / \mathrm{R}_{1}=1 / 4 \mathrm{k} \Omega-1 / 6 \mathrm{k} \Omega$
$1 / \mathrm{R}_{1}=1 / 12 \mathrm{k} \Omega$
9. $\mathrm{V}_{2}=(2 \mathrm{~A})(25 \Omega)=50 \mathrm{~V}$
$V_{1}=V_{2}=50 \mathrm{~V}$
$\mathrm{I}_{1}=2.5 \mathrm{~A}-2=0.5 \mathrm{~A}$
$\mathrm{P}_{1}=\mathrm{V}_{1} \mathrm{I}_{1}=(50 \mathrm{~V})(0.5 \mathrm{~A})=25 \mathrm{~W}$
13. $1 / R_{T}=1 / R x+1 / R_{1}+1 / R_{2}+1 / R_{3}+1 / R_{4}$
$1 / 10 K \Omega=1 / R x+1 / 100 K \Omega+1 / 47 K \Omega+1 / 27 K \Omega$
$1 / \mathrm{Rx}=1 / 10 \mathrm{~K} \Omega-1 / 100 \mathrm{~K} \Omega-1 / 47 \mathrm{~K} \Omega-1 / 27 \mathrm{~K} \Omega=0.039 \mathrm{k} \Omega$
$1 / R_{x}=1 / 0.039 \mathrm{k} \Omega \quad=31.56 \mathrm{k} \Omega$

